

Forgery-Resistant Touch-based Authentication on Mobile Devices

Neil Zhenqiang Gong, Mathias Payer*, Reza Moazzezi, Mario Frank,

Iowa State University Purdue University UC Berkeley UC Berkeley

* @gannimo, http://hexhive.github.io

Mobile access to private data

Our mobile devices have access to private data
 – EMail, banking, pictures, social media, documents

Mobile authentication is tedious

- Authentication is often disabled (42%)
- Biometrics (fingerprint, face) prone to replay

2:30 🛢

Next

Cancel

Continuous Touch-Based Authentication

Continuous authentication

- Users continuously interact with the device
- Leverage these interactions to authenticate
- Assumption: each user interacts differently
 - Collect touch strokes
 - Train model
 - Use model to authenticate

Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song "Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication". TIFS '13

Continuous authentication

Biometrics pitfall: replay attacks

- Loosing trained model or touch data is fatal
- Automated replay attacks are possible

A. Serwadda and V. V. Phoha. "When kids' toys breach mobile phone security." In CCS'13

Forgery-Resistant Touch-based Authentication

TouchAlytics 2.0: diversity

- Assumption: slight variances in screen settings influence touch behavior
 - Introduce a (flexible) layer of indirection between the user and the authentication system
 - Constantly vary the screen settings

TouchAlytics 2.0: indirection

- Sensor records x, y, pressure, area
- Control transformation of raw data to primitives
- Indirection for raw touch data interpretation
 - X-Distortion: stretch strokes along x-axis
 - Y-Distortion: stretch strokes along y-axis
- Application acts relative to current setting
 Users change behavior to compensate

Required: stability and sensitivity

Required: stability and sensitivity

Required: stability and sensitivity

Adaptive Authentication

- Registration phase
 - Collect models for different screen settings
 - Train authentication classifiers (SVM)
- Authentication phase
 - Switch screen settings randomly
 - Match touch behavior against trained profile
 - Trigger hard authentication on mismatch

Evaluation

User study

- Two "comparison" games,
 - Swipe horizontally to find errors in 2 images
 - Scroll vertically to compare geometric shapes

User study

- Two "comparison" games,
 - Swipe horizontally to find errors in 2 images
 - Scroll vertically to compare geometric shapes
- 25 users evaluated in study
 - Measure touch interactions with different distortion settings
 - 0.8, 0.9, 1.0, 1.1, 1.2 along X and Y axis

User study: stability

(a) User A, 0.8 Ydistortion

(b) User B, 0.8 Ydistortion

(c) User C, 0.8 Y-distortion

(d) User A, 1.2 Ydistortion

(e) User B, 1.2 Ydistortion

(f) User C, 1.2 Ydistortion

Touch behaviors of a user in one setting are closer to those of the user in another setting than those of other users.

User study: sensitivity

A user's touch strokes in different settings have a high degree of separability in the feature space.

Two (robot-based) attacks

- Random attack: an attacker replays a random user's touch data (i.e., the naïve attack)
- Targeted attack: an attacker replays the targeted user's touch data (i.e., attacker has access to full training data)

EER*s in different settings

	Random attacks	Targeted attacks
S-Baseline-a	0.12(0.1067)	0.50(0.0000)
S-Baseline-b	0.11(0.0819)	0.50(0.0000)
S-Baseline-c	0.14(0.1111)	0.50(0.0000)
S-Baseline-d	0.14(0.1051)	0.50(0.0000)
S-Baseline-e	0.17(0.1187)	0.50(0.0000)
S-Baseline-improved	0.12(0.0777)	0.45(0.0364)
S-ATCA	0.08(0.0542)	0.33(0.0502)

* EER: Equal Error Rate, equilibrium of false acceptance and false rejection rates
* ATCA: Adaptive Touch-based Continuous Authentication

More screen settings help

Attacking TouchAlytics

- Detect screen setting
 - Measure "swipe" distance and leak screen setting
 - Still leaves some strokes unprotected

Conclusion

Conclusion

- Users subconsciously adapt behavior, different screen settings do not affect user experience
- Adaptive touch-based continuous authentication randomly changes screen settings to fool attacks
- (Small) user study shows promising results
- Touch behavior is both stable and sensitive
- Future work: larger study, more screen settings, leverage sloppiness and jitter

Thank you!

Questions?

Mathias Payer, Purdue University http://hexhive.github.io