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Abstract

Security patches protect an application from discovered
vulnerabilities and should be applied as fast as possible.
On the other hand, patching the application reduces the
availability of the service due to the necessary restart.
System administrators need to balance system availabil-
ity with a potential compromise of system integrity.

A dynamic software update mechanism applies secu-
rity updates on the fly but does not protect from un-
known vulnerabilities. Software-based fault isolation on
the other hand uses a sandbox to protect the integrity of
a system by detecting unpatched vulnerabilities but pro-
vides no mechanism to repair any vulnerabilities.

This paper presents DynSec, a mechanism for on-the-
fly code rewriting and repair that dynamically applies
security patches for unmodified binary applications. A
sandbox protects the integrity of the system while the dy-
namic update mechanism increases the availability of the
application. A prototype implementation that needs no
a-priori cooperation from the application incurs a com-
bined overhead of 11% on the SPEC CPU2006 bench-
marks for the sandbox and the dynamic update mecha-
nism.

1 Introduction

Security vulnerabilities threaten the integrity and avail-
ability of running applications and systems by exploiting
software bugs to run malicious code. A bug that is rec-
ognized (and for which the patch is available but not yet
installed) might leave two venues of attack: the bug may
provide a base for an exploit or, if the bug causes the ser-
vice to be shut down, the bug may be used for a denial of
service attack. In either case, the integrity of the system
and the availability of the service are jeopardized.

The focus of past projects providing continuous pro-
tection has been either sandboxing or dynamic software

modification. Sandboxing [11, 15, 23, 26] is a dynamic
form of Software-based Fault Isolation (SFI) [18, 31, 33]
that uses dynamic binary translation [16, 21, 23] to pro-
tect running applications against known and unknown
bugs. The integrity of the system is guaranteed but the
service is terminated when attacked. Attacks are de-
tected after-the-fact (i.e., after the runtime state is com-
promised) and the application is terminated to protect
the integrity of the system. Aspect-oriented program-
ming and dynamic software updating, on the other hand,
allow code to be inserted, removed, or updated at run-
time [1, 7, 13, 17, 19, 20, 25, 27, 29]. Dynamic updating
systems increase the availability of a service by apply-
ing software updates without any downtime. These ap-
proaches protect a service against attacks where a patch
is available but not against unknown attacks.

We discuss how to combine sandboxing with a dy-
namic software update system, thereby both guarantee-
ing system integrity and maximizing service availability.
The updating mechanism is integrated into the virtualiza-
tion layer of the sandbox. The binary translation com-
ponent of the sandbox makes the integration of patches
straightforward. We implemented a prototype system
(DynSec) to assess its effectiveness (i.e., can the sys-
tem handle security-related updates) and its efficiency
(i.e., what runtime overhead must be paid for this capa-
bility). Compared to related work DynSec handles any
unmodified binary by injecting a user-space virtualiza-
tion layer into the executing application to add both the
sandbox and the update mechanism – without a-priori
changes to the binary itself, the programming language,
the source code, the compilation toolchain, or the run-
time system. DynSec supports patches that change any
set of instructions in the original application but does not
recover types or data layout from binary code.

The sandbox component of DynSec protects the in-
tegrity of the service at all times. The dynamic update
mechanism installs available patches on-the-fly when



they become available to maximize the availability of the
service. The contributions of this paper are:

1. Description of the design and implementation of
DynSec, a dynamic on-the-fly software update
mechanism for unmodified binaries to provide sys-
tem integrity and service availability;

2. A performance evaluation of a prototype implemen-
tation of DynSec for unmodified x86 Linux applica-
tions using the SPEC CPU2006 benchmarks;

3. A discussion of the patch application process using
multiple versions of the CoreHTTP server.

2 The dynamic update mechanism

Currently a system administrator must balance availabil-
ity and integrity. Whenever a bug is discovered and a new
patch is available all instances of an application must be
updated and restarted to ensure the system’s integrity. On
the other hand, an administrator wants to minimize the
downtime and the number of restarts to maximize avail-
ability. Most services are not designed with updateabil-
ity in mind and they do not support partial upgrades of
individual components. Related work approaches either
the updateability or the integrity problem (see Section 5);
DynSec is the first solution that combines a dynamic up-
date mechanism for security updates with a user-space
sandbox to provide both integrity and availability.

DynSec uses a dynamic binary translator (DBT) to
transparently weave security updates on-the-fly into the
executed application. At the same time the binary trans-
lation component implements a secure sandbox that pro-
vides code integrity, stack integrity, and a system call
policy. A patch consists of a set of replaced instructions
accompanied with a shared library. The shared library
is used to add new functions and data that are reachable
from the patched instructions (i.e., if additional helper
functions are added through the security patch). This pa-
per focuses on the details of the dynamic update system
and the interaction into a software-based fault isolation
sandbox; we assume that security patches are available.

