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ABSTRACT

Clements, Abraham A. PhD, Purdue University, May 2019. Protecting Bare-metal
Systems From Remote Exploitation. Major Professors: Saurabh Bagchi and Mathias
Payer.

The Internet of Things is deploying large numbers of bare-metal systems that

have no protection against memory corruption and control-flow hijacking attacks.

These attacks have enabled unauthorized entry to hotel rooms, malicious control

of unmanned aerial vehicles, and invasions of privacy. Using static and dynamic

analysis these systems can utilize state-of-the-art testing techniques to identify and

prevent memory-corruption errors and employ defenses against memory corruption

and control-flow hijacking attacks in bare-metal systems that match or exceed those

currently employed on desktop systems. This is shown using three case studies.

(1) EPOXY which, automatically applies data execution prevention, diversity,

stack defenses, and separating privileged code from unprivileged code using a novel

technique called privileged overlaying. These protections prevent code injection at-

tacks, and reduce the number of privileged instruction to 0.06% verses an unprotected

application.

(2) Automatic Compartments for Embedded Systems (ACES), which automat-

ically creates compartments that enforce data integrity and code isolation within

bare-metal applications. ACES enables exploring policies to best meet security and

performance requirements for individual applications. Results show ACESs can form

10s of compartments within a single thread and has a 15% runtime overhead on

average.

(3) HALucinator breaks the requirement for specialized hardware to perform bare-

metal system testing. This enables state-of-the-art testing techniques –e.g., coverage



xiv

based fuzzing – to scale with the availability of commodity computers, leading to the

discovery of exploitable vulnerabilities in bare-metal systems.

Combined, these case studies advance the security of embedded system several

decades and provide essential protections for today’s connected devices.
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1. INTRODUCTION

1.1 Motivation

The proliferation of the Internet of Things (IoT) is increasing the connectivity of

embedded systems. This connectivity and the scale of the IoT – over 9 billion devices

– exposes embedded systems to network-based attacks on an unprecedented scale. At-

tacks against IoT devices have already unleashed massive Denial of Service attacks [1],

invalidated traffic tickets [2], taken control of vehicles [3], and facilitated robbing ho-

tel rooms [4]. The importance of securing embedded systems extends beyond smart

things. Micro-controllers executing firmware are embedded in nearly everything –

e.g., in network cards [5], hard drive controllers [6], SD memory cards [7], WiFi con-

trollers, and Bluetooth interfaces. Vulnerabilities in these components can impact

only themselves but the system which they are connected to. For example, Google’s

Project Zero demonstrated how vulnerabilities in Broadcom’s WiFi controller could

be used to compromise the application processor in a cell phone [8].

This thesis focuses on protecting bare-metal embedded systems from remote mem-

ory corruption attacks. In bare-metal systems, the application runs without an oper-

ating system and is directly responsible for configuring hardware, accessing peripher-

als, and executing application logic. As such the software is privileged and has direct

access to the processor and peripherals. These bare-metal systems must satisfy strict

runtime guarantees on extremely constrained hardware platforms with few KBs of

memory, few MBs of Flash, and low CPU speed to minimize power and cost con-

straints. These constraints mean few if any protections are deployed on bare-metal

systems. As an exemplar, consider Broadcom’s WiFi controller did not even deploy

Data Execution Prevention (DEP) – a foundational defense in desktop systems for

over twenty years.
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The flat execution and memory model (i.e., all code is privileged and can access all

memory) of bare-metal applications means a single memory corruption vulnerability

can compromise the entire system. Thus, it is essential to protect them from memory

corruption and control-flow hijack attacks. Memory corruption occurs when invalid

data is written to program memory. The most well known type of memory corruption

is a buffer overflow. This occurs when data is written beyond the bounds of a buffer

corrupting adjacent memory. Memory corruption attacks can directly compromise

a program by writing sensitive data, e.g., writing configuration registers to disable

memory protection, or indirectly by overwriting code pointers to hijack the control-

flow of the program.

To enable effective protection of bare-metal systems the program must be sep-

arated into different permissions domains, so that a single vulnerability does not

compromise the entire system. Identifying these domains can be done using static

and dynamic program analysis. These analyses identify how data and code inter-

act within a program. Static analysis examines program source code or instructions,

without executing them, to identify control and data flow through a program. How-

ever, precise analysis of control and data flow is known to be intractable [9], because

of the alias analysis problem. On the other hand, dynamic analysis monitors the

execution of the program to determine control and data flows. However its analysis is

limited to only the data and control flows used during execution. Thus, if insufficient

stimuli is used to exercise the program control and data flows will be missed.

1.2 Thesis Statement

This thesis shows by using static and dynamic analysis modern micro-controllers

can utilize state-of-the-art testing techniques to identify and prevent memory corrup-

tion errors and employ defenses against memory corruption and control-flow hijack

attacks that match or exceed those currently employed on desktop systems. This

is demonstrated through three case studies. (1) Protecting Bare-metal Applications
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with Privilege Overlays (EPOXY), which uses a novel protection mechanism, called

privilege overlays, to identify only those instructions which require elevated privi-

leges and removes all other instructions from privileged execution. It then automati-

cally applies DEP, diversity, and stack protection. (2) Automatic Compartments for

Embedded Systems (ACES) which uses a developer specified policy to identify and

create compartments within a bare-metal system, and automatically enforces data in-

tegrity between compartments and restricts the instructions executable by any given

compartment. (3) HALucinator leverages hardware abstraction libraries and static

analysis of firmware to enable scalable creation of emulation platforms. This enables

dynamic analysis and state-of-the-art testing techniques, such as coverage guided

fuzzing on bare-metal firmware.

Each cases study is summarized in below and full details are provided in subse-

quent chapters.

1.3 Case Study 1: Protecting Bare-metal Applications with Privilege

Overlays (EPOXY)

EPOXY, described in Chapter 2, uses static analysis to automatically apply DEP,

diversity, stack defenses, and separates code into privileged and unprivileged execu-

tion. These protections prevent code injection attacks, reduces the number of priv-

ileged instruction to 0.06% of an unprotected application, and enable a single ROP

gadget to be used in at most 11% of binaries. On average it incurs only a 1.8%

increase in execution time, and 0.5% increase in energy.

Central to its design is a novel technique called privileged overlaying. This tech-

nique uses static analysis to identify all instructions and memory accesses that require

elevated privileges. It then instruments the program so that only those instructions

are executed with elevated privileges. This lays the foundation for effective use of

the hardware to enforce DEP. EPOXY also was the first to adapt the strong defenses

of SafeStack [10] to bare-metal systems. SafeStack uses static analysis to identify all
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variables that cannot be proven to be used in a safe manner, and moves them to a

separate unsafe-stack. EPOXY automatically creates this stack, and needed guards

to isolate it from program data. Combined these protections show bare-metal sys-

tems can have protections as strong as those deployed on desktop systems with little

performance impact. By simpling recompiling the software, EPOXY fast forwards

bare-metal applications security several decades.

1.4 Case Study 2: Automatic Compartments for Embedded Systems

(ACES)

The second case study is described in detail in Chapter 3. It uses static and

dynamic analysis to enforce separation of privileges between different compartments

of a bare-metal system. Thus, applying the principle of least privileges—a bedrock

of security—to bare-metal systems. It breaks the single application into many small

compartments and enforces data integrity and control-flow integrity between com-

partments. It also restricts the code that is executable at any given time, reducing

the available code for use in code reuse attacks.

Creating the compartments is formulated as a graph reduction problem. This

formulation enables the investigation of many different types of policies, and the

automatic creation and enforcement of these compartments during execution. This

enables the developer to determine the correct balance of security and performance

for their application. Its evaluation shows that 10’s of compartments can be created

within a single bare-metal application with on average a 15% runtime overhead.

1.5 Case Study 3: HALucinator: Firmware Re-hosting Through Abstrac-

tion Layer Emulation

The final case study, HALucinator, shows how to execute firmware in an emulated

environment – i.e., re-host the firmware – to enable dynamic analysis of bare-metal

firmware and scalable testing. Re-hosting the firmware overcomes limitations imposed
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by executing in hardware and removes the requirement for specialized hardware for

firmware testing. This enables testing that benefits from scaling in the number of

devices (e.g., fuzz testing), to be performed using commodity desktop/servers.]

The primary challenge to re-hosting firmware is the tight coupling of the firmware

to the hardware on which it executes. For example, firmware even before executing

the main function will often turn on and configure a clock source, and then poll

the clock to ensure it is ready before continuing. However, the emulator lacks this

clock source, and will either fault when trying to initialize the clock, or get stuck

in the polling loop. The coupling to hardware extends beyond clocks to include

all on-chip peripherals (e.g., network interfaces, timers, UARTs, GPIO, etc) in a

micro-controller and components on the system’s circuit board. Providing completely

accurate implementations for all possible components in a system is a daunting task,

which has made re-hosting firmware a manual and time consuming process, as a

custom emulator must be built for each firmware.

HALucinator, leverages the insight that the diversity of hardware also affects

firmware developers and to manage this problem they rely on abstraction libraries.

These libraries abstract the low-level hardware details, protocol stacks, and other com-

monly used functionalities into a set of application programming interfaces (APIs).

By identifying these abstraction libraries in a binary firmware and replacing them

with a high level model we can decouple the firmware from its hardware and enable

its re-hosting. This changes the supporting of diverse hardware in the emulator, to

the problem of supporting the different abstraction libraries. Which is a smaller prob-

lem as a single library supports many different chips. For example a micro-controller

manufacture will provide one library to abstract an entire family of devices.

Utilizing this technique we use HALucinator to enable dynamically emulating

firmware and demonstrate its use in performing dynamic analysis and fuzzing firmware.

Our fuzzing experiments identifies several vulnerabilities in the firmware showing

HALucinator’s utility in protecting bare-metal systems.
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1.6 Work publication

This section covers work that has been published and is under review in support

of this thesis.

Published Works

• Protecting Bare-metal Applications with Privilege Overlays

Abraham A. Clements, Naif Almakhdhub, Khaled Saab, Prashast Srivastava,

Jinkyu Koo, Saurabh Bagchi, and Mathias Payer – Presented at 38th IEEE

Symposium on Security and Privacy, 2017

• Automatic Compartments for Embedded Systems (ACES)

Abraham A. Clements, Naif Almakhdhub, Saurabh Bagchi, and Mathias Payer

– Presented at 27th USENIX Security Symposium, 2018

Under Review

• HALucinator: Firmware Re-hosting Through Abstraction Layer Em-

ulation

Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David

Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, Mathias Payer –

Under review at 28th USENIX Security Symposium, 2019

1.7 Summary

In summary, this thesis demonstrates how static and dynamic analysis can be used

to reduce the incidence of data corruption and control-flow hijacking on bare-metal

systems. The work contained herein shows bare-metal systems can deploy state-of-

the-art defenses within their constraints on memory, runtime, and energy. It also

enables dynamic analysis and large scale testing of bare-metal applications enabling

vulnerabilities be to prevented and identified. Combined these works fast-forward

bare-metal firmware security several decades, preparing them for the connected world

in which they now operate.
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2. EPOXY: PROTECTING BARE-METAL EMBEDDED

SYSTEMS WITH PRIVILEGE OVERLAYS

This chapter shows how to automatically enforce Data Execution Prevention (DEP),

strong stack protections, and code reuse defenses on firmware used in bare-metal

systems, using a technique called privilege overlays. The chapter first lays out the

motivation and background for applying these defenses. The design and implemen-

tation of the used techniques are then given, and an evaluation of their impact on

run-time, memory usage, and energy then follows. This work was presented at the

IEEE Symposium on Security and Privacy Conference in 2017 [11].

2.1 Introduction

Embedded devices are ubiquitous. With more than 9 billion embedded processors

in use today, the number of devices has surpassed the number of humans. With the

rise of the “Internet of Things”, the number of embedded devices and their connectiv-

ity is exploding. These “things” include Amazon’s Dash button, utility smart meters,

smart locks, and smart TVs. Many of these devices are low cost with software run-

ning directly on the hardware, known as “bare-metal systems”. In such systems, the

application runs as privileged low-level software with direct access to the processor

and peripherals, without going through intervening operating system software layers.

These bare-metal systems satisfy strict runtime guarantees on extremely constrained

hardware platforms with few KBs of memory, few MBs of Flash, and low CPU speed

to minimize power and cost constraints.

With increasing network connectivity ensuring the security of these systems is

critical [12,13]. In 2016, hijacked smart devices like CCTV cameras and digital video

recorders launched the largest distributed denial of service (DDoS) attack to date [1].
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The criticality of security for embedded systems extends beyond smart things. Micro-

controllers executing bare-metal software have been embedded so deeply into systems

that their existence is often overlooked, e.g., in network cards [5], hard drive con-

trollers [6], and SD memory cards [7]. We rely on these systems to provide secure

and reliable computation, communication, and data storage. Yet, they are built with

security paradigms that have been obsolete for several decades.

Embedded systems largely lack protection against code injection, control-flow hi-

jack, and data corruption attacks. Desktop systems, as surveyed in [14], employ many

defenses against these attacks such as: Data Execution Prevention (DEP), stack pro-

tections (e.g., stack canaries [15], separate return stacks [16], and SafeStack [10]),

diversification [17, 18], ASLR, Control-Flow Integrity [19, 20], or Code-Pointer In-

tegrity (CPI) [10]. Consequently, attacks on desktop-class systems became harder

and often highly program dependent.

Achieving known security properties from desktop systems on embedded systems

poses fundamental design challenges. First, a single program is responsible for hard-

ware configuration, inputs, outputs, and application logic. Thus, the program must

be allowed to access all hardware resources and to execute all instructions (e.g., con-

figuring memory permissions). This causes a fundamental tension with best security

practices which require restricting access to some resources. Second, bare-metal sys-

tems have strict constraints on runtime, energy usage, and memory usage. This

requires all protections to be lightweight across these dimensions. Third, embedded

systems are purpose-built devices. As such, they have application-specific security

needs. For example, an IO register on one system may unlock a lock while on a

different system, it may control an LED used for debugging. Clearly the former is

a security-sensitive operation while the latter is not. Such application-specific re-

quirements should be supported in a manner that does not require the developer

to make intrusive changes within her application code. Combined, these challenges

have meant that security protection for code injection, control-flow hijack, and data

corruption attacks are simply left out from bare-metal systems.
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As an illustrative example, consider the application of DEP to bare-metal sys-

tems. DEP, which enforces W ⊕ X on all memory regions, is applied on desktops

using a Memory Management Unit (MMU), which is not present on micro-controllers.

However, many modern micro-controllers have a peripheral called the Memory Pro-

tection Unit (MPU) that can enforce read, write, and execute permissions on regions

of the physical memory. At first glance, it may appear that DEP can be achieved in

a straightforward manner through the use of the MPU. Unfortunately, we find that

this is not the case: the MPU protection can be easily disabled, because there is

no isolation of privileges. Thus, a vulnerability anywhere in the program can write

the MPU’s control register to disable it. A testimony to the challenges of correctly

using an MPU are the struggles existing embedded OSs have in using it for security

protection, even for well-known protections such as DEP. FreeRTOS [21], a popu-

lar operating system for low-end micro-controllers, leaves its stacks and RAM to be

writable and executable. By FreeRTOS’s own admission, the MPU port is seldom

used and is not well maintained [22]. This was evidenced by multiple releases in 2016

where MPU support did not even compile [23,24].

To address all of these challenges, we developed EPOXY (Embedded Privilege

Overlay on X hardware with Y software), a compiler that brings both generic and

system-specific protections to bare-metal applications. This compiler adds additional

passes to a traditional LLVM cross-compilation flow, as shown in Figure 2.1. These

passes add protection against code injection, control-flow hijack and data corruption

attacks, and direct manipulation of IO. Central to our design is a lightweight privilege

overlay, which solves the dichotomy of allowing the program developer to assume

access to all instructions and memory but restrict access at runtime. To do this,

EPOXY reduces execution privileges of the entire application. Then, using static

analysis, only instructions requiring elevated privileges are added to the privilege

overlay to enable privileges just prior to their execution. EPOXY draws its inputs

from a security configuration file, thus decoupling the implementation of security

decisions from application design and achieves all the security protections without
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any application code modification. Combined, these protections provide application-

specific security for bare-metal systems that are essential on modern computers.

In adapting fine-grained diversification techniques [18], EPOXY leverages unique

aspects of bare-metal systems, specifically all memory is dedicated to a single appli-

cation and the maximum memory requirements are determined a priori. This enables

the amount of unused memory to be calculated and used to increase diversification

entropy. EPOXY then adapts the protection of SafeStack [10], enabling strong stack

protection within the constraints of bare-metal systems.

Our prototype implemenation of EPOXY supports the ARMv7-M architecture,

which includes the popular Cortex-M3, Cortex-M4, and Cortex-M7 micro-controllers.

Our techniques are general and should be applicable to any micro-controller that

supports at least two modes of execution (privileged and unprivileged) and has an

MPU. We evaluate EPOXY on 75 benchmark applications and three representative

IoT applications that each stress different sub-systems. Our performance results

for execution time, power usage, and memory usage show that our techniques work

within the constraints of bare-metal applications. Overheads for the benchmarks

average 1.6% for runtime and 1.1% for energy. For the IoT applications, the average

overhead is 1.8% for runtime, and 0.5% for energy. We evaluate the effectiveness of our

diversification techniques, using a Return Oriented Programming (ROP) compiler [25]

that finds ROP-based exploits. For our three IoT applications, using 1,000 different

binaries of each, no gadget survives across more than 107 binaries. This implies that

an adversary cannot reverse engineer a single binary and create a ROP chain with a

single gadget that scales beyond a small fraction of devices.

In summary, this work: (1) identifies the essential components needed to apply

proven security techniques to bare-metal systems; (2) implements them as a transpar-

ent runtime privilege overlay, without modifying existing source code; (3) provides

state-of-the-art protections (stack protections and diversification of code and data

regions) for bare-metal systems within the strict requirements of run-time, memory

size, and power usage; (4) demonstrates that these techniques are effective from a
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Fig. 2.1. The compilation work flow for an application using EPOXY.
Our modifications are shown in shaded regions.

security standpoint on bare-metal systems. Simply put, EPOXY brings bare-metal

application security forward several decades and applies protections essential for to-

day’s connected systems.

2.2 Threat Model and Platform Assumptions

We assume a remote attacker with knowledge of a generic memory corruption

vulnerability, i.e., the application running on the embedded system itself is buggy

but not malicious. The goal of the attacker is to either achieve code execution (e.g.,

injecting her own code, reusing existing code through ROP or performing Data-

oriented Programming [26]), corrupt specific data, or directly manipulate security-

critical outputs of a system by sending data to specific IO pins. We assume the

attacker exploits a write-what-where vulnerability, i.e., one which allows the attacker

to write any data to any memory location that she wants. The attacker may have

obtained the vulnerability through a variety of means, e.g., source code analysis, or
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reverse engineering the binary that runs on a different device and identifying security

flaws in it.

We also assume that the attacker does not have access to the specific instance of

the (diversified) firmware running on the target device. Our applied defenses provide

foundational protections, which are complementary to and assumed by, many modern

defenses such as, the memory disclosure prevention work by Braden et. al. [27]. We

do not protect against attacks that replace the existing firmware with a compromised

firmware. Orthogonal techniques such as code signing should be used to prevent this

type of attack.

We make the following assumptions about the target system. First, it is running a

single bare-metal application, which utilizes a single stack and has no restrictions on

the memory addresses, peripherals, or registers that it can access or instructions that

it can execute. This is the standard mode of execution of applications on bare-metal

systems, e.g., is the case with every single benchmark application and IoT application

that we use in the evaluation and that we surveyed from the vendors of the ARM-

equipped boards. Second, we require the micro-controller to support at least two

execution privilege levels, and have a means to enforce access controls on memory for

these privilege levels. These access controls include marking regions of memory as

read, write, and/or execute. Typically, an MPU provides this capability on a micro-

controller. We looked at over 100 Cortex-M3, M4, and M7 series micro-controllers

from ARM and an MPU was present on all but one. Micro-controllers from other

vendors, such as AVR32 from Atmel, also have an MPU.

2.3 Architecture Background Information

This section presents architecture information that is needed to understand the

attack vectors and the defense mechanisms in EPOXY. Bare-metal systems have low

level access to hardware; this enables an attacker, with a write-what-where vulnerabil-

ity, to manipulate the system in ways that are unavailable to applications on desktop
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systems. Defense strategies must consider these attack avenues, and the constraints

of hardware available to mitigate threats. For specificity, we focus on the ARMv7-M

architecture which is implemented in ARM Cortex-M(3,4,7) micro-controllers. The

general techniques are applicable to other architectures subject to the assumptions

laid out in Section 2.2. We present key details of the ARMv7-M architecture, full

details are in the ARMv7-M Architecture Reference Manual [28].

2.3.1 Memory Map

In our threat model, the attacker has a write-what-where vulnerability that can

be used to write to any memory address; therefore, it is essential to understand the

memory layout of the system. Note that these systems use a single, unified mem-

ory space. A representative memory map illustrating the different memory regions

is shown in Figure 2.2. At the very bottom of memory is a region of aliased mem-

ory. When an access is made to the aliased region, the access is fulfilled by accessing

physical memory that is aliased, which could be in the Internal RAM, Internal Flash,

or External Memory. The alias itself is specified through a hardware configuration

register. Thus, memory mapped by the aliased region is addressable using two ad-

dresses: its default address (e.g., the address of Internal RAM, Internal Flash, or

External Memory) and address of the aliased region. This implies that a defender

has to configure identical permissions for the aliased memory region and the actual

memory region that it points to. A common peripheral (usually a memory controller)

contains a memory-mapped register that sets the physical memory addressed by the

aliased region. A defender must protect both the register that controls which memory

is aliased, in addition to the physical and aliased memory locations.

Moving up the address space we come to Internal Flash, this is Flash memory

that is located inside the micro-controller. On ARMv7-M devices it ranges in size

from a couple KB to a couple MB. The program code and read only data are usually

stored here. If no permissions are enforced, an attacker may directly manipulate
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Fig. 2.2. An example memory map showing the regions of memory com-
monly available on an ARMv7-M architecture micro-controller. Note the
cross hatched areas have an address but no memory.

code1. Address space layout randomization is not applied in practice and the same

binary is loaded on all devices, which enables code reuse attacks like ROP. Above

the Flash is RAM which holds the heap, stack, and global data (initialized data and

uninitialized bss sections). Common sizes range from 1KB to a couple hundred KB

and it is usually smaller than the Flash. By default this area is read, write, and

execute-enabled, making it vulnerable to code injection attacks. Additionally, the

stack employs no protection and thus is vulnerable to stack smashing attacks which

can overwrite return addresses and hijack the control flow of the application.

Located above the RAM are the peripherals. This area is sparsely populated

and consists of fixed addresses which control hardware peripherals. Peripherals in-

clude: General Purpose Input and Output (GPIO), serial communication (UARTS),

Ethernet controllers, cryptography accelerators, and many others. Each peripheral

is configured, and used by reading and writing to specific memory addresses called

memory-mapped registers. For example, a smart lock application will use an output

pin of the micro-controller to actuate its locking mechanism. In software this will

1In Flash a 1 may be changed to a 0 without erasing an entire block, parity checks are also common
to detect single bit flips. This restricts the changes that can directly be made to code; however, a
wily attacker may still be able to manipulate the code in a malicious way.
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show up as a write to a fixed address. An adversary can directly open the lock by

writing to the GPIO register using a write-what-where vulnerability, bypassing any

authentication mechanism in the application.

