
École Polytechnique Fédérale de Lausanne

JediFuzz : compiler-based transformative fuzzing

by Lucio Ezechiele Romerio

Master Thesis

Approved by the Examining Committee:

Prof. Dr. sc. ETH Mathias Payer
Thesis Advisor

Adrian Herrara
External Expert

Prof. Dr. sc. ETH Mathias Payer
Thesis Supervisor

EPFL IC IINFCOM HEXHIVE
BC 160 (Bâtiment BC)

Station 14
CH-1015 Lausanne

March 17, 2022

I have not failed. I’ve just found 10’000 ways that won’t work.
— Thomas A. Edison

Dedicated to whoever is reading this...
May the force be with you!

Acknowledgments

I would like to thank my supervisor, Prof. Mathias Payer, for giving me the opportunity of being
part of the "Hive" and introducing me to the research world.

The whole HexHive lab, especially the LLVM people — Jelena, Nicolas and Adrian, our mentor:
for the long discussions and the cooperation at unveiling compiler misteries.

My family, for their unconditional support and for always being present when I need them.
Even if it is to speak about fuzzing, compilers and other obscure concepts.

Last but not least, my girlfriend, for the incommensurable help and for her limitless patience.
Being confined because of Covid-19, she discovered how I deal with bugs: by raging at them and
hitting the desk with my head. She silently became an expert at evaluating how bad a bug is from
my reactions. A skill that she probably never wanted to acquire.

Lausanne, March 17, 2022 Lucio Ezechiele Romerio

1

Abstract

Fuzzing is an effective technique to find bugs. It consists in feeding a huge amount of randomly
generated input to a target binary, and in monitoring the executions for crashes and unusual
behaviour. Although fuzzing scales really well and is easy to deploy, it is limited by coverage walls.
In fact, since they rely on randomness, fuzzing engines often struggle to generate inputs that
bypass hard-to-satisfy checks — like checksums, hashes and magic values. This prevents them
from finding bugs hidden in deep execution paths.

To improve coverage, existing techniques leverage symbolic execution and taint analysis
to generate inputs bypassing hard-to-satisfy checks. Those approaches are often complex and
imprecise; plus, they are subject to overhead issues and do not scale. Transformative fuzzing
has shown to be a better solution to this problem. The state-of-the-art transformative fuzzer is
T-Fuzz, which bypasses coverage walls by randomly negating conditional jumps in the program.
Although it showed good results, this approach is imprecise and is limited to if statements,
lacking in flexibility.

We propose J E D I F U Z Z, a compiler-based transformative fuzzer addressing the coverage
wall problem through control-flow enforcement. Our system efficiently collects tailored run-
time information about check constraints and their relations. When a coverage wall is hit, this
information is leveraged to carefully select the most promising non executed branch. Then,
thanks to the instrumentation injected at compile time, the program is transformed so that the
control-flow is enforced to take that branch.

J E D I F U Z Z has been designed to be easily integrated into any C/C++ fuzzer. For the evalua-
tion, we integrated it into MOpt-AFL and compared the performances. Our preliminary results
have shown that J E D I F U Z Z improves the coverage performance of 25-30% over MOpt-AFL, and
that it can more reliably find bugs hidden in deep execution paths.

2

Contents

Acknowledgments 1

Abstract 2

1 Introduction 5

2 Background 8
2.1 Fuzzing . 8
2.2 LLVM . 10

3 Design 12
3.1 Goals . 12
3.2 Overview . 13
3.3 Instrumentation . 14
3.4 Static analysis . 15
3.5 Monitor . 17
3.6 Fuzzing . 17

4 Implementation 19
4.1 Data structure . 19
4.2 Instrumentation . 20
4.3 Static analysis . 21
4.4 Monitor . 22

5 Evaluation 24
5.1 Preconditions . 24
5.2 Goals . 25
5.3 Setup and Architecture . 25
5.4 Code Coverage . 26
5.5 Reached Bugs . 27
5.6 Ranking Policies . 28

3

6 Related Work 30
6.1 Feedback based fuzzing . 30
6.2 Symbolic and concolic execution based fuzzing . 30
6.3 Taint analysis base fuzzing . 31
6.4 Transformative fuzzing . 31

7 Future work 33
7.1 Post analysis . 33
7.2 Instrumentation . 33
7.3 Static analysis . 34
7.4 Other fuzzers . 35

8 Conclusion 36

Bibliography 37

4

Chapter 1

Introduction

Software have bugs [6]: some of them are just harmless errors, others may result in critical
vulnerabilities affecting a large amount of users. It is thus crucial to have multiple layers of
security, aiming to prevent and detect those bugs as soon as possible. Over the years mitigations
like Address Space Layout Randomization (ASLR) [25], executable space protection (NX bit) [26],
and Control Flow Integrity (CFI) [1] have been developed, often as a response to the rise of a new
attack technique. Mitigations make it harder to perform some type of attacks, but they are often
inefficient and it’s not uncommon for hackers to bypass them [8]. Software testing remains thus
fundamental and widely used; over the last few years, a testing technique has particularly gained
traction: fuzzing.

Given a target binary, fuzz testing executes it as many times as possible with random or
semi-random data as input. The fuzzing engine monitors each execution detecting crashes,
errors, and unusual behaviour. Setting up a fuzzing campaign requires little human effort beside
the selection of an initial corpus of seeds, making fuzz testing fast to deploy and easily accessible
even to inexperienced users. The fuzzer generates new test cases starting from the initial corpus,
and it executes those test cases in parallel. In fact, test cases executions are independent, allowing
fuzzing to scale to an arbitrary number of CPUs. Its simplicity and scalability, together with its
effectiveness at finding bugs [10], have made fuzzing popular [16] both in the industry and the
academia.

In the recent years, coverage-guided fuzzing has become one of the most widely used fuzzing
strategies [15]. Fuzzing engines based on this strategy use coverage metrics as a feedback to
track their progress. The intuition behind this approach is that bugs are uniformly distributed,
thus a higher code coverage results in a better chance to find bugs. To maximize their code
coverage, fuzzers usually select inputs that produced new coverage for further mutations and
input generation.

Since fuzzers use random inputs, it may be difficult for them to satisfy complex checks over
multiple bytes of the inputs (e.g., a checksum). When a fuzzing engine encounters such a check,

5

that prevents it from making further progress, it is said to have hit a coverage wall. Coverage walls
are a well known fuzzing problem and over the years several approaches to bypass them have
been explored. Some fuzzers proposed to use symbolic execution [22][28] to carefully generate
inputs that succeed in passing complex checks. Other works [27][5][19] leverage taint analysis to
identify relations between program logics and inputs, allowing the fuzzing engine to better select
where and how to mutate the input. Those approaches, although they succeed in generating
inputs that satisfy previously failing checks, have some limitations: taint analysis is heavy weight,
while symbolic execution introduces a huge overhead and does not scale.

By proposing to transform not only the input, but also the program itself, T-Fuzz [18] in-
troduced a new fuzzing technique: transformative fuzzing. When the fuzzer hits a coverage
wall, T-Fuzz mutates the program by inverting one of the repeatedly failing checks. It creates
a new version of the binary and stores it in a queue, together with the original and all other
transformed programs. At each iteration, one program is selected from this queue and fuzzed.
Of course modifying, the program may introduce new bugs. For this reason, each crash found
by T-Fuzz goes through a symbolic execution based post-analysis, which takes care of filtering
out false positives. Removing symbolic execution from the fuzzing routine makes T-Fuzz more
lightweight than the previously presented approaches. Nevertheless, the overhead problem is
just postponed to the crash analyser, which becomes the new bottleneck preventing T-Fuzz
from scaling. Another limitation of this system is a lack in flexibility and smartness. In fact, it
can handle only if statements and selects the check to disable without following any particular
policy.