Figure 1 shows the DynSec runtime system. The
DynSec module builds on the DBT. The data structures
are extended with a list of patches that is shared among
all threads of the application. Patches are handled during
the translation process of the DBT and the original mem-
ory layout of the application remains unchanged. Every
application thread has its own DBT code cache. The
translator emits custom-tailored code for each thread.
The translation process is extended with a lookup in the
list of patches before each instruction is translated and, if
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Figure 1: Overview of the DynSec runtime approach.

a patch is available, the patched instruction is translated
instead of the original instruction.

This paper addresses two problems of existing dy-
namic software update mechanisms: (i) existing systems
require the modification of either the source-code, com-
pilation toolchain, or the virtual machine and (ii) many
tools rely on a whole-system analysis to guarantee the
validity of a patch. DynSec supports binary-only appli-
cations without prior modification or analysis and sup-
ports dynamically loaded shared libraries or modules as
well.

2.1 Code translation
DynSec builds on top of a DBT and extends the transla-
tor to replace arbitrary instructions during the code trans-
lation process. A table-based DBT uses translation ta-
bles to translate individual instructions; translated basic
blocks are placed in a code cache to reduce translation
costs and a mapping table links instructions in the origi-
nal code and instructions in the code cache.

A table-based translator translates individual instruc-
tions in three steps: (i) checking if the instruction has
already been translated (if so, finish translation of the in-
struction and add a branch to the translated target in the
code cache), (ii) decoding the original instruction with
the translation tables, and (iii) emitting the translated in-
struction to the code cache.

DynSec applies patches indirectly by flushing the code
cache. In addition, the translation process is extended at
the second step with a check that looks for a patch at the
current instruction. If the current instruction is patched
then the patched instruction is translated (and all follow-
ing instructions in the patch until the end of the basic
block in the patch) and not the original instruction. This
approach enables us to replace a sequence of instructions
in the original code without changing the original code
in place. Instead of executing the original instruction
the virtualization layer takes care to transparently exe-
cute the new (patched) instructions. This approach of us-
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ing a virtualization layer between original code memory
pages and executed code solves the problem of patching
code that is longer than the original code. Original in-
structions can be removed or replaced (with a sequence
of instructions that is longer or shorter than the original
instruction) without the need to re-layout code, i.e., ad-
justing all the relative offsets for control flow transfers.

In addition, the modified just-in-time code translator
adds (virtual) safe-points at the end of each translated
basic block. The safe-point code checks if the current
thread should stop executing translated application code
and branch into the translator to synchronize with the
patching thread, i.e., to flush the code cache when a new
patch is available.

2.2 Patching architecture
By extending the DBT-based virtualization layer DynSec
uses information from the DBT loader component to lo-
cate the target locations of individual patches. Using
the loader component from the DBT DynSec locates all
loaded symbols, libraries, and modules. In addition,
DynSec keeps an updated list of all running threads by
observing thread creation and destruction system calls.

DynSec injects an additional patching thread into the
application that runs as part of the privileged sandbox do-
main. This patching thread waits for incoming patches
and synchronizes the code update between application
threads and the DynSec module. A patch is applied in
three steps: (i) the patching thread waits for an incoming
patch and updates a shared data structure, (ii) the patch-
ing thread signals and synchronizes all running applica-
tion threads to stop at the next (virtual) safe-point, and
(iii) the patches are applied by the individual application
threads by flushing their code cache. Sleeping threads
are updated directly upon returning from kernel-space.

Code that is added through a patch is protected and
translated by the sandbox like original application code.

2.3 Patch format
Patches are based on instruction-level granularity and al-
low replacement, removal, and addition of instructions.
Such patches are expressive enough for most security up-
dates (e.g., length checks against buffer overflows, range
checks, or format string checks). Type changes and data
layout changes (e.g., additional members in C-structures,
new members in C++ objects, or massive code restructur-
ing) are out of scope due to missing high-level informa-
tion in binary-only applications.

Patches are defined in a binary format: the patch starts
with the number of patched instructions, followed by the
individual instructions. Each instruction consists of (i)

the patched address (relative to a given code module),
(ii) the length of the original instruction, (iii) the length
of the patched instruction, and (iv) the machine code of
the new instruction. In addition, each patch can specify
a shared library that is loaded into a local scope to add
additional functionality (e.g., a sanitizer function that is
called from the patched instructions). This scope is only
accessible by the patched instructions.

2.4 Patch extraction

The focus of this paper is not patch extraction but the de-
sign of a system that enables hot patching and code mod-
ification of binary-only applications. For our test patches
we use a simple programmer-guided tool. The tool is
built on objdump and analyzes differences between two
versions of a binary on a per-function basis, changed in-
structions are added to the patch. We then check and
fine-tune the generated patch manually.