The second region from the top is reserved for external memory and co-processors.

This may include things like external RAM or Flash. However, on many small em-

bedded systems nothing is present in this area. If used, it is sparsely populated and

the opportunities presented to an attacker are system and program specific. The final

area is the System Control Block (SCB). This is a set of memory-mapped registers

defined by ARM and present in every ARMv7-M micro-controller. It controls the

MPU configuration, interrupt vector location, system reset, and interrupt priorities.

Since the SCB contains the MPU configuration registers, an attacker can disable the

MPU simply by writing a 0 to the lowest bit of the MPU CTRL register located at

address 0xE000ED94. Similarly, the location of the interrupt vector table is set by

writing the VTOR register at 0xE000ED08. These indicate that the SCB region is

critical from a security standpoint.

2.3.2 Execution Privileges Modes

Like their x86 counterparts, ARMv7-M processors can execute in different priv-

ilege modes. However, they only support two modes: privileged and unprivileged.

In the current default mode of operation, the entire application executes in privi-

leged mode, which means that all privileged instructions and all memory accesses are

allowed. Thus, we cannot indiscriminately reduce the privilege level of the applica-

tion, for fear of breaking the application’s functionality. Once privileges are reduced

the only way to elevate privileges is through an exception. All exceptions execute

in privileged mode and software can invoke an exception by executing an SVC (for

“supervisor call”) instruction. This same mechanism is used to create a system call

in a traditional OS.
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Fig. 2.3. Diagram illustrating how the protection regions (R-x) defined in
the MPU by EPOXY are applied to memory. Legend shows permissions
and purpose of each region. Note regions R1-R3 (not shown) are developer
defined.

2.3.3 Memory Protection Unit

ARMv7-M devices have a Memory Protection Unit or MPU which can be used to

set read, write, or execute permissions on regions of the physical memory. The MPU

is similar to an MMU, but it does not provide virtual memory addressing. In effect,

the MPU adds an access control layer over the physical memory but memory is still

addressed by its physical addresses. The MPU defines read, write, and execute priv-

ileges for both privileged and unprivileged modes. It also enables making regions of

memory non executable (“execute never” in ARM’s terminology). It supports setting

up to 8 regions, numbered from 0 to 7, with the following restrictions: (1) A region’s

size can be from 32 Bytes to 4 GBytes, in powers of two; (2) Each region must be

size-aligned (e.g., if the region is 16KB, it must start on a multiple of 16KB); (3) If

there is a conflict of permissions (through overlapping regions), then the higher num-

bered region’s permissions take effect. Figure 2.3 illustrates how memory permissions

are applied.

For the remainder of this paper we will use the following notations to describe

permissions for a memory region: (P-R?W ?,U-R?W ?,X| −?) which encodes read and

write permissions for privileged mode (P), unprivileged mode (U), and execution

permission for both privileged and unprivileged mode. For example, the tuple (P-
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RW,U-R,X) encodes a region as executable, read-write for privileged mode and exe-

cutable, read-only access for unprivileged mode. Note, execute permissions are set for

both privileged and unprivileged mode. For code to be executed, read access must

be granted. Thus, unprivileged code can be prevented from executing a region by

disabling read access to it.

2.3.4 Background Summary

Current bare-metal system design exposes a large attack surface—memory cor-

ruption, code injection, control-flow hijack attacks, writing to security-critical but

system-specific IO, and modification of registers crucial for system operation such as

the SCB and MPU configuration. Execution privilege modes and the MPU provide

the hardware foundation that can be used to develop techniques that will reduce this

vast attack surface. However, the development assumption that all instructions and

all memory locations are accessible is in direct conflict with the security requirements,

as some instructions and memory accesses can exploit the attack surface and need

to be restricted. Next we present the design of our solution EPOXY, which resolves

this tension by using privilege overlays, along with various diversification techniques

to reduce the attack surface.

2.4 Design

EPOXY’s goal is to apply system specific protections to bare-metal applications.

This requires meeting several requirements: (1) Protections must be flexible as pro-

tected areas vary from system to system; (2) The compiler must enable the enforce-

ment of policies that protect against malicious code injection, code reuse attacks,

global data corruption, and direct manipulation of IO; (3) Enforcement of the poli-

cies must satisfy the non-functional constraints—runtime, energy usage, and memory

usage should not be significantly higher than in the baseline insecure execution. (4)
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The protections should not cause the application developers to make changes to their

development workflow and ideally would involve no application code changes.

EPOXY’s design utilizes four components to apply protections to bare-metal sys-

tems, while achieving the above four goals. They are: (1) access controls which limit

the use of specific instructions and accesses to sensitive memory locations, (2) our

novel privilege overlay which imposes the access control on the unmodified applica-

tion, (3) an adapted SafeStack, and (4) diversification techniques which utilize all

available memory.

2.4.1 Access Controls

Access controls are used to protect against code injection attacks and defend

against direct manipulation of IO. Access controls specify the read, write, and exe-

cute permissions for each memory region and the instructions which can be executed

for a given execution mode. As described in Section 2.3, modern micro-controllers

contain an MPU and multiple execution modes. These are designed to enable DEP

and to restrict access to specific memory locations. We utilize the MPU and mul-

tiple execution modes to enforce access controls in our design. Using this available

hardware, rather than using a software only approach, helps minimize the impact on

runtime, energy consumption, and memory usage. On our target architecture, IO is

handled through memory-mapped registers as well and thus, the MPU can be used

to restrict access to sensitive IO. The counter argument to the use of the MPU is

that it imposes restrictions—how many memory regions can be configured (8 in our

chosen ARM architecture) and how large each region needs to be and how it should be

aligned (Section 2.3.3). However, we still choose to use the MPU and this explains in

part the low overhead that EPOXY incurs (Table 2.2). While the MPU and the pro-

cessor execution modes can enforce access controls at runtime they must be properly

configured to enable robust protection. We first identify the proper access controls

and how to enforce them. We then use the compiler to generate the needed hardware
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configuration to enforce access controls at runtime. Attempts to access disallowed

locations trap to a fault handler. The action the fault handler takes is application

specific, e.g., halting the system, which provides the strongest protects as it prevents

repeated attack attempts.

The required access controls and mechanisms to enforce them can be divided into

two parts: architecture dependent and system specific. Architecture-dependent access

controls: All systems using a specific architecture (e.g., ARMv7-M) have a shared set

of required access controls. They must restrict access to instructions and memory-

mapped registers that can undermine the security of the system. The instructions

that require execution in privileged mode are specified in the processor architecture

and are typically those that change special-purpose registers, such as the program

status register (the MSR and CPS instructions). Access to these instructions is limited

by executing the application by default in unprivileged mode. Memory-mapped reg-

isters, such as the MPU configuration registers, and interrupt vector offset register,

are common to an architecture and must be protected. In our design, this is done

by configuring the MPU to only allow access to these regions (registers) from the

privileged mode.

System-specific access controls: These are composed of setting W ⊕ X on code

and data, protection of the alias control register, and protecting any sensitive IO.

W ⊕X should be applied to every system; however, the locations of code and data

change from system to system, making the required configuration to enforce it system

specific. For example, each micro-controller has different amounts of memory and a

developer may place code and data in different regions, depending on her require-

ments. The peripheral that controls the aliased memory is also system specific and

needs protection and thus, access to it should be set for the privileged mode only.

Last, what IO is sensitive varies from system to system and only the subset of IO

that is sensitive need be restricted to the privileged mode.

To simplify the implementation of the correct access controls, our compiler gen-

erates the necessary system configuration automatically. At the linking stage, our
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compiler extracts information (location, size, and permissions) for the code region

and the data region. In addition, the developer provides on a per-application basis

information about the location and size of the alias control register and what IO

is sensitive. The compiler then uses this information, along with the architecture-

specific access controls, to generate the MPU configuration. The MPU configuration

requires writing the correct bits to specific registers to enforce the access controls.

Our compiler pass adds code to system startup to configure the MPU ( Figure 2.3

and Table 2.1). The startup code thus drops the privileges of the application that is

about to execute, causing it to start execution in unprivileged mode.

2.4.2 Privilege Overlay

We maintain the developer’s assumption of access to all instructions and mem-

ory locations by using a technique that we call, privilege overlay. This technique,

identifies all instructions and memory accesses which are restricted by the access

controls—referred to as restricted operations—and elevates just these instructions.

Conceptually, this is like overlaying the original program with a mask which elevates

just those instructions which require privileged mode. In some ways, this privilege

overlaying is similar to an application making an operating system call and transi-

tioning from unprivileged mode to privileged mode. However, here, instead of being

a fixed set of calls which operate in the operating system’s context, it creates a min-

imal set of instructions (loads and stores from and to sensitive locations and two

specific instructions) that execute in their original context (the only context used

in a bare-metal application execution) after being given permissions to perform the

restricted operation. By elevating just those instructions which perform restricted

operations through the privilege overlay, we simplify the development process and by

carefully selecting the restricted operations, we limit the power of a write-what-where

vulnerability.
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Privilege overlaying requires two mechanisms: A mechanism to elevate privileges

for just the restricted operations and a mechanism to identify all the restricted oper-

ations. Architectures employing multiple execution modes provide a mechanism for

requesting the execution of higher level software. On ARM, this is the SVC instruc-

tion which causes an exception handler to be invoked. This handler checks if the call

came from an authorized location, and if so, it elevates the execution mode to the

privileged mode and returns to the original context. If it was not from an authorized

location, then it passes the request on to the original handler without elevating the

privilege, i.e., it denies the request silently. The compiler identifies each restricted

operation and prepends it with a call to the SVC handler and, immediately after

the restricted operation, adds instructions that drop the execution privileges. Thus,

each restricted operation executes in privileged mode and then immediately returns

to unprivileged mode.

The restrictions in the way MPU configuration can be specified, creates challenges

for EPOXY. The MPU is restricted to protecting blocks of memory of size at least

32 Bytes, and sometimes these blocks include both memory-mapped registers that

must be protected to ensure system integrity, and those which need to be accessed for

correct functionality. For example, the Vector Table Offset Register (VTOR) and the

Application Interrupt and Reset Control Register (AIRCR) are immediately adjacent

to each other in one 32 Byte region. The VTOR is used to point to the location of the

interrupt vector table and is thus a security critical register, while the AIRCR is used

(among other things) for the software running on the device to request a system reset

(say, to reload a new firmware image) and is thus not security critical. There is no

way to set permissions on the VTOR without also applying the same permissions to

the AIRCR. EPOXY overcomes this restriction by adding accesses to the AIRCR to

the privilege overlay, thus elevating accesses whenever the AIRCR is being accessed.
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2.4.3 Identifying Restricted Operations

To identify restricted operations we utilize static analysis and optionally, source

code annotations by the developer. Using static analysis enables the compiler to

identify many of the restricted operations, reducing the burden on the developer. We

use two analyses to identify restricted operations; one for restricted instructions and a

second to identify restricted memory accesses. Restricted instructions are defined by

the Instruction Set Architecture (ISA) and require execution in privileged mode. For

the ARMv7-M architecture these are the CPS and MSR instructions, each of which

controls specific flags in the program status register, such as enabling or disabling

interrupt processing. These privileged instructions are identified by string matching

during the appropriate LLVM pass. Identifying restricted memory accesses however

is more challenging.

An important observation enables EPOXY to identify most restricted accesses.

In our case, the memory addresses being accessed are memory-mapped registers.

In software, these accesses are reads and writes to fixed addresses. Typically, a

Hardware Abstraction Layer (HAL) is used to make these accesses. Our study of

HAL’s identified three patterns that cover most accesses to these registers. The first

pattern uses a macro to directly access a hard-coded address. The second pattern

uses a similar macro and a structure to access fixed offsets from a hard-coded address.

The last pattern uses a structure pointer set to a hard-coded address. All use a hard-

coded address or fixed offsets from them. The use of hard-coded addresses, and fixed

offsets from them, are readily identifiable by static analysis.

Our static analysis uses backward slicing to identify these accesses. A backward

slice contains all instructions that affect the operands of a particular instruction. This

enables identifying the potential values of operands at a particular location in a pro-

gram. We limit our slices to a single function and examine only the definitions for

the address operand of load and store operations. Accesses to sensitive registers are

identified by checking if the address being accessed is derived from a constant address.
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This static analysis captures many of the restricted memory accesses; however, not all

accesses can be statically identified and manual annotations (likely by the developer)

are required in these cases. Note that we observed few annotations in practice and

most are generic per hardware platform, i.e., they can be provided by the manufac-

turer. This primarily occurs when memory-mapped registers are used as arguments

in function calls or when aliasing of memory-mapped registers occurs. Aliasing oc-

curs when the register is not directly referenced, but is assigned to a pointer, and

multiple copies of that pointer are made so that the register is now accessible via

many different pointers. These point to two limitations of our current static analysis.

Our backward slicing is limited to a single function and with some bounded engineer-

ing effort, we can expand it to perform inter-procedural analysis. To overcome the

second limitation though requires precise alias analysis, which is undecidable in the

general case [9]. However, embedded programs—and specifically access to memory

mapped registers—are constrained in their program structures reducing the concern

of aliasing in this domain.

2.4.4 Modified SafeStack

EPOXY defends against control-flow hijacking attack by employing SafeStack [10],

modified to bare-metal systems. SafeStack is a protection mechanism that uses static

analysis to move local variables which may be used in an unsafe manner to a separate

unsafestack. A variable is unsafe if it may access memory out-of-bounds or if it

escapes the current function. For example, if a supplied parameter is used as the

index of an array access, the array will be placed on the unsafestack. It utilizes virtual

addressing to isolate the unsafestack from the rest of the memory. By design, return

addresses are always placed on the regular stack because they have to be protected

from illegal accesses. SafeStack ensures that illegal accesses may only happen on

items on the unsafestack. In addition to its security properties, Safestack has low

runtime overhead (generally below 1% [10] §5.2) and a deterministic impact on stack
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sizes makes it a good fit for bare-metal systems. The deterministic impact means—

assuming known maximum bounds for recursion—the maximum size for both the

regular and unsafestack is fixed and can be determined a priori. Use of recursion

without knowing its bounds is bad design for bare-metal systems.

While the low runtime overhead of SafeStack makes it suitable for bare-metal

systems, it needs an isolated memory region to be effective. The original technique,

deployed on Intel architectures, relied on hardware support for isolation (either seg-

mentation or virtual memory) to ensure low overhead. For example, it made the safe

region accessible through a dedicated segment register, which is otherwise unused,

and configured limits for all other segment registers to make the region inaccessible

through them (on x86). Such hardware segment registers and hardware protection

are not available in embedded architectures. The alternate pure software mechanism

based on Software Fault Isolation [29] would be too expensive for our embedded ap-

plications because it requires that all memory operations in a program are masked.

While on some architectures with a large amount of (virtual) memory, this instru-

mentation can be lightweight (e.g., a single and operation if the safe region occupies a

linear part of the address space – encoded in a mask, resulting in about 5% overhead),

here masking is unlikely to work because the safe region will occupy a smaller and

unaligned part of the scarce RAM memory.

Therefore, to apply the SafeStack principle to bare-metal systems, we place the

unsafestack at the top of the RAM, and make the stack grow up, as shown in Fig-

ure 2.4a. We then place a guard between the unsafestack and the other regions in

RAM, shown as the black region in the figure. This follows best practices for em-

bedded systems to always grow a stack away from other memory regions. The guard

is created as part of the MPU configurations generated by the compiler. The guard

region is inaccessible to both privileged and unprivileged code (i.e., privileges are

(P-,W-,XN)). Any overflow on the unsafestack will cause a fault either by accessing

beyond the bounds of memory, or trying to access the guard region. It also prevents

traditional stack smashing attacks because any local variable that can be overflown
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will be placed on the unsafestack while return addresses are placed on the regular

stack. Our design for the first time provides strong stack protection on bare-metal

embedded systems.

2.5 Implementation

2.5.1 Access Controls

We developed a prototype implementation of EPOXY, building on LLVM 3.9 [30].

In our implementation, access controls are specified using a template. The template

consists of a set of regions that map to MPU region configurations (see Section 2.3.3

for the configuration details). Due to current hardware restrictions, a maximum of

8 regions are supported. Our basis template uses five regions as shown in Table 2.1.

Region 0 encodes default permissions. Using region 0 ensures all other regions over-

ride these permissions. We then use the highest regions and work down to assign

permissions to ensure that the appropriate permissions are enforced. Region 7 is used

to enforce W ⊕ X on executable memory. This region covers both the executable

memory and its aliased addresses starting at address 0. The three remaining regions

(4-6) can be defined in any order and protect the SCB, alias control register, and the

unsafestack guard.

The template can be modified to accommodate system specific requirements, e.g.,

changing the start address and size of a particular region. For example, the two micro-

controllers used for evaluation place the alias control register at different physical

addresses. Thus, we modified the start address and size for each micro-controller.

Regions 1-3 are unused and can be used to protect sensitive IO that is application

specific. To do this, the start address and size cover the peripheral and permissions

are set to (P-RW,U-RW,XN). The addresses for all peripherals are given in micro-

controller documentation provided by the vendor. The use of the template enables

system specific access controls to be placed on the system. It also decouples the

development of access control mechanisms and application logic.
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Table 2.1.
The MPU configuration used for EPOXY. For overlapping regions the
highest numbered region (R) takes effect.

R Permissions Start Addr Size Protects
0 P-RW,U-RW,XN 0x00000000 4GB Default
4 None Varies 32B unsafestack Guard
5 P-RW,U-R,XN 0xE000E000 4KB SCB
6 P-RW,U-R,XN 0x40013800 512B Alias. Ctrl. Reg
7 P-R,U-R,X 0x00000000 256MB Executable Code
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We implemented a pass in LLVM that generates code to configure the MPU based

on the template. The code writes the appropriate values to the MPU configuration

registers to enforce the access controls given in the template, and then reduces exe-

cution privileges. The code is called at the very beginning of main. Thus all of main

and the rest of the program executes with reduced privileges.

2.5.2 Privilege Overlays

Privileged overlay mechanisms (i.e., privilege elevation and restricted operation

identification) are implemented using an LLVM pass. To elevate privileges two com-

ponents are used. They are a privilege requester and a request handler. Requests are

made to the handler by adding code which performs the operations around restricted

operations, as shown in Algorithm 1. This code saves the execution state and executes

a SVC (SVC FE) to elevate privileges. The selected instructions are then executed

in privileged mode, followed by a code sequence that drops privileges by setting the

zero bit in the control register. Note that this sequence of instructions can safely be

executed as part of an interrupt handler routine as interrupts execute with privileges

and, in that mode, the CPU ignores both the SVC instruction and the write to the

control register.

The request handler intercepts three interrupt service routines and implements

the logic shown in Algorithm 2. The handler stores register state (R0-R3 and LR

– the remaining registers are not used) and checks that the caller is an SVC FE

instruction. Authenticating the call site ensures that only requests from legitimate

locations are allowed. Due to W ⊕X, no illegal SVC FE instruction can be injected.

If the interrupt was caused by something other than the SVC FE instruction the

original interrupt handler is called.

The request handler is injected by the compiler by intercepting three interrupt

handlers. These are: the SVC handler, the Hard Fault handler, and the Non Maskable

Interrupt handler. Note that executing an SVC instruction causes an interrupt. When
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Algorithm 1 Procedure used to request elevated privileges
1: procedure Request Privileged Execution
2: Save Register and Flags State
3: if In Unprivileged Mode then
4: Execute SVC FE (Elevates Privileges)
5: end if
6: Restore Register and Flags
7: Execute Restricted Operation
8: Set Bit 0 of Control Reg (Reduces Privileges)
9: end procedure

Algorithm 2 Request handler for elevating privileges
1: procedure Handle Privilege Request
2: Save Process State
3: if Interrupt Source == SVC FE then
4: Clear bit 0 of Control Reg (Elevates Privileges)
5: Return
6: else
7: Restore State
8: Call Original Interrupt Handler
9: end if

10: end procedure

interrupts are disabled the SVC results in a Hard Fault. Similarly, when the Fault

Mask is set all interrupt handlers except the Non-Maskable Interrupt handler are

disabled. If an SVC instruction is executed when the fault mask is set it causes

a Non-Maskable Interrupt. Enabling and disabling both interrupts and faults are

privileged operations, thus all three interrupt sources need to be intercepted by the

request handler.

Privileged requests are injected for every identified restricted operation. The static

analyses used to identify restricted operations are implemented in the same LLVM

pass. It adds privilege elevation request to all CPS instructions, and all MSR in-

structions that use a register besides the APSR registers. These instructions require

execution in privileged mode. To detect loads and stores from constant addresses we

use LLVM’s use-def chains to get the back slice for each load and store. If the pointer

operand can be resolved to a constant address it is checked against the access controls
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applied in the MPU. If the MPU’s configuration restricts that access a privilege ele-

vation request is added around the operation. This identifies many of the restricted

operations. Annotations can be used to identify additional restricted operations.

2.5.3 SafeStack and Diversification

The SafeStack in EPOXY extends and modifies the SafeStack implemented in

LLVM 3.9. Our changes enable support for the ARMv7-M architecture, change the

stack to grow up, and use a global variable to store the unsafestack pointer. Stack

offsets are applied with global data randomization. Global data randomization is

applied using a compiler pass. It takes the amount of unused RAM as a parameter

which is then randomly split into five groups. These groups specify how much memory

can be used in each of the following regions: stack offset, data region, bss region,

unsafestack offset, and unused. The number of bytes added to each section is a

multiple of four to preserve alignment of variables on word boundaries. The data

and bss region diversity is increased by adding dummy variables to each region. Note

that adding dummy variables to the data regions increases the Flash used because

the initial values for the data section are stored as an array in the Flash and copied

to RAM at reset. However, Flash capacity on a micro-controller is usually several

times larger than the RAM capacity and thus, this is less of a concern. Further an

option can be used to restrict the amount of memory for dummy variables in the data

section. Dummy variables in the bss do not increase the amount of Flash used.

Another LLVM pass is used to randomize the function order. This pass takes

the amount of memory that can be dispersed throughout the text section. It then

disperses this memory between the function by adding trap functions to the global

function list. The global function list is then randomized, and the linker lays out

the functions in the shuffled order in the final binary. A trap function is a small

function which, if executed, jumps to a fault handler. These traps are never executed
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in a benign execution and thus incur no runtime overhead but detect unexpected

execution.

2.6 Evaluation

We evaluate the performance of EPOXY with respect to the design goals, both

in terms of security and resource overhead. We first evaluate the impact on runtime

and energy using a set of benchmarks. We then use three real-world IoT applications

to understand the effects on runtime, energy consumption, and memory usage. Next,

we present an evaluation of the effectiveness of the security mechanisms applied in

EPOXY. This includes an evaluation of the effectiveness of diversification to defeat

ROP-based code execution attacks and discussion of the available entropy. We com-

plete our evaluation by comparing our solution to FreeRTOS with respect to the three

IoT applications.