J E D I F U Z Z is the first compiler-based transformative fuzzer. Differently from T-Fuzz, it
requires access to the source code, but the ability of instrumenting the target binary brings some
advantages.

• Checks can be disabled directly in the fuzzed binary, through the instrumentation added at
compile time. This dynamic strategy simplifies program transformation, removing runtime
patching.

• The binary can be instrumented to collect tailored runtime information about checks
constraints and their relations, allowing to smartly select the check to disable.

• Instructions can be added, removed or modified, providing huge flexibility and allowing to
handle other cases beside if statements.

Additionally, J E D I F U Z Z exploits the source code to perform a static analysis of the program.
Through this analysis, it builds a ranking of conditional branches. When the fuzzer hits a coverage
wall, J E D I F U Z Z leverages the information collected at runtime to identify the conditions that
were reached so far and the branches that were taken. Then, thanks to the previously gener-
ated ranking, it selects the most promising unexplored branch reached so far, and efficiently
transforms the program to take it.

6

In a preliminary evaluation, we have compared J E D I F U Z Z with MOpt-AFL. According to
the results, our system reaches bugs hidden in deep execution paths in a more reliable way, and
it improves the code coverage performance over MOpt-AFL by 25-30%.

7

Chapter 2

Background

This section gives an overview of fuzzing and of the LLVM project [24]. We will start with a general
discussion about fuzzing, presenting the problem of coverage wall and the different approaches
addressing it. Afterwards, the LLVM project and its structure will be briefly introduced.

2.1 Fuzzing

Thousands of bugs are discovered every year [6]: some of them are security flaws which could
be exploited by an attacker to compromise the system. The size of modern software and its
complexity make it almost impossible to reason about the software itself and its correctness.
Manual testing, auditing, and bug bounty programs regularly find bugs, but because they rely on
humans, the complexity of today software prevents them from scaling. Those methods are thus
insufficient.

Fuzzing is an automated testing technique that generates test cases and feeds them to a
target binary. It then monitors the execution to detect crashes and unusual behaviour. Each
test case execution is independent, thus multiple test cases can be executed in parallel. As a
consequence, fuzzing campaigns can be deployed on an arbitrary amount of CPUs, allowing
fuzzing to scale really well. Another strength of fuzzing is its simplicity, which makes it easily
accessible even to inexperienced users. In fact, setting up a fuzzing campaign is generally a fast
procedure and requires little human effort. Last but not least, it is very effective at finding bugs:
to make an example, the Google’s OSS-Fuzz project[10] has found thousands of bugs over the
last few years by continuously fuzzing open source software. Thanks to its scalability, simplicity,
and effectiveness, fuzzing has gained traction and is now widely used, both in the industry and
in the academia.

There are different ways to categorise fuzzers; one of them is to consider how they generate

8

new inputs. In this case, they can be roughly divided into two categories: generational and
mutational fuzzers. Generational fuzzers [7][20][2] acquire knowledge about the input format,
often from format specifications provided by the user, and generate new inputs according to it.
On the other hand, mutational fuzzers [29][9] create new inputs by randomly mutating an initial
seed. Providing an initial corpus of seeds for mutational fuzzers is fairly easy. But creating format
specifications for a generational fuzzer requires a lot of manual work, and may be infeasible for
large programs. For those reasons, recent work mainly focuses on mutational fuzzers.

Mutational fuzzers can be further divided into three categories: whitebox, blackbox, and
greybox. Whitebox fuzzers assume access to the source code and use it to perform a static
analysis of the program. This process usually aims to understand the impact of different inputs
on the program execution. Blackbox fuzzers are on the opposite side and do not have access
to any of the program internals. Lastly, greybox fuzzers are somehow in the middle: they limit
themselves to a lightweight analysis of the binary code of the application, without requiring the
source code itself.

An important number of state-of-the-art fuzzers are coverage-guided [15]. This means they
use coverage as a metric to track progress and to select future inputs. In software development,
code coverage is used to approximate the percentage of code executed by test cases. A coverage
of 100%, which in fact is often impossible to reach, does not provide any guarantees about bugs
absence. Such an high coverage only implies that each line of code in the program has been
executed at least once. In the other hand, a low percentage indicates that a large portion of the
codebase has not been tested yet. The intuition behind coverage-guided fuzzing is that bugs
are uniformly distributed in the code; thus, to discover more bugs, we need to maximize code
coverage. To achieve this, fuzzers identify the inputs that produce new coverage and select them
for future mutations.

Fuzz testing is a random process, making it difficult for fuzzing engines to satisfy complex
checks over multiple bytes of the input — like checksums. When such a check prevents the fuzzer
from making further progress, the latter is said to have hit a coverage wall. Coverage walls are a
common problem of coverage-guided fuzzers; several approaches addressing them have been
proposed over the years. Driller [22] and QSYM [28] leverage concolic execution (a combination
of symbolic and concrete execution) to create inputs which satisfy complex checks. Symbolic
execution simultaneously explores multiple paths in the program, keeping track of all its possible
states. The number of possible states in a program exponentially increases with the number of
branches, causing path explosion and preventing symbolic execution based approaches from
scaling [3]. Taint analysis recognizes data dependencies, associating parts of the input with check
constraints. Taintscope [27], VUzzer [19], and Angora [5], leverage taint analysis to identify where
and how to mutate the input. Although it produces interesting results, this technique is heavy
weight and suffers from over- and under-tainting [13].

T-Fuzz [18] introduced the idea of transformative fuzzing, which consists in mutating not
only the inputs, but also the program itself. When the fuzzing engine hits a coverage wall, T-Fuzz

9

modifies the program by inverting one of the failing checks. Transforming a program may remove
security checks and introduce bugs. To deal with this problem and filter out false positives, T-Fuzz
comes with a crash analyser. When a crash is found, both the crashing input and the transformed
program are passed to this crash analyser. The latter leverages symbolic execution to verify
whether the triggered bug is reproducible in the original binary. Figure 2.1 shows an overview of
T-Fuzz.

Figure 2.1: Overview of T-Fuzz [18]

T-Fuzz is a greybox fuzzer, thus it does not have access to the source code. It transforms
the program by patching the binary on the fly, overwriting some instructions. This is possible
because the negation of an if statement results in an instruction of the exact same size as the
original one (i.e., one byte). While being smart, this approach is limited to if statements. Patching
at a binary level other instructions — that do not preserve their size when negated — is less
straightforward, and can become overcomplicated.

2.2 LLVM

The LLVM project [24] is a compiler framework written in C++. It is composed by a series of
compiler and toolchain technologies that aims to optimize programs at compile-, linking-, and
running time.

The framework comes with different analysis and transformation passes; a pass represents
one step in the framework pipeline, which is often composed by a chain of different passes. Passes
can be divided in two main categories: analysis and transformation. The first only performs an
analysis and does not modify the code. The second type — as suggested by its name — transforms

10

the program by injecting, removing, and/or modifying instructions. Transformation passes can
even inject declarations and calls to functions that are not present in the original program. Those
functions can then be implemented separately and linked to the binary as external libraries.

The LLVM Intermediate Representation (LLVM IR), around which the project is built, is
an ad-hoc representation, independent both from the programming language of the source
code, and from the architecture. This common representation, paired with a very precise yet
simple structure, makes the LLVM project highly extensible. The biggest component of the LLVM
structure is a module, followed by functions, basic blocks and instructions. A module roughly
corresponds to a source file and it is composed of functions (the functions in the file). Functions
are made of basic blocks, which are compounded of instructions.