Future work can extend this simple programmer-
guided patch generation approach by using work in bi-
nary diffing. Binary diffing extracts changes between
two versions of the same application. Work on binary
diffing concentrates on different levels of granularity
(e.g., the program level [7], the function level, the ba-
sic block level [5, 9, 10, 12], the instruction level, or the
control flow [14]) to define the differences between two
versions. Several tools [9, 10] work on the basic block
level using graph-based comparison of the two applica-
tion versions.

3 Implementation

The prototype implementation of DynSec extends
TRuE [22, 23], which combines an SFI sandbox with a
trusted loader and follows the design in Section 2. Ad-
vantages of TRuE are that the system separates user-
space into two privilege domains: the application domain
and the sandbox domain. Code in the application domain
is dynamically checked for security violations and indi-
rect control flow transfers are confined to valid targets.

TRuE uses a per-thread binary translator to dynam-
ically translate all application code. DynSec modifies
the translator in two ways: first, the translator checks
for every translated instruction if a patch is available.
This check for patches is executed during the translation
and does not incur any runtime overhead in the trans-
lated code. Second, the translator adds a virtual safe-
point at the end of every basic block to ensure atomicity
and consistency when synchronizing between multiple
application threads. Extended basic blocks end with ei-
ther a relative control flow transfer to another basic block
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or in a trampoline for an indirect control flow transfer.
The safe-point implementation keeps a list of all relative
control flow transfers and all indirect control flow trans-
fers. The patching thread signals the application threads
to take the safe-point by overwriting the targets of the
relative control-flow transfers and trampolines to a catch-
function in the translator. The application thread will ex-
ecute the relative control flow transfer or the trampoline
and end up in the catch function in the translator. Such
an implementation has no runtime overhead for executed
translated application code and minimal overhead when
a safe-point is taken.

The DynSec prototype implementation loads patches
using an additional thread that is part of the sandbox.
This additional thread takes care of (i) the shared patch-
ing data structures for all application threads as well as
(ii) signaling running threads that they should stop at the
next safe-point. Sleeping threads return into the DBT
upon system call completion where updates are handled
by flushing the code cache before any translated instruc-
tion is executed. The open-source prototype implemen-
tation of DynSec uses less than 2000 lines of code and
45 lines of code are changed in TRuE to add hooks for
the DynSec functionality.

4 Evaluation

This section evaluates the DynSec implementation proto-
type. To evaluate a dynamic software update mechanism
two aspects are important: (i) correctness of the patch-
ing infrastructure and (ii) performance of the prototype
implementation.

We evaluate the performance using the SPEC
CPU2006 benchmarks. In addition, the correctness of
the patching infrastructure is evaluated using a set of
CoreHTTP versions where successful updates are tested
using specific security exploits. All benchmarks are exe-
cuted on an Intel Core 2 Quad Q6600 with 2.64GHz and
8GB RAM on Ubuntu 11.04 with Linux kernel 2.6.38
and the GNU compiler collection 4.5.1.

4.1 SPEC CPU2006 performance

The performance of the sandbox and the DynSec mod-
ule is evaluated using the SPEC CPU2006 benchmarks
version 1.0.1. Some benchmarks (447.dealII, 481.wrf,
473.astar, and 483.xalancbmk) are not compatible with
the recent GNU compilers. These benchmarks compile
only with GCC 2.95 and are excluded from the perfor-
mance evaluation.

Table 1 shows performance results for the SPEC
CPU2006 measurements (executed with the default con-

Benchmark Nat. SB Ovhd. DS Ovhd.
400.perlbench 578 1093 89% 1117 93%
401.bzip2 876 925 5.6% 927 5.9%
403.gcc 490 659 35% 659 35%
429.mcf 419 422 0.56% 420 0.08%
445.gobmk 748 920 23% 920 23%
456.hmmer 788 805 2.2% 805 2.3%
458.sjeng 863 1303 51% 1297 50%
462.libquantum 1117 1117 0.0% 1110 -0.60%
464.h264ref 1180 1685 43% 1680 42%
471.omnetpp 519 688 33% 684 32%
473.astar 736 821 12% 820 11%
410.bwaves 901 929 3.1% 931 3.3%
416.gamess 1633 1787 9.4% 1753 7.4%
433.milc 855 875 2.4% 874 2.2%
434.zeusmp 889 883 -0.64% 882 -0.71%
435.gromacs 1823 1830 0.37% 1827 0.18%
436.cactusADM 1807 1800 -0.37% 1803 -0.18%
437.leslie3d 1030 1030 0.00% 1033 0.32%
444.namd 780 788 1.0% 789 1.2%
450.soplex 521 553 6.1% 553 6.1%
453.povray 442 674 52% 652 47%
454.calculix 1857 1880 1.3% 1870 0.72%
459.GemsFDTD 1057 1073 1.6% 1080 2.2%
465.tonto 1053 1173 11% 1177 12%
470.lbm 1010 997 -1.3% 1009 -0.07%
482.sphinx3 933 948 1.6% 951 2.0%
Mean 958 1064 11% 1062 11%