Several different kinds of binaries are evaluated for each program using different

configurations of EPOXY these are: (1) unmodified baseline, (2) privilege overlays

(i.e., applies privilege overlaying to allow the access controls to protect system regis-

ters and apply W⊕X.), (3) SafeStack only, and (4) fully protected variants that apply

privileged overlaying, SafeStack, and software diversity. We create multiple variants

of a program (20 is the default) by providing EPOXY a unique diversification seed.

All binaries were compiled using link time optimization at the O2 level.

We used two development boards for our experiments the STM32F4Discovery

board [31] and the STM32F479I-Eval [32] board. Power and runtime were measured

using a logic analyzer sampling execution time at 100Mhz. Each application triggers

a pin at the beginning and at the end of its execution event. A current sensor with

power resolution of 0.5 µW was attached in series with the micro-controller’s power

supply enabling only the power used by the micro-controller to be measured. The

analog power samples were taken at 125 KHz, and integrated over the execution time

to obtain the energy consumption.
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2.6.1 Benchmark Performance Evaluation

To measure the effects of our techniques on runtime and energy we use the BEEBs

benchmarks [33]. The BEEBs’ benchmarks are a collection of applications from

MiBench [34], WCET [35] and DSPstone [36] benchmarks. They were designed and

selected to measure execution performance and energy consumption under a variety

of computational loads. We selected the 75 (out of 86) BEEBs’ benchmarks that exe-

cute for longer than 50,000 clock cycles, and thus, providing a fair comparison to real

applications. For reference, our shortest IoT application executes over 800,000 clock

cycles. Each is loaded onto the Discovery board and the logic analyzer captures the

runtime and energy consumption for 64 iterations of the benchmark for each binary.

Table 2.2.: The runtime and energy overheads for

the benchmarks executing over 2 million clock cycles.

Columns are SafeStack only (SS), privilege overlay only

(PO), and all protections of EPOXY applied, averaged

across 20 variants (All), and the number of clock cycles

each benchmark executed, in millions of clock cycles. Av-

erage is for all 75 benchmarks

% Runtime %Energy Clk

Benchmark SS PO All SS PO All

crc32 0.0 0.0 2.9 -0.1 -0.6 2.5 2.2

sg..insearch 0.0 0.2 -1.0 -0.2 -0.9 0.5 2.2

ndes 2.9 -0.2 1.3 2.4 1.2 3.4 2.4

levenshtein 1.5 0.0 3.0 1.7 0.8 3.8 2.6

sg..quicksort -2.3 0.0 -1.4 -2.8 -0.5 -0.3 2.7

slre -1.5 -0.3 5.3 -2.0 -0.3 8.1 2.9

sgl..htable -0.6 0.0 2.0 -1.0 -0.7 3.4 2.9

continued on next page
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Table 2.2.: continued

% Runtime %Energy Clk

Benchmark SS PO All SS PO All

sgl..dllist -0.6 0.0 0.7 0.3 -0.1 2.6 3.7

edn 0.0 -0.1 0.8 1.9 1.5 4.2 3.8

sg..insertsort -0.3 0.0 1.7 -0.1 -1.6 1.6 3.9

sg..heapsort 0.0 0.0 -0.5 -0.1 1.4 1.9 4.0

sg..queue -7.3 0.0 -7.3 -4.2 -0.9 -3.4 4.6

sg..listsort -0.4 0.0 0.7 -0.1 -0.5 2.4 4.9

fft 0.0 0.4 0.4 -0.1 0.6 -0.3 5.1

bubblesort 0.0 0.0 1.7 -0.1 1.0 2.6 6.8

matmult int 0.0 0.0 1.2 -0.1 -0.4 0.7 6.8

adpcm 0.0 0.1 -0.4 0.1 2.3 0.6 7.3

sglib rbtree -0.2 -0.1 2.4 0.1 -0.7 3.7 7.4

mat..float 0.0 0.6 0.7 0.0 0.1 1.2 8.6

frac 1.6 2.0 1.7 2.4 2.8 4.0 9.9

st 0.0 0.1 0.4 -0.9 -0.3 1.2 19.0

huffbench 1.3 0.0 1.5 7.3 1.2 4.5 20.9

fir -1.0 -1.0 1.7 -2.0 1.5 3.1 21.0

cubic -0.2 0.2 0.1 0.0 -0.2 0.6 30.1

stb perlin 0.0 -1.3 0.0 0.0 -3.0 0.4 31.6

mergesort -0.2 0.5 2.1 -1.0 -0.4 3.1 44.0

qrduino 0.0 0.0 -1.2 -0.1 -0.7 -0.6 46.0

picojpeg 0.0 -0.4 -2.4 0.0 0.0 0.2 54.3

blowfish -0.4 0.0 -1.3 1.4 -1.3 0.5 56.9

dijkstra 0.0 -0.1 -8.7 -0.1 0.0 -7.3 70.5

rijndael -1.1 0.0 0.1 -0.6 -0.4 2.0 94.9

continued on next page
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Table 2.2.: continued

% Runtime %Energy Clk

Benchmark SS PO All SS PO All

sqrt 0.0 2.1 1.4 0.0 1.8 2.1 116.2

whetstone -0.4 -0.3 0.1 0.8 0.3 1.6 135.5

nbody 1.1 1.1 0.4 0.9 0.9 2.5 139.0

fasta 0.0 0.0 0.4 0.1 0.4 1.2 157.1

wikisort 0.3 0.9 2.1 0.2 0.1 3.0 179.6

lms 0.0 0.1 0.6 -0.1 0.3 0.2 225.2

sha -3.5 0.0 -3.7 -1.3 -0.2 0.2 392.9

Average 0.1 0.1 1.1 0.2 -0.2 2.5 26.3

Across the 75 benchmarks the average overhead is 1.6% for runtime and 1.1% for

energy. The largest increase is on cover 14.2% runtime, 17.9% energy and largest

decrease on compress (-11.7% runtime, -10.2% energy). ctl stack is the only other

benchmark that has a change in runtime (13.1%) or energy (15.8%) usage that ex-

ceeds ±10%. Table 2.2 shows the runtime and energy overheads for the benchmarks

executing over 2 million clock cycles. The remaining benchmarks are omitted for

space. We find runtime is the biggest factor in energy consumption—the Spearman’s

rank correlation coefficient is a high 0.8591.

The impact on execution time can be explained by the application of SafeStack

(e.g., sg..queue in Table 2.2) and diversification. Modest improvements in execution

time were found by the creators of SafeStack ( [10] §5.2), the primary cause being im-

provements in locality. Likewise, our improvements come from moving some variables

to the unsafestack. These typically tend to be larger variables like arrays. This in-

creases the locality of remaining variables on the regular stack and enables them to be

addressed from offsets to the stack pointer, rather than storing base addresses in reg-

isters and using offsets from these. This frees additional registers to store frequently
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used variables, thus reducing register spilling, and consequent writes and reads to

the stack, thereby improving execution time. The impact of the privilege overlay on

the running time is minimal because these benchmarks have few restricted operations

in them and the setups due to EPOXY (such as MPU configuration) happen in the

startup phase which is not measured for calculating the overhead.

Diversification changes execution time in two ways. The first is locality of func-

tions and variables relative to each other. Consider separately the case of a control-

flow transfer and a memory load/store. When a control-flow transfer is done (say

a branch instruction) and the target is close by, then the target address is created

relative to the PC and control flow is transferred to that address (1 instruction). On

the other hand, if the target address is farther off, then a register is loaded with the

address (2 instructions) and control transferred to the content of the register (1 in-

struction). Sometimes diversification puts the callee and called function farther apart

than in the baseline in which case the more expensive operation is used. In other

cases the opposite occurs, enabling less expensive (compared to the baseline) control

transfer to be used. Similarly, when a memory load (or store) is done from a far off

location, a new register needs to be loaded with the address and then the location

accessed (3 instructions), while if it were to a location near an address already in a

register, then it can be accessed using an offset from that register as the base address

(1 instruction). The dispersed accesses also uses more registers, increasing register

pressure.

Another effect of diversification is even more subtle and architecture specific. In

our target ARM architecture, when a caller invokes a function, general-purpose reg-

isters R0-R3 are assumed to be used and overwritten by the callee function and

therefore the compiler does not need to save the values of those registers in the callee

context. Thus the compiler gives preference to using R0-R3 when allocating registers.

Due to our register randomization this preference is not always followed, and other

general purpose registers (R4-R13) are used more often than they are in the baseline

case. When R4-R13 are used they first must be saved to, and restored from the
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stack, decreaseing performance. To partially alleviate this performance hit, EPOXY

in its register randomization favors the use of the registers R0-R3 in the callee func-

tion through a non-uniform stochastic process, but does not deterministically enforce

this. Reassuringly, the net effect from all the instances of the diversification is only a

small increase in the runtime—a worst case of 14.7% and an average of 1.1% across

all the benchmark applications.

2.6.2 Application Performance Evaluation

Benchmarks are useful for determining the impact of our techniques under con-

trolled conditions. To understand the overall effects on realistic applications, we use

three representative IoT applications. Our first program, PinLock, simulates a simple

IoT device like a door lock. It requests a four digit pin be entered over a serial port.

Upon reception the pin is hashed, using SHA1, and compared to a precomputed hash.

If the hashes match, an LED is turned on, indicating the system is unlocked. If an

incorrect pin is received the user is prompted to try again. In this application the IO

is restricted to privileged mode only, thus each time the lock is unlocked, privileged

execution must first be obtained. This demonstrates EPOXY’s ability to apply ap-

plication specific access controls. We repeatedly send an incorrect pin followed by the

correct pin and measure time between successful unlocks. The baud rate (115,200

max standard rate) of the UART communications is the limiting factor in how fast

login attempts are made.

We also use two vendor applications provided with the STM32F479I-Eval board.

The FatFS-uSD program implements a FAT file system on a micro-SD card. It creates

a file on the SDCard, writes 1KB of data to the file and then reads back the contents

and checks that they are the same. We measure the time it takes to write, read and

verify the file. The TCP-Echo application implements a TCP/IP stack and listens

for a packet on the Ethernet connection. When it receives a packet it echoes it back

to the receiver. We measure the time it takes to send and receive 1,000 packets, with
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requests being sent to the board fast enough to fully saturate the capabilities of the

STM32F479I-Eval board (i.e., computation on the board is the limiting factor in how

fast packets are sent and received).

For each of the three applications we create the same set of binaries used for the

benchmarks: baseline, SafeStack only, privilege overlay only, and 20 variants with all

protections of EPOXY. To obtain runtime and energy consumption we average 10

executions of each binary. Percent increase relative to the baseline binary is taken

for each binary. The average runtime overhead is 0.7% for PinLock, 2.4% for FatFS-

uSD, and 2.1% for TCP-Echo. Figure 2.5a shows the execution time overheads as a

whisker plot. In the worst case among all executions of all applications protected with

EPOXY, the runtime overhead is 6.5% occurring on TCP-Echo. Again we see energy

consumption is closely related to execution time. Each application’s average energy

overheads are: −2.9% for PinLock, 2.6% for FatFS-uSD and 1.8% for TCP-Echo.

Figure 2.5b shows the energy consumption overheads, with a noticeable difference:

PinLock has a very tight runtime distribution, and a relatively wide energy distribu-

tion. This application is IO bound and the application is often waiting to receive a

byte over the serial port, due to the slow serial connection, causing the time varia-

tion to be hidden. However, the changed instruction mix due to EPOXY still causes

variation in energy overhead.

Changes in memory usage are shown in Table 2.3. It shows the averages of increase

to code (text section), global data (data and bss sections), and stack usage for the

20 variants of each application. SafeStack, privilege overlaying, and diversification

can all affect the code size. SafeStack increases the code size by requiring additional

instructions to manage a second stack, privilege overlaying directly injects new code,

and as discussed previously diversification can cause the compiler to emit varying

code. In all, we find that all the three applications needed less than 3,390 additional

bytes for code. For PinLock (the smallest application) which has a baseline text

size of 11,788 bytes, the additional 3,390 bytes would still fit in 16KB Flash, thus

the same micro-controller could be used with EPOXY’s protections. Impacts on
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Fig. 2.5. Box plots showing percent increase in execution time (a) and en-
ergy (b) for the three IoT applications. The diamond shows the SafeStack
only binary, and the star shows the privilege overlay only binary.
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Table 2.3.
Increase in memory usage for the IoT applications from applying all of
EPOXY’s protections.

Stack
App Text Global Data SafeStack Priv. Over.
PinLock 3,390 (29%) 14.6 (1%) 104 (25%) 0
FatFs-uSD 2,839 (12%) 18.2 (1%) 128 (3%) 36 (1%)
TCP-Echo 3,249 (8%) 7.2 (0%) 128 (29%) 0

data are caused by SafeStack (4 bytes for the unsafestack pointer), and a few bytes

added to preserve alignment of variables. The majority of the increase in stack size

come from applying SafeStack. It accounts for all the increase in PinLock and 128

bytes in both FatFS-uSD and TCP-Echo. SafeStack increases the stack requirements,

because splitting the stack requires memory for the sum of the execution paths with

the deepest regular stack and the deepest unsafestack across all possible execution

paths. In comparison, for the baseline, which has a single stack, only memory for

the deepest execution path is required. Privilege overlays may also require additional

memory—to save and restore state while elevating privileges—but extra memory is

only needed when it increases the stack size of the deepest execution path. Thus,

additional memory, beyond SafeStack is not needed for PinLock or TCP-Echo.

From the performance and memory usage requirements we find that EPOXY’s

protections operate within the non-functional constraints of runtime, energy con-

sumption and memory usage. It also greatly reduces the burden on the developer.

For all BEEBs benchmarks, FatFS-uSD, and TCP-Echo (77 applications in all), a

total of 10 annotations were made. These annotations were all made in ARM’s CM-

SIS library—a C-language Hardware Abstraction Library (HAL) for common ARM

components—which is shared across the 77 applications. PinLock required an ad-

ditional 7 annotations to protect its IO. We envision HAL writers could provide

pre-annotated libraries, further reducing the burden on developers. The annotations

were all required because offsets were passed as arguments to functions and a store
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was done by adding the offset to a constant address. Extending our analysis to be

inter-procedural will allow the compiler to handle these cases and remove the need

for manual annotation. Our compiler elevated 35 (PinLock), 31(FatFs-uSD), and 25

(TCP-Echo) operations on the IoT applications.

2.6.3 Security Evaluation

EPOXY meets the design goals for usability and performance, but does it provide

useful protection? First, EPOXY enables the application of W ⊕ X, a proven pro-

tection against code injection and is foundational for other protections. Our W ⊕X

mechanism also protects against attacks which attempt to bypass or disable W ⊕X

by manipulating system registers using a write-what-where vulnerability. EPOXY

incorporates an adapted SafeStack, which provides effective protection against stack

smashing and ROP attacks by isolating potentially exploitable stack variables from

return addresses. While the security guarantees of the first two are deterministic, or

by design, that of the last one is probabilistic and we evaluate its coverage.

Verifier

Each restricted operation is granted privileged execution, and in its original con-

text this is desired and necessary. However, if the restricted operation is executed as

part of a code reuse attack, the elevated privilege could undermine the security of the

embedded system. To gain insight into the risk posed by the privilege overlays, we

measure for each of the three IoT applications, how many overlays occur, how many

instructions are executed in each, and how many have externally defined registers

(external to the privilege overlay) that are used for addressing within the overlay. We

wrote a verifier, which parses the assembly code of the application and identifies all

privilege overlays. The results for the 20 variants of the IoT applications are shown in

Table 2.4. It shows that the number of privilege overlays is small and that on average

5 to 7 instructions are executed within each. This results in a small attack surface
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and is a sharp reduction relative to the current state-of-practice in which the entire

execution is in privileged mode.

Diversification

To further mitigate code reuse attacks and data corruption attack, EPOXY uses

diversification for function locations in the code, data, and registers. This also pro-

vides protection against Data-oriented programming using global variables. Ulti-

mately the amount of diversity available is constrained by the amount of memory.

Our diversification strategies distribute any unused memory within the data, bss, and

text regions. Let S denote the amount of slack memory and R denote the size of the

region (any one of the three above, depending on which kind of diversification we

are analyzing). For the text region S is the amount of unused Flash, and for the

data and bss regions S is the amount of unused RAM. Then the total amount of

memory available for diversifying any particular region is R + S—say for the global

data region, the variable can be placed anywhere within R and the slack memory S

can be split up and any piece “slid” anywhere within the data region. Since each is

randomized by adding variables or jump instructions with a size of 4 bytes the total

number of locations for a pointer is (R + S)/4.

Let us consider PinLock, our smallest example. It uses 2,376 bytes of RAM and

would require a part with 4,096 bytes of RAM, leaving 1,720 bytes of slack. PinLock’s

Table 2.4.
Results of our verifier showing the number of privilege overlays (PO),
average number of instructions in an overlay (Ave), maximum number
of instructions in an overlay (Max), and the number of privilege overlays
that use externally defined registers for addressing (Ext).

App PO Ave Max Ext
PinLock 40 7.0 53 15
FatFs-uSD 31 5.0 20 0
TCP-Echo 25 5.2 20 0



42

data section is 1,160 bytes, thus a four byte pointer can have 720 locations or over

9 bits of entropy. This exceeds Linux’s kernel level ASLR (9 bits, [37] Section IV),

and unlike Linux’s ASLR, disclosure of one variable does not reveal the location of

all others. The text region is 11,788 bytes which means at least 16KB of Flash

would be used. Since all Flash can be used except the region used for storing initial

values for the data region (maximum of 1,556 bytes in PinLock), the text section can

be diversified across 15,224 bytes. This enables approximately 3,800 locations for a

function to be placed, which translates to entropy of just under 12 bits. Entropy is

ultimately constrained due to the small size of memory but, similar to kernel ASLR,

an attacker cannot repeatedly guess as the first wrong guess will raise a fault and

stop the system.

ROP analysis

To understand how diversity impacts code reuse attacks we used the ROPgad-

get [25] ROP compiler. This tool disassembles a binary and identifies all the available

ROP gadgets. A ROP gadget is a small piece of code ending in a return statement.

It provides the building block for an attacker to perform ROP attacks. ROP attacks

are a form of control hijack attacks which utilize only the code on the system, thus

bypassing code integrity mechanisms. By chaining multiple gadgets together, arbi-

trary (malicious) execution can be performed. By measuring surviving gadgets across

different variants we gain an understanding of how difficult it is for an attacker to

build a ROP attack for a large set of binaries.

For each of the three applications, we identify gadgets individually in each of 1,000

variants. Each variant had all protections applied. To obtain the gadgets, ROPgadget

parsed each file and reported all gadgets it found including duplicates. ROPgadget

considers a duplicate to be the same instructions but at a different location, by includ-

ing these we ensure that gadgets have the best chance of surviving across variants.

The number of gadgets located at the same location with the same instructions were
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Table 2.5.
Number of ROP gadgets for 1,000 variants the IoT applications. Last
indicates the largest number of variants for which one gadget survives.

Num. Surviving
App Total 2 5 25 50 Last
PinLock 294K 14K 8K 313 0 48
FatFs-uSD 1,009K 39K 9K 39 0 32
TCP-Echo 676K 22K 9K 985 700 107

then counted across the 1,000 variants. To define the metric “number of gadgets

surviving across x variants” consider a gadget that is found at the same location and

with the identical instructions across all x variants. Count up all such gadgets and

that defines the metric. This is a well-used metric because the adversary can then

rely on the gadget to craft the control-flow hijacking attack across all the x variants.

Clearly, as x goes up, this metric is expected to decrease. Table 2.5 shows the number

of gadgets that survived across a given number of variants. To interpret this, consider

that for the column “2”, this number is the count of gadgets which survived across

2 or more variants of the program. The last remaining gadget survived across 48

variants of PinLock, only 32 variants of FatFS-uSD, and 107 variants of TCP-Echo.

If a ROP attack only needs the single gadget which survives across the maximum

number of variants—an already unlikely event—it would work on just over 10% of all

variants. This shows that our code diversification technique can successfully break

the attacker’s ability to use the same ROP attack against a large set of binaries.

2.6.4 Comparison to FreeRTOS

Porting an application to FreeRTOS-MPU could provide some of the protections

EPOXY provides. Compared to EPOXY, FreeRTOS-MPU does not provide W ⊕X

or code reuse defenses. FreeRTOS-MPU provides privilege separation between user

tasks and kernel task.
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User tasks running in unprivileged mode can access their stack and three user

definable regions if it wishes to share some data with another user mode task. A

kernel task runs in privileged mode and can access the entire memory map. A user

task that needs to perform a restricted operation can be started in privileged mode

but then the entire execution of the user task will be in privileged mode. If the

privilege level is dropped, then it cannot be elevated again for the entire duration of

the user task, likely a security feature in FreeRTOS-MPU.

We compare our technique to using FreeRTOS-MPU by porting PinLock to

FreeRTOS-MPU. The vendor, STMicroelectronics, provided equivalent applications

for FatFS-uSD and TCP-Echo that use FreeRTOS; we added MPU support to these

application. This required: 1) Changing linker and startup code of the application

to be compatible with the FreeRTOS-MPU memory map. 2) Changing the existing

source code to use FreeRTOS-MPU specific APIs. 3) If any part of a task required

a privileged operation, then the entire task must run with full privileges (e.g., task

initializing TCP stack).

Table 2.6 shows the code size, RAM size, number of instructions executed and the

number of privileged instructions for each application using EPOXY and FreeRTOS-

MPU. The number of instructions executed (Exe) is the number of instructions exe-

cuted for the whole application to completion. Privileged instructions (PI) describe

which of these instructions execute in privileged mode. Both are obtained using the

Debug Watch and Trace unit provided by ARM [28]. The results for EPOXY are

averaged over 100 runs across all 20 variants with 5 runs per variant, and FreeRTOS-

MPU’s are averaged over 100 runs. It is expected that the total number of instruction

to be comparable as both are running the same applications. However, EPOXY uses

an average of only 0.06% of privileged instructions FreeRTOS-MPU uses. This is

because EPOXY uses a fine-grained approach to specify the privileged instructions,

while FreeRTOS-MPU sets the whole task as privileged. A large value for PI is

undesirable from a security standpoint because the instruction can be exploited to
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Table 2.6.
Comparison of resource utilization and security properties of FreeRTOS-
MPU(FreeRTOS) vs. EPOXY showing memory usage, total number of
instructions executed (Exe), and the number of instructions that are priv-
ileged (PI).

App Tool Code RAM Exe PI

PinLock
EPOXY 16KB 2KB 823K 1.4K
FreeRTOS 44KB 30KB 823K 813K

FatFs-uSD
EPOXY 27KB 12K 33.3M 3.9K
FreeRTOS 58KB 14KB 34.1M 33.0M

TCP-Echo
EPOXY 43KB 35KB 310.0M 1.5K
FreeRTOS 74KB 51KB 321.8M 307.0M

perform security-critical functions, such as, turning off the MPU thereby disabling all

(MPU-based) protections.

2.7 Related Work

Our work uses our novel privilege overlays, to enable established security policies

from the desktop world for bare-metal embedded systems. We also customize several

of these protections to the unique constraints of bare-metal systems. Modern desktop

operating systems such as Windows, Linux, and Mac OS X protect against code injec-

tion and control-flow hijack attacks through a variety of defenses, such as DEP [38],

stack canaries [15], Address Space Layout Randomization [17], and multiple levels of

execution privileges.