A rich abstraction, together with the structure presented above, makes this tool very powerful.
In fact, it allows the programmer to work at different granularities and to easily interact with the
different components and subcomponents of the project. A fuzzing engine can leverage this
framework to instrument target binaries, so that they efficiently collect runtime information. In
the case of transformative fuzzing, it can also be used to modify the program so that it can be
dynamically transformed at runtime.

11

Chapter 3

Design

The aim of this section is to present the design of J E D I F U Z Z. After introducing its goals, we
will give an overview of the whole system, and then we proceed by diving into the different
components and their details.

3.1 Goals

Transformative fuzzing is a technique addressing the problem of coverage wall. T-Fuzz, the first
transformative fuzzer, showed to perform better than symbolic execution and taint analysis
based approaches. Nevertheless, it still has some limitations. Looking at those limitations, we
realized that some of them can be addressed by a whitebox compiler-based approach.

• If we transform the program at runtime, we are limited to inverting if statements. But if
we do it at compile time, this gives us much more flexibility: instructions can be modified,
deleted or injected in any part of the program, enabling us to handle different cases.

• We can instrument the code to enable dynamic control-flow enforcing at runtime. This
removes the need for runtime patching, resulting in a much more elegant approach.

• Through a compiler-based approach, the program can be instrumented to efficiently
collect tailored information about checks. Those information can then be used, when a
coverage wall is hit, to carefully select the check to bypass.

• Having access to the source code, a static analysis can be performed before launching the
fuzzing campaign. This allows us to collect even more information about checks and their
relations.

12

J E D I F U Z Z is the first compiler-based transformative fuzzer. Its goal is to exploit the above
listed advantages to improve the state-of-the-art.

3.2 Overview

J E D I F U Z Z is a whitebox transformative fuzzer designed to be easily integrated into any C/C++
fuzzing engine. In fact, to extend an existing fuzzer with J E D I F U Z Z, little modifications — apart
from including the monitor library presented in section 3.5 — are required.

Figure 3.1 shows how J E D I F U Z Z can be roughly divided into three parts: the setup phase,
happening once; the fuzzing itself; and the post analysis that each crash will undergo. Each part
is further divided into different components, which are briefly introduced here below.

Figure 3.1: J E D I F U Z Z overview.

The instrumentation has three purposes: to uniquely identify checks, to add the logic to
enforce condition outcomes, and to collect useful runtime information. The type of checks
handled by the first version of J E D I F U Z Z— presented in this report — are if statements and
switch statements.

13

Before running the fuzzing campaign, a static analysis inspecting the Control Flow Graph
(CFG) of the target program is performed. The goal of this analysis is to generate a ranking of the
instrumented checks. During the fuzzing campaign, when the fuzzer hits a coverage wall, this
ranking will be used to select the most promising check to bypass (i.e., the one with the highest
rank).

The monitor consists in a static library containing the logic to interact with the instrumenta-
tion. This logic includes: setting up the system, aggregating and storing the information collected
at runtime, selecting which check to disable when the fuzzer hits a coverage wall, and transform-
ing the program.

By transforming the program, J E D I F U Z Z may introduce new bugs. Thus, to avoid false
positives, some kind of post analysis is needed. Nevertheless, this project focuses on the fuzzing
part, assuming a manual crash analyser. The crash analyser is thus considered out of scope and
will not be discussed further in this report.

3.3 Instrumentation

Our approach towards coverage walls is to enforce the outcome of hard-to-satisfy checks, allow-
ing the fuzzer to bypass them. J E D I F U Z Z currently supports bypassing if and switch statements.
In order to disable a given check, we need the ability to refer to it in a unique way. For this pur-
pose, J E D I F U Z Z assigns a unique ID to all supported checks in the program. Since IDs are
assigned in a incremental way, if the total amount of if and switch statements in the program is
n, we will end up having conditions with IDs between 0 and (n− 1). The motivation behind this
approach is to simplify the storage of information about checks and the access to them, as it will
be shown in section 4.1.

Unfortunately, in some cases, identifying conditions by unique IDs is not sufficient to bypass
hard-to-satisfy checks. An example of this is present in Listing 3.1. At line 29, there is an access
out of bound to the t array. The bug is triggered when b == 1, i.e. when both check_first and
check_second return true. While the first function returns true in most cases, the second one
does it only when the second element of t is equal to 0xBADDCA53. Selecting an input for
which check_second returns true would thus be difficult for a fuzzer. To understand why IDs are
not sufficient in this case, we need to reason about how J E D I F U Z Z will threat this example.
The only condition in the whole program is the if statement at line five. If we enforce it to
return true, check_first will always return true, while check_second will always return false. If
instead we enforce the if statement to always return false, the first function will return false,
and the second one true. Thus, in both cases, the bug will not be reached. In order to trigger
the bug, we need to enforce conditions outcomes in a more fine-grained way. In our example,
the if statement at line five should be enforced to true only when reached from check_second.
One possible solution is to use the calling context, which encodes the path to the currently

14

executed line of code as a list of functions. This list, similarly to an error stack trace, contains all
parent functions that were called before reaching that line of code. Going back to the example
in Listing 3.1, we can act as follows. First, we identify the condition at line five by its unique ID,
then we verify the calling context. If and only if the latter corresponds to

[...]→ foo→ check_second→ equal

we enforce the outcome of the conditions to be true. This example proofs the usefulness of taking
the calling context into account. This allows us to enforce condition in a more fine-grained way,
and to succeed at bypassing hard-to-satisfy checks where IDs alone are not sufficient.

To summarize, the instrumentation assigns unique IDs and adds the logic to keep track of
the calling context. It instruments all conditional branches in the program, so that their outcome
can be enforced, and it injects the code collecting the runtime information for the monitor.

3.4 Static analysis

A key question in transformative fuzzing is which check to bypass when the fuzzer gets stuck. To
avoid hitting a new coverage wall a few iterations after transforming the program, it is crucial to
optimize this choice. For this purpose, J E D I F U Z Z ranks all instrumented checks in the program
through a static analysis of the CFG. This analysis is performed only once, before starting the
fuzzing campaign, and supports different ranking policies.

Since J E D I F U Z Z is a coverage-guided fuzzer, we defined four different policies aiming to
maximize code coverage.

• Simple Blocks reasons about code in terms of basic blocks. It assigns to each branch a weight
that corresponds to the number of basic blocks reachable only by taking that branch.

• Recursive Blocks uses the same principle of the Simple Blocks policy. Additionally, it recur-
sively inspects code blocks for function calls. For each function call, the number of basic
blocks contained in it is considered in the weight computation.

• Simple Instructions, given a branch, computes its the weight by counting the number of in-
structions reachable only by taking that branch. Function calls are ignored and considered
as a single instruction.

• Recursive Instructions computes the branch weights in the exact same way as Simple
Instructions, but by recursively taking into account functions calls. Thus, for each function
call, the number of instructions composing that function contributes to the final weight.

The difference between basic blocks and instructions based policies can be seen by assuming
the following setup: there is one branch unlocking multiple small basic blocks; and another

15

1 #include <stdbool.h>
2
3 bool equal(int a, int b)
4 {
5 if (a == b)
6 return true;
7 else
8 return false;
9 }

10
11 bool check_first(int v)
12 {
13 return !equal(v, 1337);
14 }
15
16 bool check_second(int v)
17 {
18 return equal(v, 0xBADDCA53);
19 }
20
21 void foo(int t[2])
22 {
23 bool b = check_first(t[0])
24 b &= check_second(t[1])
25
26 ...
27
28 // Crash if b == 1
29 t[2*b] = 0;
30
31 ...
32 }

Listing 3.1: Pseudo code of a dummy program. This example shows that
it may be insufficient to identify the condition to enforce only by its
unique ID.