Table 1: Overhead for the SPEC CPU2006 benchmarks
for the sandbox (SB) and DynSec (DS). Runtime is in
seconds, relative overhead is compared to native execu-
tion.

figuration using the real data-set and 3 iterations).
The SPEC CPU2006 programs provide long running

tests that can be used to evaluate any overhead incurred
by long running applications. The mean overhead for
the sandbox is 11%. The main overhead comes from the
execution of the translated indirect control flow transfers
(e.g., indirect jumps, indirect calls, and function returns).
The DynSec module, the patching thread, and the addi-
tional lookup for each translated instruction do not add
any noticeable overhead.

4.2 CoreHTTP security study

CoreHTTP [32] is a minimalistic webserver with CGI
support written in C. CoreHTTP is not as mature as
Apache and therefore serves as a great example to study
security bugs. This study uses the CoreHTTP ver-
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sions 0.5.3alpha with one known security vulnerability
CVE-2007-4060 [30] and 0.5.3.1 with two known secu-
rity vulnerabilities CVE-2009-3586 [2] and ExploitDB-
10610 [8].The vulnerabilities lead to remote code ex-
ecution or remote command execution. We evaluated
CoreHTTP (364kB compiled code) in a simple forking
configuration where we patch one executing application
thread using our additional patching thread.

All three vulnerabilities are located in the file http.c
and can be fixed with simple patches. The simple patches
currently patch the call instruction with a new target that
contains the fixed code. The different vulnerabilities are:

CVE-2007-4060: Buffer overflow through missing in-
put sanitation in static string passed to sscanf.

CVE-2009-3586: Off by one error in input sanitation,
resulting in an 1 byte buffer overflow.

ExploitDB-10610: Arbitrary command execution due
to missing input sanitation in URL parameter. Core-
HTTP calls popen with an unescaped input string.

The dynamic patches fix the vulnerabilities by extract-
ing the vulnerable function into a separate C file, fixing
the vulnerability, and compiling the C file into a shared
library (using the same compiler and flags as for the orig-
inal binary). This shared library is then added to the
patch and the patch redirects the vulnerable function to
the newly loaded shared library.

The testing framework of the prototype implementa-
tion uses CoreHTTP and these three exploits as unit tests.
DynSec successfully patches all three security vulnera-
bilities at runtime and protects the application from the
exploits.

5 Related work

DynSec focuses on dynamic patch application and sup-
ports patches that may change any part of the code seg-
ment in the original program. Some related projects [4,
24] support high-level type reconstruction and data lay-
out recovery that are out of scope for DynSec.

Dynamic software update mechanisms use some form
of runtime system to handle patches and to synchro-
nize patch application with the executing process (and
threads). Drawbacks of current systems are that most of
them do not support binary-only applications or threads
and need changes in the compilation chain [1,3,7,13,17,
19,20,29] or changes in the programming language [13].
DynSec supports binary-only applications without prior
compiler involvement or changes in the programming
language.

Adding a runtime system in the compilation toolchain
limits the possible changes that can be carried out by
the patches. Many of the dynamic update systems al-
low global changes only, i.e., replacing the complete run-
time image [7, 13]. Other systems work on the function
level [1, 6, 28]. DynSec enables patching on instruction-
level granularity for unmodified binaries.

Many of the existing systems state that they only
support single threaded applications [13, 20, 27] while
DynSec supports multiple concurrent threads and takes
special care for synchronized patch application.

ClearView [24], LUCOS [6] and Band-aid patch-
ing [28] present dynamic software updating mecha-
nisms that rely on virtualization. LUCOS relies on
page-table modifications to overwrite function prologues
while Band-aid patching and ClearView use a DBT.
DynSec protects applications in a user-space sandbox
and dynamically patches services at instruction level
granularity.

6 Conclusion

Binary rewriting systems have allowed the construction
of sandboxes for arbitrary binaries, i.e., without requiring
a-priori knowledge of the binary translator. Such systems
assure an application or system’s integrity as the sandbox
blocks any attempt to execute illegal code. The approach
described here combines the sandbox with a dynamic on-
the-fly updating system to rapidly install patches without
requiring termination or restart of an application or ser-
vice.

DynSec offers an interesting approach to protect ap-
plications from unknown software attacks using a sand-
box to protect the integrity of the application. In addi-
tion, a dynamic update mechanism patches the applica-
tion whenever a new patch is available to secure the exe-
cuting process from software attacks until the service can
be safely restarted to increase the availability.
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