The research community has expended significant effort in developing defenses

for control-flow hijacking and data corruption. These works include: Artificial Di-

versity [18, 39–47], Control-Flow Integrity (CFI) [19, 20, 48–51], and Code Pointer

Integrity (CPI) [10]. Artificial Diversity [39] outlines many techniques for creating

functionally equivalent but different binaries and how they may impact the ability

for attacks to scale across applications. A recent survey [18] performs an in-depth

review of the 20+ years of work that has been done in this area. Artificial software



46

diversity is generally grouped by how it is applied, by a compiler [27,40–45,52] or by

binary rewriting [46, 47]. With the exceptions of [27, 44, 52] these works target the

applications supported by an OS, and assume virtual address space to create large

entropy. Mclaughlin et al. [52] propose a firmware diversification technique for smart

meters, using compiler rewriting. They give analytically results on how it would slow

attack propagation through smart meters. They give no analysis with respect to exe-

cution time overhead or energy consumption. Giuffrida et al. [44] diversify the stack

by adding variables to stack frames, creating a non-deterministic stack size which

is not suitable for embedded systems. EPOXY applies compile-time diversification

and utilizes techniques appropriate to their constraints. Braden et al. [27] focus on

creating memory leakage resistant applications without hardware support. They use

an approach based on SFI to prevent disclosure of code that has been randomized

using fine-grained diversification techniques. Their approach assumes W ⊕X and is

compatible with MPUs. Our work provides a way to ensure enforcement of W ⊕X

automatically.

CFI uses control-flow information to ensure the targets of all indirect control-flow

transfers end up at valid targets. CFI faces two challenges: precision and performance.

While the performance overhead has been significantly reduced over time [51,53], even

the most precise CFI mechanism is ineffective if an attacker finds a code location that

allows enough gadgets to be reached, e.g., an indirect function call that may call the

function desired by the attacker [54, 55]. CFI with custom hardware additions has

been implemented on embedded systems [56] with low overhead. Our techniques only

require the commonly available MPU. CPI [10] enforces strict integrity of code point-

ers with low overhead but requires runtime support and virtual memory. However,

separate memory regions and MMU-based isolation are not available on bare-metal

embedded systems. We leverage SafeStack, an independent component of CPI that

protects return addresses on the stack, and adapt it to embedded systems without

virtual memory support.
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Embedded systems security is an important research topic. Cui and Stolfo [57]

use binary rewriting to inject runtime integrity checks and divert execution to these

checks; diversifying code in the process. Their checks are limited to checking static

memory via signatures and assumes DEP. Francillon et al. [16] use micro-controller ar-

chitecture extensions to create a regular stack and a protected return stack. EPOXY

also uses a dual stack, without additional hardware support. Firmware integrity at-

testation [58–61] uses either a software or hardware trust anchor to provide validation

that the firmware and or its execution matches a known standard. These techniques

can be used to enforce our assumption that the firmware is not tampered with at

installation. Some frameworks [21, 62–64] enable creation of isolated computational

environments on embedded systems. mbedOS [63] and FreeRTOS [21] are both em-

bedded operating systems which can utilize the MPU to isolate OS context from

application context. TyTan [62] and mbed µV isor [64] enable sandboxing between

different tasks of a bare-metal system. These require that an application be devel-

oped using its respective API. ARM’s TrustZone [65] provides hardware to divide

execution between untrusted and trusted execution environments. The ARMv7-M

architecture does not contain this feature.

2.8 Discussion

Real-time systems. The diversity techniques we employ introduce some non-

determinism between variants. This may make it unsuitable for real-time systems

with strict timing requirements. However, the variability is low (a few percent) mak-

ing our techniques applicable to wide ranges of devices, particularly IoT devices, as

they generally have soft real-time constraints. Investigation of the methods to fur-

ther reduce variability is an area of future work. This involves intrusive changes

to the compiler infrastructure to make its actions more deterministic in the face of

diversification.
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Protecting inputs and outputs. We demonstrated EPOXY’s ability to protect

the lock actuator on PinLock. Protecting the Ethernet and the SD interfaces is

conceptually the same—a series of reads and writes to IO registers. However, the HAL

for these interfaces makes use of long indirection chains, i.e., passing the addresses

of these registers as function parameters. Our current analysis does not detect these

accesses, and the complexity of the HAL makes manual annotation a daunting task.

Extending our analysis to be inter-procedural will allow us to handle these complex

IO patterns.

Use with lightweight OSs. EPOXY can be extended to apply its protections to

lightweight OSs, such as FreeRTOS. Our diversity techniques are directly usable as

they do not change any calling conventions. Privilege Overlays require the use of a

system call and care must be take to ensure one is reserved. Currently SVC FE is

used, an arbitrary choice, which can be changed to a compile-time parameter. Thus,

enabling the application of W ⊕X—assuming the OS does not use the MPU, which

typically is the case. To apply SafeStack, the only remaining protection, EPOXY

needs to know the number of threads created, and how to initialize each unsafestack.

This may be obtained by making EPOXY aware of the OS thread create functionality,

so it can be modified to setup both stacks. The OS’s context switch would also need

to be changed to save and restore separate unsafestack guards for each thread. With

these changes EPOXY could apply its defenses to systems using a lightweight OS.

2.9 Conclusion

Bare-metal systems typically operate without even basic modern security protec-

tions like DEP and control-flow hijack protections. This is caused by the dichotomy

inherent in bare-metal system development: all memory is executable and accessible

to simplify system development, but security principles dictate restricting some of

their use at runtime. We propose EPOXY, that uses a novel technique called privi-

lege overlaying to solve this dichotomy. It applies protections against code injection,
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control-flow hijack, and data corruption attacks in a system-specific way. A perfor-

mance evaluation of our prototype implementation shows that not only are these de-

fenses effective, but that they result in negligible execution and power overheads. The

open-source version of EPOXY is available at https://github.com/HexHive/EPOXY.
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3. ACES: AUTOMATIC COMPARTMENTS FOR

EMBEDDED SYSTEMS

Building off the principals in EPOXY, this chapter describes Automatic Compart-

ments for Embedded Systems (ACES), which enables creating multiple compartments

using a developer provided policy. It utilizes static and dynamic analysis to create

compartments that enforce least privileges and memory protection mechanisms on

bare-metal systems. The chapter first provides the motivation, and prerequisite back-

ground information for ACES. The design and implementation are then given followed

by an evaluation of its security properties, run-time overhead, and memory overhead.

This work was presented at the 27th USENIX Security Symposium in 2018 [66].

3.1 Introduction

The proliferation of the Internet of Things (IoT) is bringing new levels of connec-

tivity and automation to embedded systems. This connectivity has great potential

to improve our lives. However, it exposes embedded systems to network-based at-

tacks on an unprecedented scale. Attacks against IoT devices have already unleashed

massive Denial of Service attacks [1], invalidated traffic tickets [2], taken control of

vehicles [3], and facilitated robbing hotel rooms [4]. Embedded devices face a wide va-

riety of attacks similar to always-connected server-class systems. Hence, their security

must become a first-class concern.

We focus on a particularly vulnerable and constrained subclass of embedded sys-

tems – bare-metal systems. They execute a single statically linked binary image

providing both the (operating) system functionality and application logic without

privilege separation between the two. Bare-metal systems are not an exotic or rare

platform: they are often found as part of larger systems. For example, smart phones
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delegate control over the lower protocol layers of WiFi and Bluetooth to a dedicated

bare-metal System on a Chip (SoC). These components can be compromised to gain

access to higher level systems, as demonstrated by Google P0’s disclosure of vul-

nerabilities in Broadcom’s WiFi SoC that enable gaining control of a smartphone’s

application processor [8]. This is an area of growing concern, as SoC firmware has

proven to be exploitable [67–69].

Protecting bare-metal systems is challenging due to tight resource constraints

and software design patterns used on these devices. Embedded devices have limited

energy, memory, and computing resources and often limited hardware functionality to

enforce security properties. For example, a Memory Management Unit (MMU) which

is required for Address Space Layout Randomization [17] is often missing. Due to the

tight constraints, the dominant programming model shuns abstractions, allowing all

code to access all data and peripherals without any active mitigations. For example,

Broadcom’s WiFi SoC did not enable Data Execution Prevention. Even if enabled,

the entire address space is readable/writable by the executing program, thus a single

bug can be used to trivially disable DEP by overwriting a flag in memory.

Conventional security principles, namely, least privileges [70] or process isolation

are challenging to implement in bare-metal systems. Bare-metal systems no longer

focus on a dedicated task but increasingly run multiple independent or loosely related

tasks. For example, a single SoC often implements both Bluetooth and WiFi, where

neither Bluetooth nor WiFi needs to access the code and data of the other. However,

without isolation, a single bug compromises the entire SoC and possibly the entire

system [8].

While many bare-metal systems employ no defenses, there are ongoing efforts to

improve their security. EPOXY [11] demonstrated how DEP, diversity, and stack pro-

tections can be deployed on bare-metal systems. However, EPOXY does not address

the issue of least privileges or process isolation. MINION [71] uses the compiler and

dynamic analysis to infer thread-level compartments and uses the OS’s context switch

to change compartments. It uses a fixed algorithm to determine the compartments,
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Fig. 3.1. ACES’s development tool flow overview.

providing the developer no freedom in determining the best security boundaries for

their application. ARM’s Mbed µVisor [64] is a compartmentalization platform for

ARM Cortex-M series devices. µVisor enables the developer to create compartments

within a bare-metal application, thereby restricting access to data and peripherals

to subsets of the code. It requires the developer to manually partition data and

manage all communication between compartments. Compartments are restricted to

individual threads, and all code is always executable, since no compartmentalization

exists for code, only for data and peripherals. This results in a daunting challenge

for developers, while only achieving coarse-grained data/peripheral compartments.

We present ACES (Automatic Compartments for Embedded Systems), an exten-

sion to the LLVM compiler that enables the exploration of strategies to apply the

principle of least privileges to bare-metal systems. ACES uses two broad inputs—a

high level, generic compartmentalization policy and the program source code. Us-

ing these, it automatically applies the policy to the application while satisfying the

program’s dependencies (i.e., ensuring code can access its required data) and the un-

derlying hardware constraints. This enables the developer to focus on the high-level

policy that best fits her goals for performance and security isolation. Likewise, the
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automated workflow of ACES frees the developer from challenging implementation

issues of the security controls.

Our work breaks the coupling between the application, hardware constraints, and

the security policy, and enables the automatic enforcement of compartmentalization

policies. ACES allows the formation of compartments based on functionality, i.e.,

distinct functionality is separated into different compartments. It uses a piece of

hardware widely available in even the low-end embedded devices called the Memory

Protection Unit (MPU) to enforce access protections to different segments of memory

from different parts of code. ACES moves away from the constraint in MINION and

µVisor that an entire process or thread needs to be at the same privilege level. ACES

extends the LLVM tool-chain and takes the policy specification as user input, as

shown in Figure 3.1. It then creates a Program Dependence Graph (PDG) [72] and

transforms compartmentalization into a graph partitioning problem. The result of

the compilation pipeline is a secure binary that runs on the bare-metal device. We

evaluate three policies to partition five IoT applications. The results demonstrate

the ability to partition applications into many compartments (ranging from 14 to 34)

protecting the integrity of data and restricting code reuse attacks. The policies have

modest runtime overhead, on average 15.7% for the strongest policy.

In summary, our contributions are: (1) Integrity of code and data for unmodified

applications running on bare-metal embedded devices. (2) Automated enforcement

of security compartments, while maintaining program dependencies and respecting

hardware constraints. The created compartments separate code and data, on a sub-

thread level, breaking up the monolithic memory space of bare-metal applications.

(3) Use of a micro-emulator to allow selective writes to small data regions. This

eases restrictions on compartmentalization imposed by the MPU’s limited number

of regions and their size. (4) Separating the compartmentalization policy from the

program implementation. This enables exploration of security-performance trade-

offs for different compartmentalization policies, without having to rewrite application

code and handle low level hardware requirements to enforce the policy.
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3.2 Threat Model and Assumptions

We assume an attacker who tries to gain arbitrary code execution with access

to an arbitrary read/write primitive. Using the arbitrary read/write primitive, the

attacker can perform arbitrary malicious execution, e.g., code injection (in executable

memory) or code reuse techniques (by redirecting indirect control-flow transfers [73]),

or directly overwrite sensitive data. We assume that the software itself is trustworthy

(i.e., the program is buggy but not malicious). Data confidentiality defenses [74] are

complementary to our work. This attacker model is in line with other control-flow

hijack defenses or compartmentalization mechanisms.

We assume the system is running a single statically linked bare-metal application

with no protections. We also assume the hardware has a Memory Protection Unit

(MPU) and the availability of all source code that is to be compartmentalized. Bare-

metal systems execute a single application, there are no dynamically linked or shared

libraries. Lack of source code will cause a reduction in precision for the compartmen-

talization for ACES.

ACES applies defenses to: (1) isolate memory corruption vulnerabilities from

affecting the entire system; (2) protect the integrity of sensitive data and peripherals.

The compartmentalization of data, peripherals, and code confines the effect of a

memory corruption vulnerability to an isolated compartment, prohibiting escalation

to control over the entire system. Our threat model assumes a powerful adversary

and provides a realistic scenario of current attacks.

3.3 Background

To understand ACES’ design it is essential to understand some basics about bare-

metal systems and the hardware on which they execute.

We focus on the ARMv7-M architecture [28], which covers the widely used Cortex-

M(3, 4, and 7) micro-controllers. Other architectures are comparable or have more

relaxed requirements on protected memory regions simplifying their use [75,76].
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Address Space: Creating compartments restricts access to code, data, and periph-

erals during execution. Figure 3.2 shows ARM’s memory model for the ARMv7-M

architecture. It breaks a 32bit (4GB) memory space into several different areas. It

is a memory mapped architecture, meaning that all IO (peripherals and external de-

vices) are directly mapped into the memory space and addressed by dereferencing

memory locations. The architecture reserves large amounts of space for each area,

but only a small portion of each area is actually used. For example, the Cortex-M4

(STM32F479I) [32] device we use in our evaluation has 2MB of Flash in the code

area, 384KB of RAM, and uses only a small portion of the peripheral space—and this

is a higher end Cortex-M4 micro-controller. The sparse layout requires each area to

have its own protection scheme.

Memory Protection Unit: A central component of compartment creation is con-

trolling access to memory. ACES utilizes the MPU for this purpose. The MPU

enables setting permissions on regions of physical memory. It controls read, write,

and execute permissions for both privileged and unprivileged software. An MPU is

similar to an MMU, however it does not provide virtual memory address translation.

On the ARMv7-M architecture the MPU can define up to eight regions, numbered

0-7. Each region is defined by setting a starting address, size, and permissions. Each

region must be a power of two in size, greater than or equal to 32 bytes and start at

a multiple of its size (e.g., if the size is 1KB then valid starting address are 0, 1K,

2K, 3K, etc). Each region greater than 256 bytes can be divided into eight equally

sized sub-regions that are individually activated. All sub-regions have the same per-

missions. Regions can overlap, and higher numbered regions have precedence. In

addition to the regions 0-7, a default region with priority -1 can be enabled for priv-

ileged mode only. The default region enables read, write, and execute permissions to

most of memory. Throughout this paper, we use the term, “MPU region” to describe

a contiguous area of memory whose permissions are controlled by one MPU register.

The MPU’s restrictions significantly complicate the design of compartments. The

limited number of regions requires all code, global variables, stack data, heap data,
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Code
512MB

Data
512MB

Peripherals
512MB

Private Periph. Bus
(1MB)

External Ram/
Devices

2GB

Vendor Mem.
(511MB)

Fig. 3.2. ARM’s memory model for ARMv7-M devices

and peripherals that need to be accessed within a compartment to fit in eight contigu-

ous regions of memory. These regions must satisfy the size and alignment restrictions

of the MPU. The requirement that MPU region sizes be a power of two leads to

fragmentation, and the requirement that MPU regions be aligned on a multiple of its

size creates a circular dependency between the location of the region and its size.

Execution Modes: ARMv7-M devices support privileged and unprivileged exe-

cution modes. Typically, when executing in privileged mode, all instructions can be

executed and all memory regions accessed. Peripherals, which reside on the private

peripheral bus, are only accessible in privileged mode. Exception handlers always

execute in privileged mode, and unprivileged code can create a software exception

by executing an SVC (i.e., supervisor call) instruction. This will cause the SVC ex-

ception handler to execute. This is the mechanism through which system calls are

traditionally created in an OS. Bare-metal systems traditionally execute all code in

privileged mode.

3.4 Design

ACES automatically enforces the principle of least privileges on bare-metal appli-

cations by providing write and control-flow integrity between regions of the program,
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Fig. 3.3. Illustration of ACES’ concept of compartments. ACES isolates
memory (a) – with permissions shown in the column set – and restricts
control-flow between compartments (b).

i.e., if a given code region is exploited via a vulnerability in it, the attack is contained

to that compartment. A secondary goal of ACES is enabling a developer to explore

compartmentalization strategies to find the correct trade-offs between performance

and security, without needing her to change the application.

3.4.1 PDG and Initial Region Graph

A compartment is defined as an isolated code region, along with its accessible

data, peripherals, and allowed control-flow transfers. Each instruction belongs to

exactly one compartment, while data and peripherals may be accessible from multiple

compartments. Thus, our compartments are code centric, not thread centric, enabling

ACES to form compartments within a single thread. Figure 3.3 shows several

compartments, in it Compartment A enables access to code region X and read-write

access to peripheral 1, data region 1, and data region 3. Compartment A can also

transition from Foo into compartment C by calling Baz. Any other calls outside of

the compartment are prohibited. When mapped to memory, a compartment becomes
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a region of contiguous code, and zero or more regions of data and peripherals. ACES

utilizes the MPU to set permissions on each region and thus, the compartments must

satisfy the MPU’s constraints, such as starting address and number of MPU regions.

The starting point to our workflow is a Program Dependence Graph (PDG) [72].

The PDG captures all control-flow, global data, and peripheral dependencies of the

application. While precise PDGs are known to be infeasible to create—due to the

intractable aliasing problem [9], over approximations can be created using known

alias analysis techniques (e.g., type-based alias analysis [77]). Dynamic analysis gives

only true dependencies and is thus more accurate, with the trade off that it needs

to be determined during execution. ACES’ design allows PDG creation using static

analysis, dynamic analysis, or a hybrid.

Using the PDG and a device description, an initial region graph is created. The

region graph is a directed graph that captures the grouping of functions, global data,

and peripherals into MPU regions. An initial region graph is shown in Figure 3.4b,

and was created from the PDG shown in Figure 3.4a. Each vertex has a type that

is determined by the program elements (code, data, peripheral) it contains. Each

code vertex may have directed edges to zero or more data and/or peripheral vertices.

Edges indicate that a function within the code vertex reads or writes a component in

the connected data/peripheral vertices.

The initial region graph is created by mapping all functions and data nodes in

the PDG along with their associated edges directly to the region graph. Mapping

peripherals is done by creating a vertex in the region graph for each edge in the PDG.

Thus, a unique peripheral vertex is created for every peripheral dependency in the

PDG. This enables each code region to independently determine the MPU regions it

will use to access its required peripherals. The initial region graph does not consider

hardware constraints and thus, applies no bounds on the total number of regions

created.
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3.4.2 Process for Merging Regions

The initial region graph will likely not satisfy performance and resource con-

straints. For example, it may require more data regions than there are available

MPU regions, or the performance overhead caused by transitioning between com-

partments may be too high. Several regions therefore have to be merged. Merging

vertices causes their contents to be placed in the same MPU region. Only vertices of

the same type may be merged.

Code vertices are merged by taking the union of their contained functions and

associated edges. Merging code vertices may expose the data/peripheral to merged

functions, as the compartment encompasses the union of all its contained function’s

data/peripheral dependencies. However, it improves performance as more functions

are located in the same compartment. Similar to merging code vertices, merging

of data vertices takes the union of the contained global variables and the union of

their edges. All global variables in a vertex are made available to all dependent code

regions. Thus, merging two data vertices increases the amount of code which can

access the merged data vertices.

Unlike code and global variables, which can be placed anywhere in memory by

the compiler, peripheral addresses are fixed in hardware. Thus, ACES uses a device

description to identify all peripherals accessible when the smallest MPU region that

covers the two merged peripherals is used. The device description contains the address

and size of each peripheral in the device. Using the device description peripheral

vertices in the PDG can be mapped to a MPU region which gives access to the

peripheral. To illustrate, consider two peripherals vertices that are to be merged and

a device description containing four peripherals A, B, C, and D at addresses 0x000,

0x100, 0x200, and 0x300 all with size 0x100. The first vertex to be merged contains

peripheral B at address 0x100 and the second Peripheral D at address 0x300. The

smallest MPU region that meets the hardware restrictions (i.e., is a power of 2 aligned

on a multiple of its size) covers addresses 0x000-0x3FF, and thus enables access to
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peripherals A-D. Thus, the vertex resulting from merging peripherals B and D, will

contain peripherals A, B, C, and D.

3.4.3 Compartmentalization Policy and Optimizations

The compartment policy defines how code, global variables, and peripherals should

be grouped into compartments. An example of a security-aware policy is grouping by

peripheral, i.e., functions and global variables are grouped together based on their

access to peripherals. ACES does not impose restriction on policy choice. Obviously,

the policy affects the performance and isolation of compartments, and, consequently,

the security of the executable binary image. For example, if two functions which fre-

quently call each other are placed in different code compartments then compartment

transitions will occur frequently, increasing the overhead. From a security perspec-

tive, if two sets of global variables ~V1 and ~V2 are placed in the same compartment and

in the original program code region C1 accessed ~V1 and C2 accessed ~V2 then unneces-

sary access is granted—now both code regions can access the entire set of variables.

ACES enables the developer to explore the performance-security trade-offs of various

policies.

After applying the compartmentalization policy, it may be desirable to adjust

the resulting compartments. These adjustments may improve the security or the

performance of the resulting compartmented binary. For example, if performance is

too slow it may be desirable to merge regions to reduce compartment transitions. To

accommodate this, we enable adjustment passes to be applied to the region graph after

the compartment formation. Developer-selected optimizations may be applied to the

region graph. An example of an optimization is the transformation from Figure 3.4c

to Figure 3.4d. It merges functions 3 and 4 because they access the same memory

regions and peripherals. After the optimizations are applied, the resulting region

graph is lowered to meet hardware constraints.
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3.4.4 Lowering to the Final Region Graph

Lowering is the process by which ACES ensures all formed compartments meet

the constraints of the targeted hardware. As each compartment consists of a single

code vertex and its peripherals and data vertex. Each code vertex’s out degree must

be lower or equal to the number of available MPU regions because the number of

access permissions that can be enforced is upper bounded by that. Any code region

not meeting this criteria is lowered, by merging its descendant data and peripheral

vertices until its out-degree is less than or equal to the cap. ACES does this iteratively,

by merging a pair of data or peripheral vertices on each iteration. The vertices to

merge are determined by a cost function, with the lowest cost merge being taken.