16

one unlocking a single basic block, but composed by a lot of instructions. Basic blocks based
policies will prioritize the first branch, while instructions based policies will prioritize the second
one. To motivate the need of recursive policies, we can consider another example. There are
two branches: the first one unlocks two instructions; the second one unlocks one instruction, a
call to a huge function. The Simple Instructions policy will prioritize the first branch, resulting
in a small code coverage contribution. On the other hand, Recursive Instructions will select the
second branch, generating much more code coverage. The performance of this four different
policies will be discussed in section 5.6.

We would like to underline that the whole static analysis framework is built in a flexible way.
As a consequence, new policies can be easily defined, integrated, and used.

3.5 Monitor

To enable the fuzzer to interact with the instrumentation, we have created a static library im-
plementing a monitor object. This object allows the fuzzing engine to easily access the logic
to transform the program. After being initialized, the monitor enables the fuzzing engine to
transform the program through a simple function call. When that function is called, the monitor
will act as follows.

1. It will inspect the information collected at runtime to identify enforceable conditions.
Enforceable conditions are the ones that have been reached and have only one executed
branch.

2. It will select the most promising enforceable condition, according to the ranking it was
provided with.

3. It will transform the program by enabling the instrumentation to enforce the outcome of
the selected condition.

This design makes the integration of J E D I F U Z Z into an arbitrary fuzzer a simple process.
It suffices to import our library, to create a monitor object, and to add a function call when a
coverage wall is hit. In fact, with little work, it should be possible to integrate our compiler-based
approach to any fuzzer implemented in C/C++.

3.6 Fuzzing

J E D I F U Z Z focuses on leading the fuzzer to discover new regions of code and thus increase its
coverage. The input mutation and the task to actually trigger bugs, is let to the underline fuzzer.

17

For this reason we decided to build J E D I F U Z Z on top a of state-of-the-art fuzzer, which focuses
on inputs mutation. This choice will allow us to evaluate if our approach is able to improve the
performance of the state-of-the-art. We selected MOpt-AFL, which, thanks to its new mutation
scheduling schema, is considered among the best existing fuzzers.

18

Chapter 4

Implementation

We will now give an insight of J E D I F U Z Z implementation. First, we will present the data struc-
ture used to store the information about conditions; then we will go through the different
components in Figure 3.1 one by one.

4.1 Data structure

A key element of J E D I F U Z Z is how it stores and accesses the information about conditions. For
each condition we want to keep track of which of its branches has been executed. We also want
to specify if the condition should be enforced to take a specific branch. To achieve those two
points, as shown in Figure 4.1, we store four bits of information for each condition. The first
two bits are used to mark whether or not the true and the false branches have been executed at
least once: a 0 indicates that the branch has never been executed; a 1 that the branch has been
executed at least once. The other two bits are used to enforce the outcome of the condition: if
the fourth bit is set, it means the condition has to be forced to assume the value stored in the
third bit.

The runtime information are collected by the instrumentation, and accessed by the monitor
when seleting which condition to disable; similarly, the monitor stores information about which
condition to enforce to which value, and the instrumentation accesses it. This means that the data
structure where we store all those information should be accessible by different processes: the
monitor, and all the instances of the target binary. This can be achieved using shared memory,
which consists in a region of memory shared between different processes. Having multiple
processes accessing the same region of memory, one can argue that we need to implement some
kind of synchronization to prevent race conditions. Nevertheless, those never happen. In fact,
the monitor accesses the shared memory only when there are no running instances of the target
binary.

19

Figure 4.1: Representation of the encoding used to store a condition state on four bits. In this
example, only the true branch has been executed yet. The enforce bit is set, specifying that,
during the next executions, the condition has to be enforced to 0 (and thus to take the false
branch).

As explained in section 3.3, the unique IDs assigned to the conditions start from zero and are
incremental. An array is thus the ideal data structure to store checks information. This allows us
to access the information of a given check by using its unique ID as index. Unfortunately there, is
no basic type composed by four bits in C; we use uint8_t instead, and store two conditions in each
element of the array. Given an ID, we use bitwise operators to extract both the correct element
from the array, and the single bits of information from the latter. The number of conditions in
the program corresponds to the number of instrumented locations. The size of the array is thus
computed at compile time, and specified to both the monitor and the target binary through a
dedicated environment variable.

4.2 Instrumentation

The goal of the instrumentation is:

1. to transform switch statements into if statements;

2. to inject a call to a setup function;

3. to instrument all conditional branches.

LLVM provides a series of built in Analysis and Transform passes; one of those is
−lowerswitch [24]. This pass takes care of replacing switch instructions with branch instructions,
which is exactly one of our goals.

The branch instrumentation needs to access the shared memory described in section 4.1; we
thus need to modify the program so that the latter is initialized before being accessed. This is
achieved through a Transform pass: it iterates over all functions looking for main, and injects

20

a call to __jedifuzz_setup as its first instruction. This function opens the shared memory, and
maps it so that it can be accessed by the branches instrumentation.

Conditional branches have to be instrumented. The instrumentation has to assign unique IDs
to them, to add the logic to keep track of runtime information, and to enable the fuzzing engine
to enforce their outcome. A Transform pass iterates over the instructions, detects conditional
branches, and instruments them. Listing 4.1 shows how the LLVM IR of a conditional branch
looks like. As it can be seen in Listing 4.2, the instrumentation modifies it by adding a call to
__jedifuzz_branch. The injected function takes two arguments: the first is the value that was
originally used as a condition by the branch instruction; the second is the unique ID assigned
to this conditional branch. The branch instruction itself is modified to use the return value of
__jedifuzz_branch as a condition, allowing the instrumentation to enforce which branch to take.
Implemented in the J E D I F U Z Z runtime library, __jedifuzz_branch uses the provided ID to
access the array in the shared memory. It verifies whether or not the condition has to be enforced
to a given value and, if it is the case, its return value is set accordingly. Then, depending on which
value will be returned by the function, the corresponding branch will be marked as executed by
setting its bit in the shared memory.

%20 = c a l l i64 @strlen (i 8 * %19) #3
%21 = icmp eq i64 %20, 1
br i 1 %21, l a b e l %22, l a b e l %32

Listing 4.1: Conditional branch LLVM
IR.

%20 = c a l l i64 @strlen (i 8 * %19) #3
%21 = icmp eq i64 %20, 1
%22 = c a l l i 1 @__tfuzz_branch (i 1 %21, i32 0)
br i 1 %22, l a b e l %23, l a b e l %33

Listing 4.2: Instrumented conditional branch
LLVM IR.

One problem with IDs assignment is that the biggest abstraction in LLVM is a module. This
means that our transform pass will be applied source file by source file. Since LLVM passes are
stateless, we will thus end up having multiple identical IDs. Our solution is to use gllvm [14],
which allows us to build a whole program into a single file. Thanks to it, we can extract the
bytecode of our target into a single bytecode file, and apply the J E D I F U Z Z transform pass to it.

In section 3.3, we explained how keeping track of the calling context would enable our
tool to disable checks in a much more fine-grained way. Although this feature is not part of
J E D I F U Z Z yet, a possible approach toward calling context tracking is the Probabilistic Calling
Context(PCC) [4], for which an LLVM implementation already exists [11]. The biggest challenge
to face, in order to make J E D I F U Z Z aware of the calling context, will thus be how to store and
query the data related to the different PCCs.