Examples of cost functions include: the number of functions that will gain access to

unneeded variables in the data regions, how security critical a component is (resulting

in a high cost of merging), and the cost of unneeded peripherals included in the merge

of two peripherals.

3.4.5 Program Instrumentation and Compartment Switching

ACES sets up the MPU configuration to isolate address spaces of individual pro-

cesses, similar to how a desktop operating system handles the MMU configuration.

ACES generates the appropriate MPU configuration from the final region graph and

inserts code during a compilation pass to perform compartment transitions. Ensuring

that the proper MPU configuration is used for each compartment is done by encod-

ing each compartment’s MPU configuration into the program as read-only data and

then on each compartment transition, the appropriate configuration is loaded into

the MPU.

Inserting compartment transitions requires instrumenting every function call be-

tween compartments and the associated return to invoke a compartment switching

routine. Each call from one compartment into another has associated metadata list-

ing the valid targets of the transition. For indirect function calls, the metadata lists
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all possible destinations. At runtime, the compartment switching routine decides if

the transition is valid using this metadata. If authorized, it saves the current MPU

configuration and return address to a “compartment stack”, and then configures the

MPU for the new compartment. It then completes the call into the new compartment.

On the associated return, the compartment stack is used to authenticate the return

and restore the proper MPU configuration. The MPU configuration, compartment

stack, and compartment switching routine are only writable by privileged code.

3.4.6 Micro-emulator for Stack Protection

The final element of ACES is stack protection. The constraints of MPU protection

(starting address, size) mean that it is difficult to precisely protect small data regions

and regions that cannot be easily relocated, such as the stack. To overcome these

limitations we use a micro-emulator. It emulates writes to locations prohibited by the

MPU regions, by catching the fault cause by the blocked access. It then emulates, in

software, all the effects of the write instruction, i.e., updates memory, registers, and

processor flags. A white-list is used to restrict the areas each compartment is allowed

to write.

An MPU region is used to prevent writing all data above the stack pointer on the

stack. Thus, the entered compartment is free to add to the stack and modify any

data it places on the stack. However, any writes to previous portions of the stack will

cause a memory access fault. Then the micro-emulator, using a white-list of allowed

locations, enables selective writes to data above the stack pointer.

To generate the white-list, static or dynamic analysis may be used. With static

analysis large over approximations to available data would be generated. Whereas dy-

namic analysis may miss dependencies, potentially leading to broken applications. To

support dynamic analysis, the emulator supports two modes of operation: record and

enforce. In record mode, which happens in a benign training environment, representa-

tive tests are run and all blocked writes emulated and recorded on a per compartment
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basis. The recorded accesses create a white-list for each compartment. When execut-

ing in enforce mode (i.e., after deployment) the micro-emulator checks if a blocked

access is allowed using the white-list and either emulates it or logs a security viola-

tion. Significant use of dynamically allocated data on desktop systems would make

dynamic analysis problematic. However, the limited memory on bare-metal systems

requires developers to statically allocate memory, enabling dynamic analysis to readily

identify data dependencies.

3.5 Implementation

ACES is implemented to perform four steps: program analysis, compartment

generation, program instrumentation, and enforcement of protections at runtime.

Program analysis and program instrumentation are implemented as new passes in

LLVM 4.0 [30] and modifications to its ARM backend. Compartment generation

is implemented in Python leveraging the NetworkX graph library [78]. Runtime

enforcement is provided in the form of a C runtime library. For convenience, we wrap

all these components with a Makefile that automates the entire process.

3.5.1 Program Analysis

Our program analysis phase creates the PDG used to generate the region graph,

and is implemented as an IR pass in LLVM. To create the PDG it must identify

control flow, global variable usage, and peripheral dependencies for each function.

Control-flow dependencies are identified by examining each call instruction and de-

termining its possible destinations using type-based alias analysis [77]. That is, we

assume an indirect call may call any function matching the function type of the call

instruction. This identifies all potential control-flow dependencies, but generates an

over-approximation.

Over-approximations of global variable accesses result in overly permissive com-

partments. We found that LLVM’s alias analysis techniques give large over ap-
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proximations to data dependencies. Thus, we generate an under-approximation

of the global variables that are accessed within each function using LLVM’s use-

def chains. We form compartments with this under-approximation and then use

the micro-emulator to authenticate access to missed dependencies at runtime (Sec-

tion 3.4.6). To understand our peripheral analysis, recall that the ARMv7-M ar-

chitecture is a memory mapped architecture. This means regular loads and stores

to constant addresses are used to access peripherals. In software this is a cast of

a constant integer to a pointer, which is then dereferenced. ACES uses the cast

and dereference as a heuristic to identify dependencies on peripherals. Using these

analyses, ACES creates a PDG suitable for compartmentalization.

3.5.2 Compartment Creation

Compartment creation uses the PDG, a compartmentalization policy, and the

target device description to create a final region graph. It is implemented in Python

using the NetworkX [78] graph library, which provides the needed graph operations

for ACES (like traversal and merging). By separating this component from LLVM,

we enable the rapid investigation of different compartmentalization policies without

having to manage the complexities of LLVM. Policies are currently implemented as a

python function. Creating a new policy requires writing a graph traversal algorithm

that merges regions based on desired criteria. We envision that the research commu-

nity could develop these policies, and an application developer would select a policy

much like they select compiler optimizations today.

The region graph is created from the PDG as outlined in Section 3.4.1. How-

ever, the nuances of handling peripherals justify further explanation. Peripherals are

merged using the device description to build a tree of all the possible valid MPU

regions that cover the device peripherals, called the “device tree”. In the device tree,

the peripherals are the leaves and the interior nodes are MPU regions that cover all

their descendant peripherals. For example, if peripheral P1 is at memory-mapped
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address [α, α+ ∆1] and peripheral P2 is at address [β, β+ ∆2], then the intermediate

node immediately above it will allow access to addresses [α, β+ ∆2]. Thus, the closer

to the root a node is, the larger the MPU region and the more peripherals it covers.

Using this tree, the smallest possible merge between two peripherals can be found by

finding their closest common ancestor. The device tree also identifies peripherals on

the private peripheral bus which requires access from privileged mode. Code regions

dependent on these peripherals must execute in privileged mode; for security, the

number and size of such regions should be limited by the policy.

To start, we implement two compartmentalization policies, “Peripheral” and “File-

name”. The Peripheral policy is a security policy that isolates peripherals from each

other. Thus for an attack to start by exploiting one peripheral and affect another

(e.g., compromising a WiFi SOC to get to the application processor) multiple com-

partments would have to be traversed. The policy initially gives each code vertex

adjacent to one or more peripherals in the PDG a unique color. Two code ver-

tices adjacent to the same set of peripherals get the same color. It then proceeds in

rounds, and in each round any code vertex with a control-flow dependency on vertices

of only one color is given the same color. Rounds continue until no code vertices are

merged, at which point all uncolored code vertices are merged into a single vertex.

The Filename policy is a näıve policy that demonstrates the versatility of the poli-

cies ACES can apply, and pitfalls of such a policy. It groups all functions and global

variables that are defined in the same file into the same compartment.

Two optimizations to the region graph can be applied after applying the Filename

policy. Merging all code regions with identical data and peripheral dependencies, this

reduces compartment transitions at runtime without changing data accessible to any

compartments. The second optimization examines each function and moves it to the

region that it has the most connections to, using the PDG to count connections. This

improves the performance of the application by reducing the number of compartment

transitions. By applying these two optimizations to the Filename policy we create a

third compartmentalization policy, “Optimized Filename”.
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After applying optimizations, the region graph is lowered to meet hardware con-

straints. For our experimental platform, this ensures that no code vertex has more

than four neighboring data/peripheral vertices. While the MPU on our target ARMv7-

M devices has eight regions, two regions are used for global settings, i.e., making all

memory read-only and enabling execution of the default code region, as will be ex-

plained in Section 3.5.3. Stack protection and allowing execution of the code vertex

in the current compartment each requires one MPU region. This leaves four MPU

regions for ACES to use to enable access to data and peripheral regions. Every code

vertex with an out-degree greater than four iteratively merges data or peripheral ver-

tices until its out-degree is less than or equal to four. After lowering, the final region

graph is exported as a JSON file, which the program instrumentation uses to create

the compartments.

3.5.3 Program Instrumentation

Program instrumentation creates a compartmentalized binary, using the final re-

gion graph and the LLVM bitcode generated during program analysis. It is imple-

mented by the addition of a custom pass to LLVM and modifications to LLVM’s ARM

backend. To instrument the program, all compartment transitions must be identified,

each memory region must be placed so the MPU can enforce permissions on it, and

the MPU configuration for each region must be added.

Using the final region graph, any control edge with a source and destination in

different compartments is identified as a compartment transition. We refer to the

function calls that cause a transition as compartment entries, and their correspond-

ing returns as compartment exits. Each compartment transition is instrumented by

modification to LLVM’s ARM backend. It associates metadata to each compart-

ment entry and replaces the call instruction (i.e., BL or BLX on ARM) with an SVC

instruction. The return instructions of any function that may be called by a compart-

ment entry are replaced with an SVC instruction. The SVC instruction invokes the
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compartment switching routine, which changes compartments and then, depending

on the type of SVC executed, completes the call or return.

The compartment pseudo code for the compartment switching routine is shown

in Algorithm 3, and is called by the SVC handler. It switches compartments by

reconfiguring the MPU, and uses a compartment stack to keep track of the compart-

ment entries and exits. This stack is never writable by the compartment, protecting

it from unauthorized writes. The stack also enables determining if a compartment

entry needs to change compartments or just return to the existing compartment. This

is needed because functions with an instrumented return can be called from within

and outside of a compartment. When called from within a compartment there will

be no entry on the compartment stack. Thus, if the return address does not match

the top of the compartment stack, the compartment switching routine exits without

modifying the MPU configuration. This also results in the compartment exit routine

executing more frequently than the compartment entry routine, as seen in Figure 3.5.

While, LLVM can instrument source code it compiles, it cannot instrument pre-

compiled libraries. Ideally, all source code would be available, but as a fallback, ACES

places all pre-compiled libraries and any functions they call in an always executable

code region. When called, this code executes in the context of the callee. Thus, the

data writable by the library code is restricted to that of the calling compartment.

This is advantageous from a security perspective, as it constrains the libraries’ access

to data/peripherals based on the calling context. We envision in the future libraries

could be distributed as LLVM bitcode instead of machine code, enabling ACES to

analyze and instrument the code to create compartments.

After instrumenting the binary, ACES lays out the program in memory to enable

the MPU to enforce permissions. The constraints of the MPU in our target platform

require that each MPU region be a power of two in size and the starting address must

be a multiple of its size. This introduces a circular dependency between determining

the size of a region and its layout in memory. ACES breaks this dependency by using

two linker scripts sequentially. The first ignores the MPU restrictions and lays out
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the regions contiguously. The resulting binary is used to determine the size of all

the regions. After the sizes are known, the second linker script expands each region

to a power of two and lays out the regions from largest to smallest, starting at the

highest address in Flash/RAM and working down. This arrangement minimizes the

memory lost to fragmentation, while enabling each region to be located at a multiple

of its size. ACES then generates the correct MPU configuration for each region and

uses the second linker script, to re-compile the program. The MPU configuration is

embedded into read-only memory (Flash), protecting it against attacks that modify

the stored configuration in an attempt to change access controls. The output of the

second linker script is a compartmented binary, ready for execution.

3.5.4 Micro-emulator for Stack Protection

The micro-emulator enables protection of writes on the stack, as described earlier

in Section 3.4.6. The MPU restrictions prohibit perfect alignment of the MPU region

to the allocated stack when entering a compartment. Thus, some portions of the

allocated stack may remain accessible in the entered compartment. To minimize

this, we disable as many sub-regions of the MPU as possible, while still allowing the

current compartment to write to all the unallocated portions of the stack. With less

restrictive MPUs—e.g., the ARMv8-M MPU only requires regions be multiples of

32 bytes in size and aligned on a 32 byte boundary—this stack protection becomes

stronger. In addition, the micro-emulator handles all writes where our static analysis

under approximates and enables access to areas smaller than the MPU’s minimum

region size.

The micro-emulator can be implemented by modifying the memory permissions

to allow access to the faulting location and re-executing the store instruction, or em-

ulating the store instruction in software. Re-executing requires a way to restore the

correct permissions immediately after the store instruction executes. Conceptually,

instruction rewriting, copying the instruction to RAM, or using the debugger to set
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Algorithm 3 Compartment Switching Procedure

1: procedure Change Compartments
2: Lookup SVC Number from PC
3: if SVC 100 then . Compartment Entry
4: Look up Metadata from PC
5: if Target in Metadata then . Target Addr. in LR
6: Get MPU Config from Metadata for Target
7: else
8: Fault
9: end if

10: Set MPU Configuration
11: Fixup Ret. Addr. to Skip Over Metadata
12: Push Stack MPU Config to Comp. Stack
13: Push Fixed Up Ret. Addr. to Comp. Stack
14: Adjust Stack MPU region
15: Fixup Stack to Exit into Target
16: Exit SVC
17: else if SVC 101 then . Compartment Entry
18: if Ret. Addr is on Top of Comp. Stack then
19: Get Return MPU Config using LR
20: Set MPU Config
21: Pop Comp. Stack
22: Pop Stack MPU Config
23: Restore previous Stack MPU Config
24: end if
25: Fixup Stack to Exit to Ret. Addr.
26: Exit SVC
27: else
28: Call Original SVC
29: end if
30: end procedure
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a breakpoint can all achieve this. However, code is in Flash preventing rewriting

instructions; copying the instruction to RAM requires making RAM writable and

executable, thus exposing the system to code injection attacks. This leaves the de-

bugger. However, on ARMv7-M devices, it can only be used by the internal software

or an external debugger, not both. Using the debugger for our purpose prevents a

developer from debugging the application. Therefore, we choose to emulate the write

instructions in software.

The micro-emulator is called by the MemManage Fault handler, and emulates all

the instructions that write to memory on the ARMv7-M architecture. As the emulator

executes within an exception, it can access all memory. The handler emulates the

instruction by performing all the effects of the instruction (i.e., writing to memory

and updating registers) in its original context. When the handler exits, the program

continues executing as if the faulting instruction executed correctly. The emulator

can be compiled in record or enforce mode. In record mode (used during training for

benign runs), the addresses of all emulated writes are recorded on a per compartment

basis. This allows the generation of the white-list for the allowable accesses. The

white-list contains start and stop address for every addresses accessible through the

emulator for each compartment. When generating the list, any recorded access to

a global variable is expanded to allow access to all addresses. For example, if a

single address of a buffer is accessed, the white list will contain the start and stop

address for the entire buffer. The current emulator policy therefore grants access

at variable granularity. This means the largest possible size of all variables does

not have to be exercised during the recording runs. However, as peripherals often

have memory mapped configuration register (e.g., setting clock sources) and other

registers for performing is function (e.g., sending data). The white-list only allows

access to peripheral addresses that were explicitly accessed during recording. Thus,

a compartment could configure the peripheral, while another uses it.
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3.6 Evaluation

To evaluate the effectiveness of ACES we compare the Näıve Filename, Optimized

Filename, and Peripheral compartmentalization policies. Our goal is not to identify

the best policy, but to enable a developer to compare and contrast the security and

performance characteristics of the different policies. We start with a case study to

illustrate how the different compartmentalization policies impact an attacker. We

then provide a set of static metrics to compare policies, and finish by presenting the

policy’s runtime and memory overheads. We also compare the ACES’ policies to

Mbed µVisor, the current state-of-the-art in protecting bare-metal applications.

For each policy, five representative IoT applications are used. They demonstrate

the use of different peripherals (LCD Display, Serial port, Ethernet, and SD card) and

processing steps that are typically found in IoT systems (compute based on peripheral

input, security functions, data sent through peripheral to communicate). PinLock

represents a smart lock. It reads a pin number over a serial port, hashes it, compares

it to a known hash, and if the comparison matches, sends a signal to an IO pin (akin

to unlocking a digital lock). FatFS-uSD implements a FAT file system on an SD

card. TCP-Echo implements a TCP echo server over Ethernet. LCD-Display

reads a series of bitmaps from an SD card and displays them on the LCD. Animate

displays multiple bitmaps from an SD card on the LCD, using multiple layers of

the LCD to create the effect of animation. All except PinLock are provided with

the development boards and written by STMicroelectronics. We create four binaries

for each application, a baseline without any security enhancement, and one for each

policy. PinLock executes on the STM32F4Discovery [31] development board and the

others execute on the STM32F479I-Eval [32] development board.

3.6.1 PinLock Case Studies

To illustrate ACES’ protections we use PinLock and examine ways an attacker

could unlock the lock without entering the correct pin. There are three ways an
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attacker could open the lock using a memory corruption vulnerability. First, over-

writing the global variable which stores the correct pin. Second, directly writing to

the memory mapped GPIO controlling the lock. Third, bypassing the checking code

with a control-flow hijack attack and executing the unlock functionality. We assume

a write-what-where vulnerability in the function HAL UART Receive IT that can be

used to perform any of these attacks. This function receives characters from the

UART and copies them into a buffer, and is defined in the vendor provided Hardware

Abstraction Libraries (HAL).

Memory Corruption: We first examine how ACES impacts the attackers ability

to overwrite the stored pin. For an attacker to overwrite the stored pin, the vul-

nerable function needs to be in a compartment that has access to the pin. This

occurs when either the global variable is in one of the compartments’ data regions

or its white-list. In our example, the target value is stored in the global variable

key. In the Näıve Filename and Optimized Filename policies the only global vari-

able accessible to HAL UART Receive IT’s compartment is a UART Handle, and thus

the attacker cannot overwrite key. With the peripheral policy key is in a data re-

gion accessible by HAL UART Receive IT’s compartment. Thus, key can be directly

overwritten. Directly writing the GPIO registers is similar to overwriting a global

variable and requires write access to the GPIO-A peripheral. Which is not accessible

to HAL UART Receive IT’s compartment under any of the policies.

Control-Flow Hijacking: Finally, the attacker can unlock the lock by hijacking

control-flow. We consider an attack to be successful if any part of the unlock call chain,

shown in Listing 3.1, is executable in the same compartment as HAL UART Receive IT.

If this occurs, the attacker can redirect execution to unlock the lock illegally. We refer

to this type of control-flow attack as direct, as the unlock call chain can be directly

executed. For our policies, this is only possible with the Peripheral policy. This occurs

because HAL UART Receive IT and main are in the same compartment. For the other

policies HAL UART Receive IT’s compartment does not include any part of the unlock

call chain. A second type of attack—a confused deputy attack—may be possible if
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Listing 3.1 PinLock’s unlock call chain and filename of each call

main // main . c
unlock // main . c
BSP LED On // stm32 f401 d i s covery . c
HAL GPIO WritePin // s tm32 f4xx ha l gp io . c

Table 3.1.
Summary of ACES’ protection on PinLock for memory corruption vul-
nerability in function HAL UART Receive IT. (X) – prevented, 7– not
prevented

Policy
Overwrite Control Hijack

Global GPIO Direct Deputy

Näıve Filename X X X X
Optimized Filename X X X X
Peripheral 7 X 7 7

there is a valid compartment switch in the vulnerable function’s compartment to a

point in the unlock call chain. This occurs if a function in the same compartment as

the vulnerable function makes a call into the unlock call chain. This again only occurs

with the Peripheral policy, as main contains a compartment switch into unlock’s

compartment. A summary of the attacks and the policies protections against them

is given in Table 3.1.
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3.6.2 Static Compartment Metrics

The effectiveness of the formed compartments depends on the applied policy. We

examine several metrics of compartments that can be used to compare compart-

mentalization policies. Table 3.2 and Table 3.3 shows these metrics for the three

compartmentalization policies. All of the metrics are calculated statically using the

final region graph, PDG, and the binary produced by ACES.

Number of Instructions and Functions: The first set of metrics in Table 3.2 are

the number of instructions and the number of functions used in the ACES binaries,

with percent increase over baseline shown in parentheses. To recap, the added code

implements: the compartment switching routine, instruction emulation, and program

instrumentation to support compartment switching. They are part of the trusted code

base of the program and thus represent an increased risk to the system that needs to

be offset by the gains it makes in security. ACES’ runtime support library is the same

for all applications and accounts for 1,698 of the instructions added. The remaining

instructions are added to initiate compartment switches. As many compartments are

formed, we find in all cases the number of instructions accessible at any given point

in execution is less than the baseline. This means that ACES is always reducing the

code that is available to execute.

Reduction in Privileged Instructions: Compartmentalization enables a great re-

duction in the number of instructions that require execution in privileged mode, Ta-

ble 3.2, shown as “% Priv.”. This is because it enables only the code which accesses

the private peripheral bus and the compartment transition logic to execute in privi-

leged mode. The Näıve Filename and Peripheral policy show the greatest reductions,

because of the way they form compartments. As only a small number of functions

access the private peripheral bus—defined in a few files—the Näıve Filename creates

small compartments with privileged code. The Optimized Filename starts from the

Näıve policy and then merges groups together, increasing the amount of privileged

code, as privileged code is merged with unprivileged code. Finally, the Peripheral
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policy identifies the functions using the private peripheral bus. It then merges the

other functions that call or are called by these functions and that have no dependency

on any other peripheral. The result is it a small amount of privileged code.

Number of Regions: Recall a compartment is a single code region and collection of

accessible data and peripherals. The number of code and data regions created indi-

cates how much compartmentalization the policy creates. As the number of compart-

ments increases, additional control-flow validation occurs at runtime as compartment

transitions increase. Generally, larger numbers of regions indicate better security.

Instructions Per Compartment: This metric measures how many instructions are

executable at any given point in time, and thus usable in a code reuse attack. It

is the number of instructions in the compartment’s code region plus the number of

instructions in the default code region. Table 3.2 shows the median, and maximum

number of instructions in each compartment. For all policies, the reduction is at least

23.9% of the baseline application, which occurs on TCP-Echo with the Peripheral

policy. The greatest (83.4%) occurs on TCP-Echo with the Näıve Filename policy, as

the TCP stack and Ethernet driver span many files, resulting in many compartments.

However, the TCP stack and Ethernet driver only use the Ethernet peripheral. Thus,

the Peripheral policy creates a large compartment, containing most of the application.

Compartment Connectivity: Compartment connectivity indicates the number of

unique calls into (In Degree) or out of a compartment (Out Degree), where a unique

call is determined by its source and destination. High connectivity indicates poor

isolation of compartments. Higher connectivity indicates increasing chances for a

confused deputy control-flow hijack attack between compartments. The ideal case

would be many compartments with minimal connectivity. In all cases, the Näıve

Filename policy has the worst connectivity because the applications make extensive

use of abstraction libraries, (e.g., hardware, graphics, FatFs, and TCP). This results in

many files being used with many calls going between functions in different files. This

results in many compartments, but also many calls between them. The Optimized

Filename policy uses the Näıve policy as a starting point and relocates functions to
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reduce external compartment connectivity, but can only improve it so much. The

Peripheral policy creates many small compartments with very little connectivity and

one compartment with high connectivity.

Global Variable Exposure: In addition to restricting control-flow in an application,

ACES reduces the number of instructions that can access a global variable. We mea-

sure the number of store instructions that can access a global variable—indicating

how well least privileges are enforced. Table 3.3 shows the median number of store

instructions each global variable in our test applications is writable from, along with

the percent of store instructions in the application that can access it. Smaller numbers

are better. The Filename policy has the greatest reduction in variable exposure. The

other policies create larger data and code regions, and thus have increased variable

exposure. In addition, lowering to four memory regions causes multiple global vari-

ables to be merged into the same data region, increasing variable exposure. Having

more MPU regions (the ARMv8-M architecture supports up to 16) can significantly

improve this metric. As an example, we compiled Animation using the Optimized

Filename policy and 16 MPU regions (lowering to 12 regions). It then creates 28 data

regions versus three with eight MPU regions.

ROP Gadgets: We also measure the maximum number of ROP gadgets available

at any given time during execution, using the ROPgadget compiler [25]. ROP gadgets

are snippets of instructions that an attacker chains together to perform control-hijack

attacks while only using existing code [73]. As shown in Table 3.3, ACES reduces

the number of ROP gadgets between 32.5% and 85.3% compared to the baseline;

the reduction comes from reducing the number of instructions exposed at any point

during execution.

3.6.3 Runtime Overhead

Bare-metal systems have tight constraints on execution time and memory usage.

To understand ACES’ impact on these aspects across policies, we compare the IoT
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applications compiled with ACES against the baseline unprotected binaries. For ap-

plications compiled using ACES, there are three causes of overhead: compartment

entry, compartment exit, and instruction emulation. Compartment entries and exits

replace a single instruction with an SVC call, authentication of the source and the des-

tination of the call, and then reconfiguration of the MPU registers. Emulating a store

instruction replaces a single instruction with an exception handler, authentication,

saving and restoring context, and emulation of the instruction.

In the results discussion, we use a linguistic shorthand—when we say “compart-

ment exit” or simply “exit”, we mean the number of invocations of the compartment

exit routine. Not all such invocations will actually cause a compartment exit for the

reason described in Section 3.5.3.

All applications—except TCP-Echo—were modified to start profiling just before

main begins execution and stops at a hard coded point. Twenty runs of each applica-

tion were averaged and in all cases the standard deviation was less than 1%. PinLock

stops after receiving 100 successful unlocks, with a PC sending alternating good and

bad codes as quickly as the serial communication allows. FatFS-uSD formats its SD

card, creates a file, writes 1,024 bytes to the file, and verifies the file’s contents, at

which point profiling stops. LCD-uSD reads and displays 3 of the 6 images provided

with the application, as quickly as possible. Profiling stops after displaying the last

image. The Animation application displays 11 of the 22 animation images provided

with the application before profiling stops. Only half the images were used to prevent

the internal 32bit cycle counters from overflowing. For TCP-Echo, a PC directly

connected to the board sends TCP packets as fast as possible. We start profiling

after receiving 20 packets—to avoid measuring the PC’s delay in identifying the IP

address of the board—and measure receiving 1,000 packets. This enables an accurate

profiling of ACES’ overhead, omitting the initialization of the board, which performs

many compartment transitions.

The performance results for the three policies are shown in Figure 3.5. It shows

the total overhead, along with the breakdown of portion of time spent executing
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compartment entries, compartment exits, and emulating instructions. Perhaps unin-

tuitive, the time spend executing these components does not always contribute to a

proportional increase in total execution time. This is because the programs block on

IO. ACES changes what it does while blocking, but not how long it blocks. This is

particularly evident on PinLock which has no measurable increase in total execution

time for any policy, yet executes over 12,000 compartment entries and exits with the

Näıve and Optimized Filename policies. This is because the small percentage of the

time it spends executing compartment switches is hidden by the time spent waiting

to receive data on the relatively slow serial port. The other applications wait on the

Ethernet, uSD card, or LCD. In some cases, the overhead is not all attributed to

compartment entries, exits or emulated instructions, this is because our instrumenta-

tion causes a small amount of overhead (about 60 instructions) on each event. In the

case of LCD-uSD with the Näıve policy which executes over 6.8 million compartment

entries, exits, and emulator calls this causes significant overhead.

Looking across the policies and applications we see that the Näıve Filename policy

has the largest impact on execution. This is because the programs are written using

many levels of abstraction. Consider TCP-Echo: it is written as an application on top

of the Lightweight IP Library (LwIP) implementation of the TCP/IP stack [79] and

the boards HAL. LwIP uses multiple files to implement each layer of the TCP stack

and the HAL uses a separate file to abstract the Ethernet peripheral. Thus, while

the application simply moves a received buffer to a transmit buffer, these function

calls cause frequent compartment transitions, resulting in high overhead. The Opti-

mized Filename policy improves the performance of all applications by reducing the

number of compartment transitions and emulated instructions. This is expected as it

optimizes the Näıve policy by moving functions to compartments in which it has high

connectivity, thus reducing the number of compartment transitions. This also forms

larger compartments, increasing the likelihood that needed data is also available in

the compartment reducing the number of emulated calls. Finally, the Peripheral pol-

icy gives the best performance, as its control-flow aware compartmentalization creates
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Fig. 3.5. Runtime overhead for applications.

long call chains within the same compartment. This reduces the number of compart-

ment transitions. The stark difference in runtime increase between policies highlights

the need to explore the interactions between policies and applications, which ACES

enables.

3.6.4 Memory Overhead

In addition to runtime overhead, compartmentalization increases memory require-

ments by: including ACES’s runtime library (compartment switcher, and micro-

emulator), adding metadata, adding code to invoke compartment switches, and losing
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memory to fragmentation caused by the alignment requirements of the MPU. We mea-

sure the increase in flash, shown in Figure 3.6, and RAM, show in Figure 3.7, for the

test applications compiled with ACES and compare to the baseline breaking out the

overhead contributions of each component.

ACES increases the flash required for the runtime library by 4,216 bytes for all

applications and policies. Fragmentation accounts for a significant amount of the

increase in flash usage ranging from 26% of the baseline on Optimize Filename LCD-

uSD to 70% on Peripheral PinLock. Fragmentation can also cause a large increase in

RAM usage. This suggests that compartmentalization policies may need to optimize

for fragmentation when creating compartments to reduce its impact. The MPU in the
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ARMv8-M architecture only requires regions be a multiple of 32 bytes and aligned on

a 32 byte boundary. This will nearly eliminate memory lost to fragmentation on this

architecture. For example, Peripheral TCP-Echo would only lose 490 bytes of flash

and 104 bytes of RAM to padding versus 38,286 bytes and 17,300 bytes to fragmenta-

tion. Metadata and switching code increase are the next largest components, and are

application and policy dependent. They increase with the number of compartment

transitions and size of emulator white-lists.

Figure 3.7 shows the increase in RAM usage caused by ACES. Its only contributors

to overhead are the runtime library and fragmentation. The runtime library consists

of a few global variables (e.g., compartment stack pointer), the compartment stack,

and the emulator stack. The compartment stack—ranges from 96 bytes (Peripheral

PinLock) to 224 bytes (Optimized Filename Animation)—and the emulator stack uses

400 bytes on all applications. Like flash, fragmentation can also cause a significant

increase in RAM usage.

3.6.5 Comparison to Mbed µVisor

To understand how ACES compares to the state-of-the-art compartmentalization

technique for bare-metal systems, we use the Mbed µVisor from ARM [64]. Mbed

µVisor is a hypervisor designed to provide secure data and peripheral isolation be-

tween different compartments in the application (the equivalent term to compartment

that µVisor uses is “box”). It is linked as a library to Mbed OS [63] and initialized

at startup.

Table 3.4 shows a comparison of security protections provided by ACES and Mbed

µVisor. Mbed µVisor requires manual annotation and specific µVisor APIs to be used

to provide its protections, while ACES is automatic. Additionally, Mbed µVisor does

not enforce code isolation, as all code is placed in one memory region that is ac-

cessible by all compartments. Furthermore, Mbed µVisor does not enforce DEP on

the heap. Both enforce data and peripheral isolation among compartments. ACES
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Table 3.4.
Comparison of security properties between ACES and Mbed µVisor

Tool Technique DEP
Compartmentalization Type

Code Data Peripheral

ACES Automatic X X X X

Mbed µVisor Manual 7(Heap) 7 X X

enforces fine-grained compartmentalization by allowing code and data to be isolated

within a thread, while Mbed µVisor requires a thread for each compartment with no
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isolation within a thread. Another advantage of ACES over Mbed µVisor is its com-

partments are not hard-coded into the application, enabling them to be automatically

determined from high-level policies.

We compare ACES and Mbed µVisor by porting PinLock to Mbed µVisor. With

µVisor, we used two compartments, which logically follows the structure of the

application—one compartment handles the IO communication with the serial port

and the other handles the computation, i.e., the authentication of the pincode read

from the serial port. The first has exclusive access to the serial port reading the user’s

pincode. The second compartment cannot access the serial port but can only request

the entered pin from the first compartment. The authenticator then computes the

hash and replies to the first compartment with the result. Mbed µVisor requires

specific APIs and a main thread for each compartment, thus there is significant port-

ing effort to get this (and any other application) to execute with µVisor. Table 3.5

shows a comparison between ACES and Mbed µVisor for Flash usage, RAM usage,

runtime, and number of ROP gadgets. Since Mbed µVisor requires an OS, Flash and

memory usage will be inherently larger. It allocates generous amounts of memory to

the heap and stacks, which can be tuned to the application. For our comparison, we

dynamically measure the size of the stacks and ignore heap size, thus under-reporting

µVisor memory size. Averaged across all policies, ACES reduces the Flash usage by

58.6% and RAM usage by 83.9%, primarily because it does not require an OS. ACES

runtime is comparable (5.0% increase), thus ACES provides automated protection,

increased compartmentalization, and reduced memory overhead with little impact on

performance.

We investigate the security implications of having code compartmentalization by

analyzing the number of ROP gadgets using the ROPgadget compiler [25]. Without

code compartmentalization, a memory corruption vulnerability allows an attacker to

leverage all ROP gadgets available in the application—the “Total” column in Ta-

ble 3.5. Code compartmentalization confines an attacker to ROP gadgets available
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only in the current compartment. Averaged across all policies, ACES reduces the

maximum number of ROP gadgets by 94.3% over µVisor.

3.7 Related Work

Micro-kernels: Micro-kernels [80,81] implement least privileges for kernels by reducing

the kernel to the minimal set of functionality and then implement additional functions

as user space “servers”. Micro-kernels like L4 [80] have been successfully used in

embedded systems [82]. They rely on careful development or formal verification [81]

of the kernel and associated servers to maintain the principle of least privilege. ACES

creates compartments within a single process, while micro-kernels break a monolithic

kernel into many processes. In addition, the process of creating micro-kernels is

manual while ACES’ compartments are automatic.

Software Fault Isolation and Control-flow Integrity: Software fault isolation [29, 83]

uses checks or pointer masking to restrict access of untrusted modules of a program to

a specific region. SFI has been proposed for ARM devices using both software (AR-

Mor) [84], and hardware features (ARMlock) [85]. ARMlock uses memory domains

which are not available on Cortex-M devices. ACES works on micro-controllers and

uses the MPU to ensure that code and data writes are constrained to a compart-

ment without requiring pointer instrumentation. It also enables flexible definitions of

what should be placed in each compartment whereas SFI assumes compartments are

identified a priori.

Code Pointer Integrity [10] prevents memory corruptions from performing control

flow hijacks by ensuring the integrity of code pointers. Control-flow integrity [19,

20, 48–51] restricts the targets of indirect jumps to a set of authorized targets. This

restricts the ability of an attacker to perform arbitrary execution, however arbitrary

execution is still possible if a sufficiently large number of targets are available to an at-

tacker. ACES enforces control-flow integrity on control edges that transition between
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compartments. It also restricts the code and data available in each compartment,

thus limiting the exposed targets at any given time.

Kernel and Application Compartmentalization: There has been significant work to

isolate components of monolithic kernels using an MMU [86–88]. ACES focuses on

separating a single bare-metal system into compartments using an MPU and addresses

the specific issues that arise from the MPU limitations. Privtrans [89] uses static

analysis to partition an application into privileged and unprivileged processes, using

the OS to enforce the separation of the processes. Glamdring [90] uses annotations

and data and control-flow analysis to partition an application into sensitive and non-

sensitive partitions—executing the sensitive partition in an Intel SGX [91] enclave.

Robinov et al. [92] partition Android applications into compartments to protect data

and utilize ARM’s TrustZone environment to run sensitive compartments. These

techniques rely on an OS [89, 90] for process isolation or hardware not present on

micro-controllers [90,92,93] or significant developer annotation [90,93,94]. In contrast

ACES works without an OS, only requires an MPU, and does not require developer

annotations.

Embedded system specific protections: NesCheck [95] provides isolation by enforcing

memory safety. MINION [71] provides automatic thread-level compartmentalization,

requiring an OS, while ACES provides function-level compartmentalization without

an OS. ARM’s TrustZone [65] enables execution of software in a “secure world” un-

derneath the OS. TrustZone extensions are included in the new ARMv8-M architec-

ture. At the time of writing, ARMv8-M devices are not yet available. FreeRTOS-

MPU [21] is a real-time OS that uses the MPU to protect the OS from application

tasks. Trustlite [96] proposes hardware extensions to micro-controllers, including an

execution aware MPU, to enable the deployment of trusted modules. Each module’s

data is protected from the other parts of the program by use of their MPU. Ty-

Tan [62] builds on Trustlite and develops a secure architecture for low-end embedded

systems, isolating tasks with secure IPC between them. In contrast, ACES enables
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intraprocess compartmentalization on existing hardware and separates compartment

creation from program implementation.

3.8 Discussion and Conclusion

As shown in Section 3.6.3, compartmentalization policies may significantly impact

runtime performance. To reduce the runtime impact, new policies should seek to place

call chains together, and minimize emulating variable accesses. The PDG could be

augmented with profiling information of baseline applications so that compartment

policies can avoid placing callers and callees of frequently executed function calls in

different compartments. In addition, the number of emulator calls could be reduced

by improved alias analysis or adding dynamically discovered accesses to the PDG.

This would enable an MPU region to be used to provide access to these variables.

Finally, optimizations to the way emulated variables are accessed could be made

to ACES. For example, the emulator could be modified to check if the store to be

emulated is from memcpy. If so, permissions for the entire destination buffer could

be validated and then the emulator could perform the entire buffer copy. Thus, the

emulator would only be invoked once for the entire copy and not for each address

written in the buffer.

ACES’ goal is to implement the principle of least privilege following a developer

selected policy. However, lowering to reduce the number of data and peripheral

regions to fit within the MPU, increases the data accessible to code regions above

the minimal and diverges from the specified policy. The alternative is to have a set

of compartments that cannot be realized within the given hardware constraints or

to make heavy use of the micro-emulator, which has significant runtime overhead.

Here we take the approach of merging to enable hardware enforcement of as many

compartments as possible. This reduces the performance impact taken by from ACES,

while still providing improved isolation compared to an un-compartmented baseline

as shown in Table 3.2. The amount of deviation can be measured by the number of
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merges performed during lowering. If strict enforcement of the policy is needed the

lowering stage could made to fail if a merge is needed.

Cost functions which sought to minimize over-privileging were used for the opti-

mization and lowering stages of ACES. Different cost functions could be specified by

the policy enabling policies which prohibit specific regions from being merged. This

could enable ACES to enforce red-blacks separation. For example, the cost functions

could specify that no code region can access the SPI bus and Ethernet peripherals.

ACES provides the mechanisms and tools needed to perform exploration of these

types of cost functions and policies, but leaves the exploration for future work.

As stated in Section 3.2 ACES assumes a single statically linked binary. However,

ACES could be used in situations where code is loaded remotely (e.g. through a

firmware update) provided the loader validates the code prior to execution. In addi-

tion, some systems may obtain small task specific code to execute from remote servers.

In theses cases, ACES could be used to sandbox the remote code to limit the code,

data, and peripherals it can accesses. This would be done by validating the remotely

loaded code (e.g validating a cryptographic signature for the code) and then using a

compartment entry with a special sandbox compartment. This compartment would

limit remotely loaded code to unprivileged mode a fixed set of code, data, peripheral

regions. Systems using self modifying code would prevent ACES from determine the

programs PDG preventing the forming compartments. It also would requires code

to be executable and writable, thus potentially allowing code injection attacks that

could undermine ACES defenses.

Protecting against confused deputy attacks [97] is challenging for compartmental-

ization techniques. They use control over one compartment to provide unexpected

inputs to another compartment causing it to perform insecure actions. Consider Pin-

Lock that is split into an unprivileged compartment and the privileged compartment

with the unlock pin. An attacker with control over the unprivileged compartment

may use any interaction between the two compartments to trigger an unlock event.

To guard against confused deputy attacks, ACES restricts and validates the locations



92

of all compartment transitions. The difficulty of performing these attacks depends on

the compartmentalization policy. For security, it is desirable to have long compart-

ment chains, resulting in many compartments that must be compromised to reach

the privileged compartment.

In conclusion, ACES enables automatic application of compartments enforcing

least privileges on bare-metal applications. Its primary contributions are (1) decou-

pling the compartmentalization policy from the program implementation, enabling

exploration of the design space and changes to the policy after program development,

e.g., depending on the context the application is run in. (2) The automatic appli-

cation of compartments while maintaining program dependencies and ensuring hard-

ware constraints are satisfied. This frees the developer from the burden of configuring

and maintaining memory permissions and understanding the hardware constraints,

much like an OS does for applications on a desktop. (3) Use of a micro-emulator to

authorize access to data outside a compartment’s memory regions, allowing impre-

cise analysis techniques to form compartments. We demonstrated ACES’s flexibility

in compartment construction using three compartmentalization policies. Compared

to Mbed µVisor, ACES’ compartments use 58.6% less Flash, 83.9% less RAM, with

comparable execution time, and reduces the number of ROP gadgets by an average

of 94.3%.
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4. HALUCINATOR: FIRMWARE RE-HOSTING

THROUGH ABSTRACTION LAYER EMULATION

The final work of this thesis, HALucinator, enables dynamic analysis and coverage

based fuzzing of bare-metal firmware through re-hosting firmware in a full-system

emulator. It enables the scalable creation of full-system emulators by intercepting

Hardware Abstraction Layers (HAL) and replacing them with models of those lay-

ers. This work was an equal collaboration with Eric Gustafson at the University

of California Santa Barbara and at the time of writing is under submission at the

29th USENIX Security Symposium. Eric’s primary contributions were creation of

LibMatch and customizations of HALucinator to enable fuzzing. My contributions

were identifying that HAL replacement could be used to decouple firmware from its

hardware for re-hosting and development of the models that enable this. The com-

bination of these contributions enables scalable re-hosting of firmware and system

testing. The complete work is presented here, as the separation of HALucinator into

its components does not capture its contribution to the improvement of bare-metal

firmware security.

4.1 Introduction

Embedded systems are pervasive in modern life: vehicles, communication systems,

home automation systems, and even pet toys are all controlled through embedded

CPUs. Increasingly, these devices are connected to the Internet for extra functionality.

This connectivity brings security, privacy, and reliability concerns. However, auditing

the firmware of these systems is a cumbersome, time-consuming, per-device effort, for

any analyst.
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Today, developers create and test firmware almost entirely on physical testbeds,

typically consisting of development versions of the target devices. However, this

means modern software-engineering practices that benefit from scale, such as test-

driven development, continuous integration, or fuzzing, are cumbersome or imprac-

tical due to this hardware dependency. In addition, embedded hardware provides

limited introspection capabilities, often being restricted to a handful of breakpoints,

significantly restricting the ability to perform dynamic analysis on firmware. The

situation for third-party auditors and analysts is even more complex. Manufactur-

ing best-practices dictate stripping out or disabling debugging ports (e.g., JTAG),

meaning many off-the-shelf devices remain entirely opaque. Even if the firmware can

be obtained through other means, dynamic analyses remain troublesome due to the

complex environmental dependencies of the code.

Emulation – also known as firmware re-hosting – provides a means of addressing

many of these challenges, by offering the ability to execute firmware at scale through

the use of commodity computers, and providing more insight into the execution than

is possible on a physical device [98]. However, heterogeneity in embedded hardware

poses a significant barrier to the useful emulation of firmware. The rise of intellectual

property based, highly-integrated chip designs (e.g., ARM based Systems on Chip

(SoC)) has resulted in a profusion of available embedded CPUs, whose various on-

chip peripherals and memory layouts must be handled in a specialized manner by

the emulator. Between the two most popular emulation solutions, the open-source

QEMU supports fewer than 30 ARM devices, and Intel’s SIMICS [99,100] marketing

info lists many architectures and peripherals it supports, but requires building a

model of the exact system at the MMIO level. Worse yet, most embedded systems

have other components on their circuit boards which must exist for the firmware to

operate, such as sensors, storage, or networking components. Emulation support for

these peripherals is mostly nonexistent. As a result, it is nearly impossible to take an

embedded firmware sample and emulate it without significant engineering effort. In
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addition, this work does not transfer to firmware targeting other hardware platforms,

even those that serve the same function.

Current firmware emulation techniques rely on a real specimen of the hardware,

where the emulator forwards interactions with unsupported peripherals to real hard-

ware [101–103]. Such a “hardware-in-the-loop” approach limits the ability to scale

testing to the availability of the original hardware, and offers restricted instrumen-

tation and analysis possibilities compared to what is possible in software. Other

techniques [104, 105] focus on recording and replaying data from hardware, which

allows these executions to be scaled and shared, but necessarily requires trace record-

ing from within the device itself, limiting execution in the emulator to just recorded

paths in the program.

However, the immense diversity of hardware affects the developers as well as

3rd-party analysts. To mitigate some of the challenges of developing firmware, chip

vendors and various third parties provide Hardware Abstraction Layers (HALs) –

software libraries that provide high-level hardware operations to the programmer,

while hiding details of the particular chip or system on which the firmware executes.

This makes porting code between the many similar models from a given vendor, or

even between chip vendors, much simpler. This also means firmware written with

HALs are less tightly-coupled to the hardware by design.

From this observation, we propose a novel technique to enable scalable emulation

of embedded systems through the use of high-level abstraction layers and reusable

models for hardware functionality, which we term High-Level Emulation (HLE). Our

approach works by first identifying the HAL functions responsible for hardware inter-

actions in a firmware image, and providing modeled replacements, which perform the

same conceptual task from the firmware’s perspective (e.g., “pretending” to send an

Ethernet packet and acknowledging the action to the firmware). By replacing these

functions during emulation with high-level models, we can enable emulation of the

firmware using a generic ISA emulator (e.g., QEMU) in a scalable way.
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For example, ARM’s open source mBed OS [63] contains support for over 140

boards and their associated hardware from 16 different manufacturers. By identifying

and intercepting the mBed functions in the emulator, we replace the low-level I/O

interactions – that the emulator does not support – with high level implementations

that provide external interaction, and enable emulation of devices using mBed OS.

The first crucial step to enabling high-level emulation is the precise identification

of HAL functions within the firmware image. While a developer can re-host their

own code by skipping this step, as they have debugging symbols, third-party analysts

must untangle library and application code from the stripped binary firmware image.

We observe that, to ease development, most HALs are open-source, and are packaged

with a particular compiler toolchain in mind. We leverage the availability of source

code for HALs to drastically simplify this task.