4.3 Static analysis

To perform a static analysis of the Control Flow Graph (CFG), we need to extract it first. This is
done through an Analysis pass that leverages theGraphTraits and theDOTGraphTraits classes

21

defined in the LLVM project. Thanks to those, it is possible to encapsulate all the interesting
information (e.g., the unique ID assigned to a given condition) into the CFG and dump the latter
to a file.

Afterwards, all those files (one per function) are parsed from a python script and used to
create directed graphs with the help of the networkx library. The static analysis is performed
on those graphs, where a node represents a basic block, and an edge represents a branch. A
basic block contains one condition at most; all blocks containing a condition have two outgoing
branches and a unique ID assigned to them (the condition one). For each branch of a basic block
with an ID, the weight is computed according to one of the policies presented in section 3.4.

The weights are used to build a map associating them to the corresponding ID and branch.
This map establishes a ranking between the instrumented conditions in the program, where
an higher weight results into an higher rank. Once completed, the ranking is dumped to a file,
so that it can be used to launch different campaigns without the need of performing the static
analysis again. This is the same reason for which the CFGs are dumped files: it allows us to
generate rankings with different policies without having to extract the CFGs multiple times.

4.4 Monitor

The monitor library provides all functionalities allowing the fuzzer to interact with the instru-
mented binary, and also the access to information collected at runtime. The library is imple-
mented in C++, but it comes with a C interface to itself, making it possible to integrate the library
both into C and C++ fuzzers.

It allows the fuzzer to create a monitor object, which — in its constructor — parses the
conditions ranking from the file generated by the static analysis, and allocates the shared memory.
When the fuzzer is stuck, it can query the monitor; as a result, the latter selects the conditions
to disable, and updates the shared memory accordingly. To achieve this, the monitor iterates
over the conditions in the shared memory, looking at the bits indicating which branch has been
executed. For each condition there are three possibilities:

1. Both the true and the false branches are marked as executed; this condition is thus consid-
ered as fully explored.

2. None of the branches have been executed; this means that the condition has not been
reached yet.

3. Only one of the two branches has the executed bit set.

Whenever a condition falls in the third case, the monitor looks at the weight of the non-
executed branch. The one with the highest weight will be selected as the next branch to be

22

enforced. Then, the monitor iterates over the shared memory a second time and updates the
latter to enforce the previously selected branch to be taken. As explained in section 4.1, enforcing
a condition consists in setting two of its dedicated bits in the shared memory.

AFL labels the most promising test cases it founds as favourite paths. Similarly to T-Fuzz [18]
and Driller [22], J E D I F U Z Z bases its inference that a coverage wall has been hit on the number
of pending favourites paths. When this number is equal to zero, it means that the fuzzer has
no more interesting input to fuzz. This can be considered as hitting a coverage wall, because
without new favourite paths, the fuzzer is unlikely to produce new coverage. For this reason,
J E D I F U Z Z infers that a coverage wall has been hit when the number of pending favourite paths
stayed at zero for 100’000 or more executions. The purpose of the additional threshold is to avoid
transforming the program too early.

23

Chapter 5

Evaluation

In this section we will detail the results of the evaluation of the J E D I F U Z Z current state. We will
first discuss some limitations and how we addressed them, then we will proceed to present the
evaluation setup and to discuss the results.

5.1 Preconditions

By transforming the program, J E D I F U Z Z may introduce new bugs in the code. Thus, like all
transformative fuzzers, it requires some kind of post analysis to filter out false positives. This
project focuses on the fuzzing part of J E D I F U Z Z, leaving the implementation of the post analysis
to be done as future work. Our evaluation is thus limited by the fact that it is not reasonable to
manually investigate all crashes found during multiple campaigns. As a consequence, whenever
a bug is found in a transformed program, we do not know whether the bug is a true or a false
positive.

Magma [12] is a ground truth fuzzing benchmark, consisting in a set of targets with front-
ported bugs. The benchmark instruments each bug, so that it can asses when bugs are reached
and triggered. As long as we consider only the bugs reported by Magma, using this benchmark
allows us to solve the problem of false positives. But it would not be fair to evaluate our system
by counting the bugs triggered in transformed programs. The perfect post analysis tool does not
exist, and, given a true positive, a real world implementation may fail to find a crashing input
for the original program. Hopefully, Magma monitors both reached and triggered bugs. A bug is
considered reached if the code containing it has been executed at least once. Triggered bugs are
bugs that have been reached and that resulted in an actual crash. As said, looking at the bugs
triggered by our incomplete fuzzer does not make sense. On the other hand, observing reached
bugs allows us to perform a reasonable evaluation of the current prototype of J E D I F U Z Z. In
fact, J E D I F U Z Z focuses on increasing the code coverage of the fuzzing engine, leaving the task

24

of mutating inputs and triggering bugs to the underlying fuzzer (i.e. MOpt-AFL). The number of
reached bugs, and the time to reach them, can thus be a good indicator of how well J E D I F U Z Z

achieves its goal.

When computing the code coverage of a transformative fuzzer, we have to consider that
mutating the program may unlock regions of code that are unreachable in the original binary.
This present us with a dilemma: whether or not we should aggregate the code coverage of the
transformed programs and of the original one. Unreachable code should generally be avoided,
and in any case today compilers tend to optimize it away. Therefore, in our evaluation we assume
that software does not contain unreachable code and we do aggregate the coverage over all
program versions.

5.2 Goals

With the experiments presented in this section we want to assess how J E D I F U Z Z improves the
code coverage of a fuzzing engine. More precisely, we want to investigate:

1. if and how much, on average, J E D I F U Z Z improves the code coverage of the target binary;

2. whether or not J E D I F U Z Z makes it easier to find complex bugs (i.e, bugs behind hard-to-
satisfy checks and/or hidden in deep execution paths), either by finding new bugs or by
reaching bugs earlier.

A secondary goal of our evaluation is to compare the performance of the four ranking policies
presented in section 3.4: Simple Blocks (SB), Recursive Blocks (RB), Simple Instructions (SI), and
Recursive Instructions (SI). From now on, with J E D I F U Z Z SB we indicate J E D I F U Z Z under the
Simple Blocks policy; with J E D I F U Z Z RB we indicate J E D I F U Z Z under the Recursive Block
policy; and so on for the other policies.

We used MOpt-AFL as baseline fuzzer and compared its performance to the J E D I F U Z Z one.
Given our system built on top of it, MOpt-AFL was the logical choice.

5.3 Setup and Architecture

We evaluated five systems: MOpt-AFL, J E D I F U Z Z SB, J E D I F U Z Z RB, J E D I F U Z Z SI, and J E D I -
F U Z Z RI. As targets, we used the Magma versions of libtiff (tiff_read_rgba_fuzzer) and libxml2
(libxml2_xml_read_memory_fuzzer). Six 24 hours long campaigns were run for each system-
target combination, for a total of 60 campaigns and 1’440 CPU-hours of fuzzing. During our
experiment, the Magma monitor utility was configured to pool information about reached and

25

triggered bugs every five seconds. This means the results determine the first time a bug was
reached or triggered with a precision of five seconds.

All campaigns have been run on an Ubuntu 18.04.3 LTS 64-bit machine, with an Intel® Xeon®

Gold 5218 CPU (32 cores) and 64 GB of RAM.

5.4 Code Coverage

While fuzzing, AFL [29] — and all fuzzers built on top of it — keeps track of different statistics: one
of those is the overall achieved coverage. To evaluate the performance of the different fuzzers,
we extracted this statistic and aggregated the results of the different runs. The arithmetic means
of the achieved code coverages is reported in Table 5.1. This table also includes the average
improvement of the fuzzers over MOpt-AFL. To asses the results validity, we computed the
standard deviations, which are shown in Table 5.2.

Fuzzer
libtiff libxml2 Average

Coverage Improvement Coverage Improvement Improvement

MOpt-AFL 10.57% 0.00% 21.95% 0.00% 0.00%
J E D I F U Z Z SB 13.81% 31.79% 27.68% 26.56% 29.17%
J E D I F U Z Z RB 13.90% 27.15% 27.73% 26.38% 26.77%
J E D I F U Z Z SI 13.95% 29.52% 27.40% 25.88% 27.70%
J E D I F U Z Z RI 13.92% 28.95% 27.73% 26.33% 27.64%

Table 5.1: Arithmetic means of the achieved code coverage, and average coverage improvement
obtained over MOpt-AFL.

Fuzzer libtiff libxml2

MOpt-AFL 0.19 0.08
J E D I F U Z Z SB 0.22 0.11
J E D I F U Z Z RB 0.34 0.09
J E D I F U Z Z SI 0.22 0.05
J E D I F U Z Z RI 0.20 0.07

Table 5.2: Standard deviations of the coverages obtained by the systems over the six performed
runs.

The results show that J E D I F U Z Z consistently achieves a coverage improvement of 25-30%
over MOpt-AFL, independently from the used policy. The overall small values of the standard
deviations indicate that there is little variation between the different runs. This already suggests
that the results are reliable; nevertheless, we performed the Mann-Withney U test to verify their
statistical significance. This test aims to investigate whether or not two random samples were

26

selected from different populations. For all policies, performing the test between them and
MOpt-AFL, results in a p-value of around 0.0025. This confirms that the results in Table 5.1 are
statistically significant.

We can thus conclude that, from a code coverage point of view, J E D I F U Z Z reliably improves
MOpt-AFL performance of 25-30%.

We underline that our results have been collected through a set of 24 hours long campaigns.
Thus, for future work, it may be interesting to investigate how this coverage difference evolves
over longer campaigns.

5.5 Reached Bugs

To compare fuzzers performances at reaching bugs, we need a metric encoding the expected
time to reach a bug. Because of the random nature of fuzzing, performance can vary between
campaigns sharing the same configuration. And, in some cases, the fuzzing engine may fail
to reach a bug that was reached in other campaigns. In general, it is better to have a system
consistently finding a bug after one hour of fuzzing, than a system finding the same bug after ten
seconds but only once every ten campaigns. When defining the expected time to reach a bug,
this should be taken into account.

The authors of Magma proposed to model the time to reach a bug as a random variable X
with exponential distribution. The expected time to reach a bug is then defined as the expected
value E(X) of that variable. Let N be the total number of runs, M the number of runs that
reached the bug, T the duration of a run, and t̄ the arithmetic mean of the measured times to
reach the bug; then E(x) is computed as follows.

E(X) :=
M × t̄+ (N −M)× T

λt

N
where λt = ln(

N

N −M
)

Using the above formula, we computed the expected time to reach the different bugs. Table 5.3
presents those findings, pairing them with the percentage of campaigns that reached each bug.
We notice that all fuzzers reached the majority of the bugs during the first few minutes of fuzzing.
J E D I F U Z Z starts transforming the program only after that the first coverage wall is hit. As a
consequence, up to that moment, J E D I F U Z Z behaves exactly as MOpt-AFL. Thus, it is not
surprising that the expected time to reach bugs found early is almost identical for all fuzzers.

Unfortunately, only the four bugs underlined in blue in Table 5.3 took more than ten minutes
to be reached. For AAH009 the performances of the fuzzers are roughly the same. The same
holds for AAH016, except that J E D I F U Z Z SI and J E D I F U Z Z RI found the bug only in one of
the six runs, instead of twice like the other fuzzers. As a consequence, the expected time to

27

reach the bug is significantly higher. Given the small amount of executed runs, it is hard to
determine if this difference is due to the randomness inherent to fuzzing, or directly to the
policies underperforming.

The results for the remaining two bugs are more relevant, with J E D I F U Z Z performing in
general better than MOpt-AFL. AAH010 is particularly interesting: for this bug, J E D I F U Z Z

obtains significantly better results under all policies.

Four bugs are not enough to draw any kind of conclusion. Nevertheless, J E D I F U Z Z obtained
better results than MOpt-AFL in 50% of the cases, while performing as well as the latter in the
remaining 50%. This suggest that our system can find bugs hidden in deep execution paths in
a more reliable way. To further assess this trend, more evaluations — against more targets —
should be performed.

Bug ID
MOpt-AFL J E D I F U Z Z SB J E D I F U Z Z RB J E D I F U Z Z SI J E D I F U Z Z RI

Reached Avg. time Reached Avg. time Reached Avg. time Reached Avg. time Reached Avg. time

li
b

ti
ff

AAH009 33% 42h 33% 44h 33% 44h 33% 41h 33% 42h
AAH010 16% 112h 50% 23h 66% 14h 50% 20h 83% 9h
AAH011 100% 15s 100% 15s 100% 15s 100% 15s 100% 15s
AAH015 100% 20s 100% 19s 100% 24s 100% 27s 100% 30s
AAH016 33% 42h 33% 43h 33% 44h 16% 112h 16% 113h
AAH018 100% 41m 100% 21m 100% 29m 100% 49m 100% 1h
AAH020 100% 10s 100% 10s 100% 10s 100% 10s 100% 10s
AAH022 100% 20s 100% 19s 100% 25s 100% 27s 100% 30s

li
b

xm
l2

AAH024 100% 15s 100% 42s 100% 50s 100% 1m 100% 2m
AAH026 100% 15s 100% 15s 100% 15s 100% 15s 100% 15s
AAH029 100% 15s 100% 8m 100% 55s 100% 16m 100% 7m
AAH031 100% 20s 100% 43s 100% 49s 100% 52s 100% 1m
AAH032 100% 15s 100% 15s 100% 15s 100% 15s 100% 15s
AAH034 100% 15s 100% 23s 100% 25s 100% 25s 100% 33s
AAH035 100% 15s 100% 33s 100% 40s 100% 40s 100% 50s
AAH037 100% 10s 100% 10s 100% 10s 100% 10s 100% 10s
AAH041 100% 15s 100% 15s 100% 15s 100% 15s 100% 15s

Table 5.3: Percentage of runs reaching the bug, and the expected time to reach it. Blue rows
indicate bugs found after the first ten minutes of fuzzing. Bugs that were not reached by any
system are not reported.

5.6 Ranking Policies

Looking at Table 5.1 and Table 5.3, we have the impression that the four different policies do not
have a significant difference in performance. To have a better insight of how different policies
work, we computed the arithmetic mean of the number of transformations performed by each
policy. The results are shown in Table 5.4.

We notice that during the libtiff campaigns, the program was transformed more times than
during the libxml2 ones. Nevertheless, according to the data in Table 5.1, those additional trans-
formations did not reflect into higher coverage improvement. This suggests that the performance

28

Fuzzer libtiff libxml2

J E D I F U Z Z SB 37 12
J E D I F U Z Z RB 44 12
J E D I F U Z Z SI 43 13
J E D I F U Z Z RI 48 13

Table 5.4: Arithmetic means of the number of transformations performed by the different policies.

improvement brought by J E D I F U Z Z is mainly due to the first transformations. As further in-
vestigation of this hypothesis, we selected one sample run of libxml2 for each policy. Then, for
each sample run, we computed the coverage increase obtained after each of the first ten trans-
formations. The results, presented in Table 5.5, confirm the hypothesis: each transformation
tends to be less effective than the previous one. This is not surprising considering that, at each
transformation, J E D I F U Z Z selects the most promising condition to enforce. Thus, the more
transformations are done, the less promising the newly selected conditions will be.