After HAL function identification, we next substitute models for the HAL func-

tions. These models provide conceptual device implementations usable to any HAL

library independent of the device vendor; for example, an Ethernet device model

has the ability to send and receive frames, and respond to the firmware with some

basic metadata about its status. In order to use this model during emulation, the

arguments of the HAL functions in the firmware must be translated to actions on the
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model, by reading function arguments, and writing the return value, as if the function

had executed normally. Creating these models is simpler than building conventional

emulated peripherals, can be accomplished with only a high-level understanding of

the library’s function, and can be re-used on any firmware utilizing the same library.

We assemble these ideas into a prototype system, HALucinator, as shown in Fig-

ure 4.1, which provides a high-level emulation environment on top of the QEMU

emulator. HALucinator supports binary “blob” firmware, (i.e., all code is statically

linked into one binary executable) from multiple chip vendors for the ARM Cortex-M

architecture, and handles complex peripherals, such as Ethernet, WiFi, and 802.15

radio (ZigBee). The system is capable of emulating the firmware and its interac-

tions with the outside world. We present case studies focused on hybrid emulated

environments, wireless networks, and app-enabled devices. We additionally show the

applicability to security analyses by pairing it with the popular AFL fuzzer, and

demonstrate its use in the discovery of security vulnerabilities, without any use of the

original hardware.

In summary, our contributions are as follows:

1. We enable emulation of binary firmware using a generic system emulator with

no reliance on availability of hardware. We achieve this through the novel use

of abstraction libraries called HALs, which are already provided by vendors for

embedded platforms.

2. We improve upon existing library matching techniques, to better locate func-

tions for interception in the firmware.

3. We present HALucinator, a high-level emulation system capable of interactive

emulation and fuzzing firmware through the use of a library of abstract hardware

models.

4. We show the practicality of our approach through case studies modeled on 12

real-world firmware and demonstrate HALucinator intercepts and successfully
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Fig. 4.2. (a) Software and hardware stack for an illustrative HTTP Server.
(b) Conceptual illustration of HTTP Server when executing using HALu-
cinator.

emulates complex functionality. Through fuzzing we find use-after-free, memory

-disclosure, and exploitable buffer overflow bugs in our sample firmware.

4.2 Background

Virtually every complex electronic device has a CPU executing firmware. The

increasing complexity of these CPUs and the introduction of ubiquitous connectivity

has increased the complexity of firmware. To help manage the complexity of both the

chips, and the developers’ applications various libraries have been created to abstract

away direct hardware interactions. Understanding how these applications are built is

foundational to how HALucinator enables emulation of these firmware samples.

Figure 4.2a depicts the software and hardware components used in a representative

embedded system that HALucinator is designed to emulate. When emulating the

system, the on-chip peripherals and off-chip hardware are not present, yet much of the

system functionality depends on interactions with these components. For example,

in Section 4.6 we find that QEMU halts when accessing unsupported (and therefore
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unmapped) peripherals. The result is all 12 test cases execute less than 39 basic

blocks halting on setting up a clock in the beginning of main.

4.2.1 Emulating Hardware and Peripherals

To achieve our goal of scalably re-hosting embedded firmware, we must emulate

the environment it runs in. This environment consists of, first and foremost, the

main CPU of the device with its instruction set and basic memory features. Mod-

ern CPUs, even low-power, low-cost micro-controllers, include a full complement of

on-chip peripherals, including timers, bus controllers, networking components, and

display devices. Code executing on the CPU controls these features via Memory-

Mapped I/O (MMIO), where various control and data registers of peripherals are

accessed as normal memory locations in a pre-determined region. The exact layout

and semantics of each peripheral’s MMIO regions vary, but are described in the chip’s

documentation. Further complicating re-hosting is the interaction of a firmware sam-

ple with off-chip devices (e.g., sensors, actuators, external storage, communications

hardware, etc.). Each embedded system uses different off-chip devices leading to a

wide number of combinations.

While emulators that can handle the instruction set architecture (ISA) exist, such

as QEMU [106], used in this work, no existing emulator supports on-chip or off-chip

devices in sufficient volume to make re-hosting arbitrary firmware feasible. Even

for those few CPU’s that are supported by emulators, no off-chip device support

is provided. Commercial tools such as SIMICS allow the emulation of a full sys-

tem, including external peripherals, but requires implementation of peripherals at

the memory register level, making this a tedious task.

4.2.2 The Firmware Stack

The software and hardware stack for an illustrative HTTP server is shown in Fig-

ure 4.2a. The software stack consists of application logic (HTTP server), middleware,
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and Hardware Abstraction Layers (HALs). The middleware is further comprised of

external device libraries (e.g., a temperature sensor library), protocol stacks (e.g.,

the TCP Stack) and OS libraries (e.g., a Flash file system). Consider an example

where the HTTP server provides the temperature via a webpage. The application

gets the temperature using an API from the library provided by the temperature sen-

sor’s manufacturer, which in turn uses the I2C HAL provided by the micro-controller

manufacturer, to communicate with the off-chip temperature sensor over the I2C bus.

When the page containing the temperature is requested, the HTTP server uses the

OS library’s API to send and receive TCP messages. The OS, in turn, uses a TCP

stack provided via another library, e.g., Lightweight IP (lwIP) [107]. lwIP translates

the TCP messages to Ethernet frames and uses the Ethernet HAL to send the frames

using the physical Ethernet port.

While this is an illustrative example, the complexity of modern devices and pres-

sure to reduce development time make it so that firmware applications are typi-

cally built on top of a collection of middleware libraries and HALs. Many of these

libraries are available from chip manufacturers in their software development kits

(SDKs) to attract developers to use their hardware. For example, NXP/Freescale,

ST-Microelectonics, Atmel/Microchip, Nordic Semiconductor, Dialog Semiconductor,

Texas Instruments, and Renesas all provide source code for their HALs and middle-

ware for their ARM Cortex M micro-controllers. These SDKs incorporate exam-

ple applications and middleware libraries including: operating system libraries (e.g.,

mBed OS [63], FreeRTOS [108], and Contiki [109]), protocol stacks (e.g., TCP/IP,

ZigBee, and Bluetooth), file systems, and HALs for on-chip peripherals. Each of

these libraries abstracts lower-level functionality, decoupling the application from its

physical hardware.

In order for HALucinator to break the coupling between firmware and hardware,

it must intercept one of these layers, and interpose its high-level models instead, as

shown in Figure 4.2b. Which layer we choose, however, provides trade-offs in terms

of generality of the used models, the simplicity of the mapping between the functions
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and the models, as well as the likelihood of finding a given library in a target device’s

firmware. While it is more likely that the author of a given firmware is using the chip

vendor’s HAL, this bottom-most layer has the largest number of functions, which

often have very specific semantics, and often have complex interactions with hardware

features, such as interrupts and DMA. At a higher level, such as the network stack

or middleware, we may not be able to predict which libraries are in use, but models

built around these layers can be simpler, and more portable between devices.

Consider lwIP, the network stack used in the previous example, running on an

STM32F4 micro-controller. lwIP provides various levels of abstraction around com-

mon IP networking functions, but in the end, will interface with the vendor’s HAL to

drive the network interface. In this case, the STM32F4 provides an Ethernet MAC

peripheral on-chip; the HAL in turn provides HAL Ethernet TX Frame, which takes

an Ethernet frame, and handles the DMA transfer and other MMIO accesses to get

it onto the network. At the top-most layer, lwIP’s tcp write, tcp recv and other

similar socket-style APIs assemble all of the application data into these frames, which

are passed into HAL Ethernet TX Frame. If we model just the HAL, the model is re-

sponsible for handling just the details of Ethernet frame transmission and reception.

At the middleware layer, we can just model the firmware’s need to make TCP con-

nections by extracting the payload from the function arguments, or even just passing

the request through to the host’s operating system to handle, and can re-use this

model, regardless of hardware, assuming the firmware is using lwIP. A further trade-

off appears when deciding where in the library stack to hook: hooking higher in the

stack may allow simpler re-hosting, at the cost of executing less of the firmware’s

original code, which may contain the bugs one wishes to find. In short, the right

answer depends largely on the analyst’s goals, and what libraries the firmware uses.

In this work, we focus primarily on re-hosting at the HAL level, but also explore

high-level emulation approaches targeting other layers, such as the middleware, in

our evaluation of HALucinator.
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4.3 High-Level Emulation

Before discussing the design of HALucinator, we first highlight the ways in which

high-level emulation enables scalable emulation of firmware.

First, our approach reduces the emulation effort from the diversity of hardware

to the diversity of HAL or middleware libraries. This is advantageous because of the

practical relation |Hardware peripherals| > |HAL libraries| > |Middleware libraries|.

Large groups of devices, from the same manufacturer or device family, share the same

programmer-facing library abstractions. For example, STM provides a unified HAL

interface for all its Cortex-M devices. Similar higher-level libraries, such as mBed,

provide abstractions for devices from multiple manufacturers, and commonly used

protocol stacks (e.g., lwIP) abstract out details of communication protocols. Inter-

cepting and modeling these libraries enables emulating devices from many different

manufacturers.

Second, our approach allows flexibility in the fidelity of peripheral models that we

have to develop. For peripherals that the analyst is not concerned with, or which are

not necessary in the emulator, simple low-fidelity models that bypass the function

and return a value indicating successful execution can be used. In cases where input

and output is needed, higher-fidelity models enabling external communication are

needed. For example, the function HAL TIM OscConfig from the STM32Cube HAL

configures and calibrates various timer and clock parameters; if not handled, the

firmware will enter an infinite loop inside this function. As the emulator has no

concept of a configurable clock or oscillator, this function’s handler merely needs to

return zero, to indicate it executed successfully. On the other hand, a higher-fidelity

model for the HAL Ethernet RX Frame and HAL Ethernet TX Frame functions that

enables sending and receiving Ethernet frames is desired to be able to emulate a

network. Our approach allows for models at multiple fidelity levels to co-exist in the

same emulation.
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Finally, high-level emulation simplifies the process of creating models for peripher-

als by taking advantage of the same abstractions developers use to simplify interacting

with hardware. Thus, models do not need to implement low-level MMIO manipu-

lations, but simply need to intercept the corresponding HAL function, and return a

value that the firmware expects.

4.4 Design

For our design to capitalize on the advantages of high-level emulation we need

to (1) automatically locate the HAL library functions in the firmware, (2) provide

high-level replacements for HAL functions, and (3) enable external interaction with

the emulated firmware. Achieving these allows for emulation in a variety of use-cases,

from performing dynamic analyses to fuzzing.

HALucinator employs a modular design to facilitate its use with a variety of

firmware and analysis situations, as seen in Figure 4.1. To introduce the various

phases and components of HALucinator, let’s consider a simple example firmware

which uses a serial port to echo characters sent from an attached computer. Aside

from hardware initialization code, this firmware needs only the ability to send and

receive serial data. The analyst notices the CPU of the device is an STM32F4 micro-

controller, and uses the LibMatch analysis presented in Section 4.4.2, with a database

built for STMs HAL libraries for this chip series. This identifies HAL UART Receive

and HAL UART Transmit in the binary. The analyst then creates a configuration for

HALucinator, indicating that a set of handlers (i.e., the high-level function replace-

ments), for the included HAL, should be used. If the handlers do not already exist,

the analyst creates them. These two HAL functions take as arguments a reference to

a serial port, buffer pointer, and a length. The created handlers map these arguments

to the abstract model for a serial port which sends and receives the data in a generic

way, and uses the I/O Server to pass the data through to the host machine’s terminal.

Now, when the firmware executes in HALucinator, the firmware is usable through a
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terminal like any other console program. This represents only a small fraction of the

capabilities of HALucinator, which we will explore in detail in the following sections.

4.4.1 Prerequisites

While HALucinator offers a significant amount of flexibility, there are a few re-

quirements and assumptions regarding the target firmware. First, the analyst must

obtain the complete firmware for the device. HALucinator focuses on OS-less “blob”

firmware images typically found in micro-controllers. While no hardware is needed

during emulation with HALucinator, some details about the original device are needed

to know what exactly to emulate. HALucinator needs the basic parameters needed

to load the firmware into any emulator, such as architecture, and generic memory

layout (e.g., where the firmware and RAM reside within memory).

We assume the analyst can also obtain the libraries, such as HALs, OS library,

middleware, or networking stacks they want to model, and the toolchain typically

used by that chip vendor to compile them. Most chip vendors provide a development

environment, or at least a prescribed compiler and basic set of libraries, to avoid

complications from customers using a variety of different compiler versions. As such,

the set of possible HAL and compiler combinations is assumed to be somewhat small.

While firmware developers are free to use whatever toolchain they wish, we expect

that the conveniences provided by these libraries and toolchains, and the potential

for support from the chip vendor, has convinced a significant number of developers

to take advantage of the vendor’s toolchain. In Section 4.8, we discuss the possibility

of using high-level emulation, even in firmware without an automatically identifiable

HAL.

HALucinator naturally requires an underlying emulator able to faithfully execute

the firmware’s code, and able to support HALucinator’s instrumentation. This in-

cludes a configurable memory layout, the ability to “hook” a specific address in the
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code to trigger a high-level handler, and the ability to access the emulator’s registers

and memory to perform the handler’s function.

While all of these pieces are theoretically required, in practice, obtaining them can

be very simple. For the ARM Cortex-M devices we focus on in this work, the general

memory map is standardized, the location of the firmware in memory can be read

from the firmware blob itself, and common emulators such as QEMU [106] faithfully

emulate instructions. Each Cortex-M vendor provides one open-source HAL for their

chips, with compilers and configurations. All that is needed for a particular device is

to obtain the firmware, know the CPU’s vendor, and obtain their SDK.

4.4.2 LibMatch

A critical component of high-level emulation is the ability to locate the abstrac-

tion in the program used as the basis for emulation. While those developers who wish

to re-host their own code, or those interested in open-source firmware projects, can

already obtain this information during compilation, analysis of closed-source binary

firmware requires the ability to locate these libraries before emulation can proceed.

Existing approaches that address the problem of finding functions in stripped bina-

ries lack support for embedded CPU architectures, particularly the ARM Cortex-M

architecture commonly used in many consumer devices and used in this work. While

much work has also been done in comparing two binary programs [110, 111], these

schemes are not applicable out-of-the-box for comparing a binary with its component

libraries.

The nature of firmware itself further complicates library matching; firmware li-

brary functions are typically optimized for size, and can be difficult to distinguish.

Nearly or entirely identical code can serve a different function in the system, de-

pending on function arguments and other environmental factors. Many smaller HAL

functions may simply be a series of preprocessor definitions resolved at compile-time

relating to I/O operations. With desktop libraries, it is typically expected that li-
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brary functions are monolithic, (i.e., they execute, perform their task, and return

to the caller). This is often not true in firmware; common patterns found in HALs

include overrides, where the developer overrides a weak symbol in the HAL during

compilation, or explicit callbacks are passed in via pointers. In short, HALs will call

application code directly, which models must in turn replicate, and therefore we must

not only recover the library functions’ addresses, but those of the application code

they call.

To address these problems, we create LibMatch, applying ideas from full-program

diffing schemes to the problem of binary-to-library matching. LibMatch uses a

database created by extracting the control-flow graph of the unlinked binary ob-

ject files of the libraries, plus an Intermediate Representation (IR) of their code. It

then performs the following steps to successively refine possible matches:

Phase one: Statistical comparison. We compare three basic metrics–number of

basic blocks, CFG edges, and function calls–for each pair of function in the target

program and library functions in the database. If functions differ on these three

metrics, they are unlikely to be a match, and removing these non-matches early

provides a significant performance improvement.

Phase two: Basic Block Comparison. For those pairs of functions that match

based on the previous step, we further compare the content of their basic blocks, in

terms of an intermediate representation. While there are many possible metrics to

compare instruction sequences (as we discuss in Section 4.7), we intend to use these

base matches to serve as context for others, and need to be confident in them to avoid

errors. As such, we consider two functions a match if each of their basic blocks’ IR

content matches exactly. We do, however, discard known pointers and relative offsets

used as pointers, and relocation targets, as these will differ between the library and

the binary’s IR code. Additionally, unresolvable jump and call targets, even when

they are resolvable in the library but not in the binary, are ignored.

While our comparison metric is somewhat brittle (i.e., any environmental change

such as compiler, compiler flags, or source code will mismatch), we make the trade-off
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that any match is a true high-confidence match. This trade-off is necessary as matches

derive context for other functions. Even with an ideal scenario of strict matching and

known compiler toolchains, collisions still occur, as we show in Section 4.6.

Phase three: Contextual Matching. The previous step will produce a set of

matches, but also a set of collisions, those functions which could not be distinguished

from others. We therefore leverage the function’s context within the target program

to disambiguate these cases, by locating places in the program with matches to infer

what other functions could be. While many program diffing tools [110, 111] use two

programs’ call graphs to refine their matching, we cannot, as our ‘second program’, is a

library database. The library database is entirely un-linked and has no call graph. We

cannot even infer the call graph of a function within a particular library, as HALs may

contain many identically-named functions chosen via link-time options. Therefore,

we use both caller context and callee context, to effectively approximate the real call

graph of the library functions, disambiguate collisions, and try to provide names for

functions which may differ between the library database and the target (e.g., names

overridden by the application code, or names outside the libraries entirely).

We first leverage caller context to resolve collisions. For each of the possible

collided matches, we use the libraries’ debugging information to extract the set of

called function names. We obtain the same set of called function names from the

ambiguous function in the target binary, by using the exact matches for each of

the called functions. If the sets of function names in the target and the collided

match are congruent, the match continues to be valid, and others are discarded. For

callee context, we gather the set of functions called by any function we were able to

match exactly in step two, and name them based on the debug symbols in the library

objects. If the function is a collision, it can then be resolved. If the function is not

in the database, such as due to overrides by the application, it can then be named.

Both of these processes occur recursively, as resolving conflicts in one function may

lead to other matches.
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The final match. A valid match is identified if exactly one unique name matches

to a given function.

4.4.3 Peripheral Modeling

After identifying the addresses of functions, the emulator must replace the execu-

tion of selected functions to ensure the re-hosted firmware executes correctly. These

intercepted functions relate to the on-chip or off-chip peripherals of the device, and

are implemented manually. To simplify implementation, our design breaks the needed

implementation per library into handlers, which encode each HAL function’s seman-

tics, and models which reflect aspects common to a peripheral type. Under this

scenario, each model only has to be written once, requiring only a small specialized

handler for each matched HAL function.

Peripheral Models. Peripheral models intend to handle common intrinsic aspects

of what a certain class or type of peripheral must do. Developing models requires

understanding the type of data the peripheral handles and how the data is communi-

cated. For example, serial ports send and receive data, Ethernet devices transmit and

receive frames, and the I2C bus interacts with many addressed devices in a specific

way. It also requires knowing if interactions are synchronous (i.e., polled) or asyn-

chronous (i.e., interrupt based) with the models supporting both types of interactions.

While this effort is manual, each peripheral model only needs implemented once per

type and does not require understanding the specifics of a particularly peripheral

implementation, just what the peripheral does.

Handlers. Each HAL function, even those with the same purpose, likely vary in

terms of function arguments, return value, and exact internal semantics. We refer

to the actual replacement functions that bridge the gap between firmware code and

models as handlers. Most handlers follow a similar pattern: gathering the function

arguments, calling the model to perform an action, and returning a result to the

firmware by either writing its registers or memory.
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Creating handlers is done manually, but only needs to be done once for each HAL

or library, and is independent of the firmware being analyzed. If the handlers for

a HAL do not yet exist, the analyst can of course implement the entire HAL. For

larger HALs, where this might not be desirable all at once, the analyst can follow

an iterative process. First, the analyst runs the binary in HALucinator, which will

report all I/O accesses outside of handlers, and which function in the binary caused

them. If the firmware gets stuck, or is missing desired behavior, the analyst can

evaluate which functions contain the I/O operations, and consider implementing a

handler. The process repeats, and successive handlers produce greater coverage and

more accurate functionality.

The functionality of each handler can be inferred from the vendor’s documentation

or header files, and typically consists of identifying the meaning of the parameters and

return values, and passing these to the appropriate model. Our evaluation in Sec-

tion 4.6, shows how we emulate even complex wireless devices using less than 500

lines of code total for both handlers and models.

I/O Server In order for the re-hosted firmware to meaningfully execute it must in-

teract with external devices. Thus, each peripheral model defines a standard interface

that can be used to send inputs to it, obtain outputs, and trigger interrupts in the

re-hosted firmware. These interfaces are then exposed through an I/O server. The

I/O server uses a publish/subscribe design pattern, to which peripheral models pub-

lish and/or subscribe to specific topics which they handle. For example, an Ethernet

model will send and receive messages on the ‘Ethernet.Frame’ topic, enabling it to

connect with other devices that can receive Ethernet frames.

Using the I/O server centralizes external communication with the emulated sys-

tem, by facilitating multiple use cases without changing the emulator’s configuration.

For example, the Ethernet model can be connected to: the host Ethernet interface,

other emulated systems, or both, by appropriately routing the messages published by

the I/O server. In addition, centralizing all I/O enables a program to coordinate all

external interactions of an emulated firmware. For example, this program could co-
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ordinate pushing buttons, sending/receiving Ethernet frames, and monitoring LED

status lights. This enables powerful multiple interface instrumentation completely

in software, and enables dynamic analysis to explore complex internal states of the

firmware.

Peripheral Accesses Outside a HAL Replacing the HAL with handlers and mod-

els simplifies emulating firmware, but occasionally, direct MMIO accesses from the

firmware will still occur. These can happen when a developer deliberately breaks the

HAL’s abstraction and interacts with hardware directly, or when the compiler inlines

a HAL function. As mentioned previously, HALucinator will report all I/O outside

handlers to the user. Additionally, all read operations to these areas will return zero,

and all writes will be ignored, allowing code that naively interacts with this hardware

directly to execute without crashing. We find many MMIO operations, particularly

write operations setting peripheral flags and configurations, can be safely ignored as

the emulator configures its resources independent of the firmware. We discuss more

severe cases, such as firmware not using a HAL in Section 4.8.

4.4.4 Fuzzing with HALucinator

The use of peripheral modeling enables interactive emulation of firmware and test-

ing, such as fuzzing. However, fuzzing – especially coverage-guided fuzzing through,

e.g., AFL [112] – has different constraints than interactive emulation:

Fuzzed input. First, the analyst needs to decide how the mutated input should be

provided to the target. HALucinator provides a special fuzz model, which when used

in a handler, will dispense data from the fuzzer’s input stream to the handler. By

adding this model to the handlers where fuzz is desired, the specific input interfaces

can be fuzzed.

Termination. Beyond providing input from the fuzzer, the fuzzed firmware must

terminate. Current fuzzers generally target desktop programs, and expect them to

terminate when input is exhausted; firmware never terminates. Thus, we design the
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fuzz model to gracefully exit the program, sending a signal to the fuzzer that the

program did not crash during that execution.

Non-determinism. Firmware has significant non-deterministic behavior, which

must be removed to allow the fuzzer to gather coverage metrics correctly. This is

typically removed from programs via instrumentation, and HALucinator’s high-level

emulation enables this as well. HALucinator provides static handlers for randomness-

producing functions when they are identified, such as rand(), time(), or vendor-

specific functions providing these functionalities.