Those results suggest that combining multiple policies may be a better approach than using
the same one over the whole fuzzing campaign. Exploring new policies, and changing ranking
method every few transformations, is thus a promising direction for future work.

Transformation # J E D I F U Z Z sb J E D I F U Z Z rb J E D I F U Z Z si J E D I F U Z Z ri

1 0.0 0.07 0.06 0.01
2 0.13 0.15 0.02 0.17
3 0.01 0.02 0.13 0.02
4 0.0 0.06 0.02 0.12
5 0.02 0.0 0.02 0.02
6 0.01 0.0 0.02 0.03
7 0.0 0.02 0.01 0.0
8 0.02 0.02 0.0 0.01
9 0.02 0.0 0.0 0.01

10 0.02 0.0 0.0 -

Table 5.5: Coverage increases — in percentage — obtained after the first ten transformations
during one sample run against libxml2.

29

Chapter 6

Related Work

Over the years, improvements to different aspects of fuzzing where proposed. J E D I F U Z Z ad-
dresses the problem of coverage wall; thus, in this section, we will only focus on related work
trying to solve the same problem.

6.1 Feedback based fuzzing

Coverage-guided fuzzers like AFL [29] and libFuzzer [23] use code coverage as a progress metric.
Additionally, they monitor the code coverage contribution of the inputs and use it as a feedback.
If an input generates new coverage, they deduce it has passed a check that was previously failing:
that input is thus prioritized for future mutations.

The main limitation of feedback based approaches is that they are based on "hindsight": to
generate inputs passing a check, the check has to be passed first. In other words, they make it
easier to pass a check a second time, but they do not help to pass it in the first place. Additionally,
they have difficulties at handling checksums and other values computed on the fly. AFL pio-
neered the field of fuzzing with this approach, which is still used by many fuzzers — including
J E D I F U Z Z— under the hood. Nevertheless, a feedback based approach alone is not sufficient to
solve the coverage wall problem.

6.2 Symbolic and concolic execution based fuzzing

Symbolic execution reduces passing a check to solving a set of constraints. More precisely, it
encodes all checks along a path into a series of constraints, and tries to solve the resulting logical
formula. Concolic execution combines symbolic execution with concrete execution. Several

30

fuzzers [22][28] leverage symbolic execution in different ways. Among those, the closest to
J E D I F U Z Z— and transformative fuzzers in general — is Driller. When the fuzzer hits a coverage
wall, Driller uses concolic execution to find an input passing the failing check.

Although symbolic execution reliably succeed in finding interesting inputs, it is subject to
path explosion and, as a consequence, it does not scale. J E D I F U Z Z, inversely, does not have any
scaling problem.

6.3 Taint analysis base fuzzing

Taint analysis can identify the relations between the input and the logic of the program.
Taintscope [27] leverages taint analysis to detect checksums and bypass them. Other works,
like VUzzer [19] and Angora [5], use taint analysis in conjunction with other methods. VUzzer
uses static and dynamic analysis to extract control-flow and data-flow features. The firsts are
used to prioritize deep paths; the seconds to determine where and how to mutate the input.
Angora sees finding an interesting input as a search problem. It leverages taint analysis to relate
conditional statements to the byte offsets that undergo them. It then forwards the information to
a search algorithm based on gradient descent, which tries to find an input satisfying the provided
constraint.

While providing interesting results, taint analysis lacks in flexibility and is heavy weight,
a problem that is even accentuated when paired with other form of analysis. J E D I F U Z Z is
more flexible and, thanks to its instrumentation, can handle different checks with low runtime
overhead.

6.4 Transformative fuzzing

T-Fuzz [18] was the first work proposing to mutate not only the inputs, but also the program.
When the fuzzer hits a coverage wall, T-Fuzz generates a new version of the program by disabling
one of the failing checks. To avoid false positives, each crash found is forward to a crash analyser.
The latter leverage symbolic analysis to verify whether the crash is a true positive (i.e. if it can be
triggered in the original program) or a false positive.

T-Fuzz has shown to perform better than the symbolic execution and the taint analysis based
approaches. Nevertheless, it has some limitations.

• It can address only if statements, lacking in flexibility.

• It transform the program in a suboptimal way: it blindly selects and negates a conditional
jump instruction that was not negated yet, without optimizing the choice.

31

• Its program transformation procedure, involving runtime patching, is somehow inelegant
and requires to store multiple versions of the program.

• Although symbolic execution was removed from the fuzzing routing, the crash analyser is
still using it.

J E D I F U Z Z addresses and solves the first three limitations that are listed above. In fact, it
can handle multiple types of check. It allows the fuzzing engine to dynamically and efficiently
transform the program. And, when a coverage wall is hit, it carefully selects the condition to
enforce, trying to optimize the coverage outcome of each transformation.

32

Chapter 7

Future work

The version of J E D I F U Z Z presented in this document is a first prototype. As a consequence,
there are different directions for future work, with multiple improvements and extensions that
could be integrated into the system. Those are summarized here below.

7.1 Post analysis

Like all transformative fuzzers, J E D I F U Z Z may introduce false positives. The usual approach to
deal with them is to have some kind of post analysis investigating crashes and filtering out false
positives. As pointed out in section 3.2, the current version of our system does not include a real
post analysis procedure. The implementation of the latter should be prioritized over all future
work. This is fundamental to make J E D I F U Z Z a complete fuzzer, and to be able to compare it
with other transformative fuzzers.

7.2 Instrumentation

A key motivation behind the idea of J E D I F U Z Z is the flexibility that the compile time instrumen-
tation can bring. The current implementation does not take full advantage of its compiler-based
approach, thus leaving space for improvements. In the following we will try to point out some of
the possible improvements.

33

Switch statements

switch statements are currently transformed into if statements through the lowerswitch LLVM
pass. This approach simplifies both the design and the implementation of the fuzzer, but it
probably introduces overhead. It would be interesting to design an alternative solution which
handles switch statements without lowering them, and then compare its performance with the
current implementation.

Loops

Loops are common in programs and they all come with at least one check: the loop condition.
Right now a loop condition, like all other conditions, is considered to be fully explored once
both its true and false branches are executed. This means that, as long as at least one iteration is
performed, a loop condition is considered fully explored after a single execution. This is not the
case, since the code behaviour may change depending on the number of performed iterations.
Another direction for future work can thus be to extend J E D I F U Z Z to handle loops in a smarter
way, taking into account the number of iterations.

Calling context

In section 3.3, we pointed out how making J E D I F U Z Z aware of the calling context will allow it
to enforce conditions in a much more fine-grained way. A possible approach to this, as proposed
in section 4.2, is to use PCCs [4].

7.3 Static analysis

In order to enhance flexibility, J E D I F U Z Z static analysis supports different ranking policies —
as described in section 3.4.

All four policies implemented in the current version of the system focus on improving code
coverage. This follows the philosophy of coverage-guided fuzzing, which leverage code coverage
as a performance metric. Nevertheless, not all policies have to be coverage based. A valid option
may be to follow the approach proposed by ParmeSan [17] — a sanitizer-guided fuzzer — and to
create some sanitizers-based policies. Sanitizers are tools that instrument binaries to detect se-
curity violations and dangerous behaviours at runtime. As a consequence, their instrumentation
can be seen as an indicator that the code is more prone to bugs. To make a practical example, a
possible policy could be to use the number of locations instrumented by AddressSanitizer [21] —
a sanitizer detecting memory errors — as a weight.

34

Ranking are used to always select the most promising condition to enforce. This implies
that each time we select a condition, we expect it to be less promising than the previous one
(see section 5.6). Solutions to reduce this trend, like changing policy every few iterations, are yet
another interesting unexplored path.

7.4 Other fuzzers

We built our system on top of the state-of-the-art fuzzer MOpt-AFL. Nevertheless, as underlined
in section 3.2, one of the strengths of J E D I F U Z Z is that integrating it into any C/C++ fuzzer
requires little work. A wide performance evaluation of different fuzzers extended with J E D I F U Z Z

can thus be of interest for future work. Such investigation would provide a much better insight
on J E D I F U Z Z strengths and weaknesses.

35

Chapter 8

Conclusion

We developed J E D I F U Z Z, a whitebox compiler-based transformative fuzzer. When the fuzzing
engine hits a coverage wall, J E D I F U Z Z efficiently transforms the program to bypass a carefully
selected hard-to-satisfy check. To maximize the coverage outcome of each transformation, our
system selects the check to bypass according to a qualitative ranking. This ranking is obtained
through a one time static analysis that supports different policies.

The whole system is designed to be easily integrated into any C/C++ fuzzer. In fact, the logic
to transform programs is wrapped into a library. As a result, the work required to extend an
arbitrary fuzzer with J E D I F U Z Z is reduced to the insertion of a few lines of code.

In the evaluation, we compared J E D I F U Z Z with MOpt-AFL, the state-of-the-art fuzzer on top
of which we implemented our system. The results show that J E D I F U Z Z consistently improves
the code coverage over MOpt-AFL of 25-30%. Also, it seems that our system is able to reach
bugs hidden in deep execution paths in a more reliable way. Further evaluations are needed to
validate those trends, but the preliminary results remain promising.

We want to underline that the version of J E D I F U Z Z presented in this report consists in a first
prototype of the system, and is thus far from being fully optimized. As discussed in chapter 7,
there are several interesting directions for future work aiming to improve the performance of
J E D I F U Z Z. Nevertheless, concerning future work, the priority should be given to the implemen-
tation of a proper crash analyser.

36

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow integrity prin-
ciples, implementations, and applications”. In: ACM Transactions on Information and
System Security (TISSEC) 13.1 (2009), pp. 1–40.

[2] Dave Aitel. “An introduction to spike, the fuzzer creation kit”. In: Presentation slides, Aug 1
(2002).

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finoc-
chi. “A survey of symbolic execution techniques”. In: ACM Computing Surveys (CSUR) 51.3
(2018), pp. 1–39.

[4] Michael D Bond and Kathryn S McKinley. “Probabilistic calling context”. In: Acm Sigplan
Notices 42.10 (2007), pp. 97–112.

[5] Peng Chen and Hao Chen. “Angora: Efficient fuzzing by principled search”. In: 2018 IEEE
Symposium on Security and Privacy (SP). IEEE. 2018, pp. 711–725.

[6] CVE Details. Security Vulnerabilities Published In 2019. U R L: https://www.cvedetails.
com/vulnerability-list/year-2019/vulnerabilities.html (visited on 06/29/2020).

[7] Michael Eddington. “Peach fuzzing platform”. In: Peach Fuzzer 34 (2011).

[8] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. “Jump over ASLR: At-
tacking branch predictors to bypass ASLR”. In: 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE. 2016, pp. 1–13.

[9] Google. Honggfuzz. U R L: https : / / github . com / google / honggfuzz (visited on
06/13/2020).

[10] Google. OSS-Fuzz: Continuos Fuzzing for Open Source Software. U R L: https://github.
com/google/oss-fuzz (visited on 06/12/2020).

[11] Adrian Herrera. Probabilistic Calling Context. U R L: https://github.com/adrianherrera/
probabilistic-calling-context (visited on 06/25/2020).

[12] HexHive. Magma: A Ground-Truth Fuzzing Benchmark. U R L: https://hexhive.epf.ch/
magma (visited on 06/26/2020).

[13] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song. “Dta++:
dynamic taint analysis with targeted control-flow propagation.” In: NDSS. 2011.

37

https://www.cvedetails.com/vulnerability-list/year-2019/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/year-2019/vulnerabilities.html
https://github.com/google/honggfuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/adrianherrera/probabilistic-calling-context
https://github.com/adrianherrera/probabilistic-calling-context
https://hexhive.epf.ch/magma
https://hexhive.epf.ch/magma

[14] SRI International’s Computer Science Laboratory. Whole Program LLVM in Go. U R L:
https://github.com/SRI-CSL/gllvm (visited on 06/23/2020).

[15] Jun Li, Bodong Zhao, and Chao Zhang. “Fuzzing: a survey”. In: Cybersecurity 1.1 (2018),
p. 6.

[16] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. “Fuzzing: State
of the art”. In: IEEE Transactions on Reliability 67.3 (2018), pp. 1199–1218.

[17] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “ParmeSan:
Sanitizer-guided Greybox Fuzzing”. In: 29th {USENIX} Security Symposium ({USENIX}
Security 20). 2020.

[18] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. “T-Fuzz: fuzzing by program transfor-
mation”. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018, pp. 697–710.

[19] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert
Bos. “VUzzer: Application-aware Evolutionary Fuzzing.” In: NDSS. Vol. 17. 2017, pp. 1–14.

[20] Juha Röning, M Lasko, Ari Takanen, and R Kaksonen. “Protos-systematic approach to
eliminate software vulnerabilities”. In: Invited presentation at Microsoft Research (2002).

[21] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. “Ad-
dressSanitizer: A fast address sanity checker”. In: Presented as part of the 2012 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 12). 2012, pp. 309–318.

[22] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Cor-
betta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution.” In: NDSS. Vol. 16. 2016. 2016, pp. 1–16.

[23] LLVM Team. libFuzzer - a library coverage-guided fuzz testing. U R L: https://llvm.org/
docs/LibFuzzer.html (visited on 06/28/2020).

[24] LLVM Team. The LLVM Compiler Infrastructure. U R L: https://llvm.org/ (visited on
06/14/2020).

[25] PaX Team. PaX address space layout randomization (ASLR). 2003. U R L: http://pax.
grsecurity.net/docs/aslr.txt (visited on 06/11/2020).

[26] Arjan van de Ven and Ingo Molnar. Exec Shield. 2004. U R L: https://static.redhat.com/
legacy/f/pdf/rhel/WHP0006US_Execshield.pdf (visited on 06/11/2020).

[27] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. “TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection”. In: 2010 IEEE Symposium on
Security and Privacy. IEEE. 2010, pp. 497–512.

[28] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. “{QSYM}: A practical con-
colic execution engine tailored for hybrid fuzzing”. In: 27th {USENIX} Security Symposium
({USENIX} Security 18). 2018, pp. 745–761.

[29] Michal Zalewski. American Fuzzy Lop. 2015. U R L: http://lcamtuf.coredump.cx/afl
(visited on 06/12/2020).

38

https://github.com/SRI-CSL/gllvm
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
http://lcamtuf.coredump.cx/afl

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Fuzzing
	LLVM

	Design
	Goals
	Overview
	Instrumentation
	Static analysis
	Monitor
	Fuzzing

	Implementation
	Data structure
	Instrumentation
	Static analysis
	Monitor

	Evaluation
	Preconditions
	Goals
	Setup and Architecture
	Code Coverage
	Reached Bugs
	Ranking Policies

	Related Work
	Feedback based fuzzing
	Symbolic and concolic execution based fuzzing
	Taint analysis base fuzzing
	Transformative fuzzing

	Future work
	Post analysis
	Instrumentation
	Static analysis
	Other fuzzers

	Conclusion
	Bibliography