Timers. One special-case of non-determinism is timers, which often appear in micro-

controllers as special peripherals which trigger interrupts and other events at a spec-

ified interval. Because we cannot guarantee any clock rate for our execution, im-

plementing these based on real time, like during an interactive emulation, will lead

to non-deterministic behavior, as these timer events can occur at any point in the

program. We provide a Timer model, which ties the timer’s rate to the number of

executed blocks, resulting in deterministic timer behavior, and fair execution of both

the timer’s interrupt handlers and the main program, regardless of emulation speed.

Crash detection. Crash detection in embedded systems remains a challenge [98].

A system based on high-level emulation gains a significant amount of crash detection

capability from the visibility provided by the emulator, making many generated faults

much less silent. Just as with desktop programs, we can instrument firmware to add

additional checks. High-level emulation handlers can perform their own checks, such

as checking pre-conditions of their arguments (e.g., pointer validity, positive buffer

lengths, etc). High-level emulation can also be used to easily add instrumentation

usually handled at compile time. For example, HALucinator provides a heap-checking

implementation similar to ASAN [113], if the malloc and free symbols are available.

Input generation. Finally, fuzzing requires representative inputs to seed its muta-

tion algorithms. HALucinator’s fully-interactive mode can be used to interact with

the device and log the return values of library calls of interest, which can be used
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to seed fuzzing. This removes the need for any hardware, even while generating test

inputs.

4.5 Implementation

We implement the concept of high-level emulation by creating prototypes of Lib-

Match and HALucinator targeting the widely-used and highly diverse Cortex-M

micro-controllers.

LibMatch Implementation. LibMatch uses the angr [114] binary analysis plat-

form. More specifically, it uses angr’s VEX-based IR, control-flow graph recovery,

and flexible architecture support function labeling without any dependence on specific

program types or architecture features. Statistics needed for matching are gathered

using angr’s CFG recovery analysis. This includes the basic block content com-

parisons, which operate on top of the VEX IR statements and their content. Imple-

menting LibMatch for the Cortex-M architecture required extending angr. We added

support for the Cortex-M’s calling conventions, missing instructions, function start

detection and indirect jump resolution. After these extensions, angr was able to re-

cover the CFG using its ByteWeight [115] implementation. When run, LibMatch uses

unlinked object files with symbols, obtained by compiling the HAL and middleware

libraries to create a database of known functions. It then uses this database to locate

functions inside a firmware without symbols. When LibMatch is then run against

a firmware sample, it outputs a list of identified functions and their addresses, and

makes note of collisions, in the event that a human analyst wishes to resolve them

manually.

HALucinator Implementation. HALucinator is implemented in Python and uses

Avatar2 to set up a full-system QEMU emulation target and instrument its execution

using both GDB, and QEMU’s messaging protocol from Python. This enables the

handlers, models, and the I/O server to be implemented in Python and control both

QEMU and GDB. HALucinator takes as inputs: the memory layout (i.e., size and
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location of Flash and RAM), a list of functions to intercept with their associated

handlers, and the list of functions and addresses from LibMatch. It uses the ad-

dresses of the functions to place a breakpoint on the first instruction of each function

to be intercepted, and registers the handler to execute when the breakpoint is hit.

Note that, while Avatar2 is typically deployed as a hardware-in-the-loop orchestration

scheme, we use it here exclusively for its flexible control of QEMU, and not for any

hardware-related purpose.

Handlers are implemented as Python classes, with each function covering one or

more functions in the firmware’s HAL or libraries. The handlers can read and write

the emulators registers or memory, call functions in the firmware itself, and interact

with the peripheral models. Examples of both simple and complex handlers are given

in Figure 4.3 and Figure 4.4.

Peripheral models are implemented as Python classes, and can make full use of

system libraries to implement the desired functionalities. For example, calls to get

the time from a hardware real-time clock can simply invoke the host system’s time()

function. Most models, however, merely act as a store or queue of events, such as

queuing received data for the serial port or Ethernet interface.

The IO server is implemented as a publish-subscribe system using the ZeroMQ [116]

messaging library. Models that perform external interaction can register with the IO

Server to produce or consume various tagged events. This enables one or more pub-

lishers/subscribers to interact with the emulated firmware over a TCP socket. It

also allows emulated systems to be connected to each other, enabling emulation of

interconnected systems of systems.

Fuzzing with HALucinator. We created the ability to fuzz firmware using HALu-

cinator by replacing the full-system QEMU engine at the center of HALucinator with

AFL-Unicorn [117]. AFL-Unicorn combines the ISA emulation features of QEMU

with a flexible API, and provides the coverage instrumentation and fork-server capa-

bilities used by AFL. It does not provide any peripheral hardware support making it

unable to fuzz firmware alone. Adding HALucinator’s high-level emulation provides
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the needed peripheral hardware support. Unicorn and AFL-Unicorn also deliberately

remove the concept of interrupts, which are necessary for emulating firmware. Thus,

we add a generalized interrupt controller model, which currently supports ARM’s

Cortex-M interrupt semantics. Combined with the deterministic Timer model, this

provides deterministic execution.

AFL-Unicorn detects crashes by translating various execution errors (e.g., invalid

memory accesses, invalid instructions, etc.) into the equivalent process signal fired

upon the fuzzed process (e.g., SIGSEGV), providing the appropriate signals to AFL.

Models and handlers can also explicitly send these signals to AFL if their assumptions

are violated.

4.6 Evaluation

For HALucinator to meet its goal of enabling scalable emulation it must accurately

identify HAL functions in firmware, and enable replacement of those functions with

peripheral models. In addition, the models must be created with reasonable effort,

and the emulation must be accurate to enable meaningful dynamic analysis of the

firmware. In this section, we show that HALucinator meets these goals by evaluating

LibMatch’s ability to identify HALs in binaries, demonstrating interactive emula-

tion of 12 applications, and then utilizing HALucinator to fuzz network-connected

applications.

In our experiments, we use 12 example firmware samples provided with three

different development boards (STM32F479I-Eval [32], STM32-Nucleo F401RE [118],

SAM R21 Xplained Pro [119]) from STM and Atmel. These samples were chosen for

their diverse and complex hardware interactions, including serial communication, file

systems on SD cards, Ethernet, 802.15.4 and WiFi. They also contain a range of so-

phisticated application logic, including wireless messaging over 6LoWPAN, a Ladder

Logic interpreter, and an HTTP Server with a Common Gateway Interface (CGI).

The set of included libraries is also diverse, featuring STM’s STM32-Cube HAL [120],
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Atmel’s Advanced Software Framework (ASF) [121], lwIP [107], FatFs [122], and

Contiki-OS [109] – a commonly used OS for low-power wireless sensors – with its

networking stack µIP .

Experiment Setup. All STM firmware was compiled using GCC -Os targeting a

Cortex-M3. The STM boards use Cortex-M4 micro-controllers, however QEMU lacks

support for some Cortex-M4 instructions, thus these examples were compiled using

the Cortex-M3 instruction set. Atmel’s example applications were compiled using

Atmel Studio 7, using its release build configuration that uses the -Os optimization

level and targets the Cortex-M0 ISA as intended for their target board1. All symbols

were stripped from the binaries.

4.6.1 Library Identification in Binaries

We first explore the effectiveness of LibMatch in recovering the addresses of func-

tions in a binary firmware program. As there are multiple locations within a firmware

that may be hooked, with various trade-offs in the complexity of emulation, here we

try to match the entire set of functions provided by the HAL and its associated mid-

dleware. We use symbol information in each target firmware sample to provide the

ground-truth address of each function. LibMatch then tries to determine the address

of each function in its HAL database using a stripped version of this binary.

Table 4.1 shows a comparison of the 12 example firmware samples using LibMatch

with and without context matching. LibMatch without context matching is compa-

rable to what could be possible with current matching algorithms (e.g., BinDiff, or

Diaphora). However, a direct comparison is not possible because these tools only per-

form a linked-binary to linked-binary comparison and LibMatch must match a linked

binary to a collection of unlinked binaries. LibMatch extends angr’s BinDiff imple-

mentation (as discussed in Section 4.5). Thus, even LibMatch without context match

1The Cortex-M0 ISA is a strict subset of the Cortex-M3 ISA and thus works on QEMU’s Cortex
M3.
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is an advancement in the discovery of HAL libraries within a firmware. LibMatch

with context matching furthers this advancement.

In Table 4.1, the number of HAL symbols is the number of library functions

present in the firmware, while the ‘Correct’ column shows the number of those func-

tions correctly identified. The ‘Collision’, ‘Incorrect’, and ‘Missing’ columns delineate

reasons LibMatch was unable to correctly identify the unmatched functions. The last

column, ‘External’ is the number of functions external to the HAL libraries that Lib-

Match with context matching labels correctly. Overall, LibMatch without context

matching averaged over the 12 applications matches 74.5% of the library functions,

and LibMatch with context matching increases this to an average of 87.4%. Thus,

nearly all of the HAL and middlewares are accurately located within the binary.

Context matching identifies many of the functions needed for re-hosting firmware.

The most dramatic example of this is STM’s PLC application; it includes STM’s WiFi

library, which communicates with the application using a series of callbacks called via

overridden symbols. In order to re-host this binary, the handlers for this library must

fulfill its contract with the application, by calling these callbacks. Thus, recovering

their names even when they are not part of the library database, is necessary to enable

their use during re-hosting. Resolved collisions includes various packet handling,

timer, and external interrupt functions of the Atmel 6LoWPAN stack, as well as

functions needed to enable fuzzing, such as lwIP’s IP checksum calculation. One other

important category of functions resolved via context includes those that are neither

part of the vendor’s HAL, nor the application code, but come from the compiling

system’s standard C libraries, such as malloc, free, and even the location of the

program’s main. Heap functions, and other non-hardware-related standard library

functions, do not need to be handled to emulate the firmware, but are very useful in

later analysis, such as the fuzzing experiments presented below.

Collisions are the most common causes of functions being unlabeled. The most

common causes include C++ virtual function call stubs, and functions that have

multiple implementations with different names. For example, the STM32 HAL con-
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tains functions HAL TIM PWM Init and HAL TIM OC Init, which are entirely identical,

and insufficient contextual references exist to resolve them. Similarly, in many C++-

based HAL functions, a stub is used to lookup and call a method on the object itself;

identical code for this can exist in many places, but those without actual direct calls

to them cannot be resolved through context. Finally, many unused interrupt handlers

contain the same default content (e.g., causing the device to halt) and thus collide.

Since they are interrupt handlers, they are never directly called, and thus cannot be

resolved via context.

The few “Incorrect” matches made by LibMatch stem from cases where the library

function name actually changed during linking. In these cases, LibMatch has a single

match for the function – thus finding a correct match– but applies the wrong name.

Our measure of correctness is the name, and therefore these are marked as “Incor-

rect”. There are two main causes of ‘Missing‘ functions: the application overrides a

symbol and we are unable to infer it as an External match via context, and bugs in

the CFG recovery performed by angr causing the functions’ content to differ between

the program and the library when they should not. For example, most Cortex-M

applications contain a symbol named ‘SystemInit’, which performs hardware specific

initialization; most HALs provide a default, but this symbol is very often overrid-

den to configure hardware timing parameters, and it is only ever called from other

application-customized code, and thus we lack context to resolve it. None of the un-

matched or collided functions after context matching are functions needed to perform

high-level emulation, in the experiments below.

4.6.2 Interactive Firmware Emulation

Next we re-host the 12 firmware samples interactively, using the function locations

recovered from LibMatch. The goal of interactive emulation is not to get perfect em-

ulation, but to enable the same external interactions as the physical systems, – i.e.,

the black-box behavior. This lays the foundation for additional dynamic analysis and
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Table 4.3.
Comparison of QEMU vs. HALucinator using black box and reduced
MMIO configurations. Showing number of basic blocks (BB) executed for
different emulation configurations, the number of functions intercepted,
and the number of MMIO handled by the default handler.

QEMU Black Box Reduced MMIO
Mfr. Application BB BB Funcs. MMIO BB Funcs. MMIO

Atmel UART 8 43 5 4 43 5 4
Atmel SD FatFs 8 920 14 28 799 18 4
Atmel lwIP HTTP 8 1584 8 24 1533 14 7
Atmel 6LoWPAN Sender 14 2734 21 36 2662 32 11
Atmel 6LoWPAN Receiver 14 2474 21 36 2404 32 11

STM UART 8 66 10 7 60 10 2
STM SD FatFs 8 625 18 25 570 19 3
STM UDP Echo Client 8 732 16 10 716 18 6
STM UDP Echo Server 8 568 15 10 567 16 5
STM TCP Echo Client 8 1110 16 10 1113 18 6
STM TCP Echo Server 8 1002 15 10 1003 16 5
STM PLC 39 713 17 41 677 22 14

Averages 11.6 1047.6 14.7 20.1 1012.3 18.3 6.5
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allows interaction with the system by a user, automated scripts, and other emulated

systems. For each firmware sample, a set of test procedures were developed to exercise

the functionality described in the firmware’s documentation. These tests ensure that

the UART firmware samples send and receive the correct data, the FatFs firmware

samples read and write the correct files and the binary file used as the “SD Card” is

mountable as a FAT file system in Linux, the HTTP server can serve all its known

webpages, the TCP/UDP servers and clients successfully echo data between them,

and the 6LoWPAN firmware samples send IEEE802.15.4 frames and are able to com-

municate their UDP messages, and finally they ensure the PLC firmware successfully

connects to the Android application provided with the firmware sample. In addition,

the PLC loads and executes ladder logic.

We evaluate HALucinator in three configurations: QEMU-only (without HALu-

cinator), QEMU with HALucinator to emulate black-box behavior, and QEMU with

HALucinator to reduce MMIO accesses as shown in Table 4.3. With QEMU-only,

firmware were emulated with a peripheral model that halts on MMIO accesses. This

is how baseline QEMU emulates these firmware samples, triggering a bus fault when

accessing unsupported MMIO addresses. This results in at most 39 (STM PLC)

unique basic blocks being executed. This shows the tight coupling of firmware to

hardware, and the necessity to provide implementations of external peripherals dur-

ing emulation. In black-box emulation, we use HALucinator to replace functions with

models to provide the ability to pass the black-box test procedures described above.

The intercepted interfaces are shown in Table 4.2. For any MMIO that is executed,

we implement a default MMIO handler that returns zero for reads and silently ignore

writes, preventing QEMU from halting. Table 4.3 shows that on average 14.7 func-

tions need to be intercepted and replaced with models. Using these models we get a

large increase in the number of unique basic blocks executed compared to QEMU-only.

We also demonstrate the utility of these models by performing a dynamic analysis

to record the instruction addresses of all accesses to MMIO. This is useful to identify

additional peripherals and interfaces the firmware may be using. An analysis similar
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Table 4.4.
Showing SLOC, number of functions (Func), and maximum and average
cyclomatic complexity (CC) of the handlers written for the STM32F4Cube
and ATMEL ASF libraries, and written for the associated peripheral mod-
els.

STM32 Handlers Atmel ASF v3 Handler Peripheral Model
CC CC CC

Peripheral SLOC Func Max Ave SLOC Func Max Ave SLOC Func Max Ave

802.15 Not Used 113 12 3 1.3 62 7 3 2.0
Clock 21 3 1 1.0 25 4 2 1.3 Not Used
EDBG Not Used 36 5 2 1.4 Not Used
Ethernet 67 6 4 1.5 123 8 6 1.8 59 6 3 2.2
EXTI Not Used 47 6 4 2.2 32 5 2 1.4
GPIO 52 8 1 1.0 Not Used 36 4 2 1.3
SD Card 95 11 5 1.5 136 14 3 1.4 60 6 4 2.3
SPI 55 7 1 1.0 Not Used 66 8 5 1.9
WiFi TCP 85 9 8 1.8 Not Used 59 5 5 2.2
Timers 77 10 1 1.0 61 9 2 1.3 43 6 2 1.7
UART 37 5 1 1.0 40 5 1 1.0 40 3 4 2.0

to this was used in ACES [66] to identify MMIO accesses not detected by its static

analysis. This analysis was implemented in less than 20 lines of Python and shows

that between 4 and 36 MMIO addresses are being accessed under black-box emula-

tion. Using the information from this analysis we reduce the number of hardware

peripherals handled by the default MMIO handler by intercepting functions which

perform peripheral initialization (e.g.,, configuring Clocks, Timers, DMA, I/O Pins)

and replace them with functions that either immediately return (void functions) or

return a constant value indicating success. This increases the number of functions

intercepted and as a result reduces the number of basic blocks executed (with the

exception of TCP Client and Server which increase by one and three basic blocks)

and reduces the number of MMIO accesses. In the best case (STM PLC) the number

of MMIO accesses is reduced from 41 addresses to 14 addresses.
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By emulating these 12 firmware samples we have demonstrated that HALucina-

tor emulates firmware using complex peripherals and logic. However, the peripheral

models and associated handlers must be manually implemented, and thus to enable

scalable emulation this effort must be modest. Figure 4.3 shows a simple (UART)

and Figure 4.4 shows the more complex (6LowPAN) set of handlers. Table 4.4 shows

the SLOC, the number of functions, and the cyclomatic complexity of the functions

required to emulate the peripherals. These are broken out into the handlers and pe-

ripheral models. The handlers must be developed for each HAL, while the peripheral

models are developed once per peripheral type. Looking at each peripheral we find the

largest handler, the ASF SD Card handler requires 136 SLOC across 14 functions,

with an average cyclomatic complexity of 1.4, and its associated peripheral model

takes an additional 60 SLOC and 6 functions with average cyclomatic complexity of

2.3. This means an SD card interface can be emulated in under 200 lines of fairly

simple code.

However, firmware uses more than one peripheral. The 6LoWPAN firmware

samples use the IEEE802.15 Radio, UART, Clock, the external interrupt controller

(EXTI), and on-board debugger (EDBG) interfaces. For these firmware samples the

amount of code and complexity of the code is low for both handlers and peripheral

models. It require 322 SLOC for the handlers and 177 SLOC lines of code for the

peripheral models with the highest average cyclomatic complexity being 2.2. Thus,

with under 500 lines of fairly simple code the firmware for a wireless sensor can be

emulated. This shows, HALucinator can emulate firmware with reasonable effort.

4.6.3 Fuzzing with HALucinator

We now demonstrate that HALucinator’s emulation is useful for dynamic analysis

by fuzzing the network connected firmware shown in Table 4.5, and the firmware

used in the experiments in WYCINWYC [98]. Experiments were performed on a 12-

core/24-thread Xeon server, with 96GB RAM. Table 4.5 shows the statistics provided
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Fig. 4.3. A set of simple handlers for a STM32 serial port

class STM32F4UART(BPHandler):

def __init__(self , impl=UARTPublisher):

self.model = impl

@bp_handler ([’HAL_UART_Init ’])

def hal_ok(self , qemu , bp_addr):

# Nothing to init

return True , 0

@bp_handler ([’HAL_UART_GetState ’])

def get_state(self , qemu , bp_addr):

# The serial port is always ready

return True , 0x20 # 0x20=READY

# Regardless of interrupts or DMA ,

# these functions are all the same!

@bp_handler ([’HAL_UART_Transmit ’,’HAL_UART_Transmit_IT ’,

’HAL_UART_Transmit_DMA ’])

def handle_tx(self , qemu , bp_addr):

huart = qemu.regs.r0 # Which serial port?

hw_addr = qemu.read_memory(huart , 4, 1)

buf_addr = qemu.regs.r1 # Where’s the data?

buf_len = qemu.regs.r2 # How much data?

data = qemu.read_memory(buf_addr ,1,buf_len , raw=True)

self.model.write(hw_addr , data)

return True , 0

@bp_handler ([’HAL_UART_Receive ’, ’HAL_UART_Receive_IT ’,

’HAL_UART_Receive_DMA ’])

def handle_rx(self , qemu , bp_handler):

huart = qemu.regs.r0 # Which serial port?

hw_addr = qemu.read_memory(huart , 4, 1)

size = qemu.regs.r2 # How much data?

data = self.model.read(hw_addr , size , block=True)

qemu.write_memory(qemu.regs.r1, 1, data , size , raw=

True)

return True , 0
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Fig. 4.4. A more complex set of handlers that manage Atmel’s 6LoWPAN
radio interface

class RF233Radio(BPHandler):

def __init__(self , model=IEEE802_15_4):

BPHandler.__init__(self)

self.model= model

self.regs = defaultdict(int)

self.model.rx_frame_isr = 20

self.buffered_frame = 0

def get_id(self , qemu):

return ’SAMR21Radio ’

@bp_handler ([’rf233_send ’, ’trx_frame_write ’])

def send(self , qemu , bp_addr):

# Send the data on the radio

frame = qemu.read_memory(qemu.regs.r0, 1,

qemu.regs.r1 & 0xFF , raw=True)

self.model.tx_frame(self.get_id(qemu), frame)

return True , 0

@bp_handler ([’trx_frame_read ’])

def read_len(self , qemu , bp_addr):

if self.model.has_frame () is not None:

num_frames , frame_len = self.model.get_frame_info ()

qemu.write_memory(qemu.regs.r0, 1, frame_len + 2, 1)

else:

qemu.write_memory(qemu.regs.r0, 1, 0, 1)

return True , None

@bp_handler ([’trx_sram_read ’])

def sram_read(self , qemu , bp_addr):

#Actually receive a packet

if self.model.has_frame () is not None:

frame = self.model.get_first_frame ()

buf_addr = qemu.regs.r1

buf_size = qemu.regs.r2

if len(frame) <= buf_size:

qemu.write_memory(buf_addr , 1, frame , len(frame),

raw=True)

return True , None

continued on next page
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Fig. 4.4 continued

@bp_handler ([’rf233_on ’])

def on(self , qemu , bp_addr):

self.model.rx_isr_enabled = True

return True , 0

@bp_handler ([’rf_get_channel ’])

def get_channel(self , qemu , bp_addr):

return True , 0

@bp_handler ([’rf_set_channel ’])

def set_channel(self , qemu , bp_addr):

return True , 0

@bp_handler ([’SetIEEEAddr ’])

def SetIEEEAddr(self , qemu , bp_addr):

addr = qemu.regs.r0

self.model.IEEEAddr = qemu.read_memory(addr , 1, 8, raw

=True)

return True , None

@bp_handler ([’trx_reg_read ’])

def trx_reg_read(self , qemu , bp_addr):

reg = qemu.regs.r0

if reg == RF233_REG_IRQ_STATUS:

ret_val = 0

if self.model.has_frame ():

ret_val = IRQ_TRX_END

elif reg == RF233_REG_TRX_STATUS:

ret_val = self.regs[RF233_REG_TRX_STATE]

elif reg in self.regs:

ret_val = self.regs[reg]

return True , ret_val

@bp_handler ([’trx_reg_write ’])

def trx_reg_write (self , qemu , bp_addr):

self.regs[qemu.regs.r0] = qemu.regs.r1

return True , None

@bp_handler ([’trx_spi_init ’])

def trx_spi_init (self , qemu , bp_addr):

qemu.regs.r0 = qemu.avatar.callables[’AT86RFX_ISR ’] |

1 #Set Thumb bit

qemu.regs.r1 = 0

qemu.regs.r2 = 0

qemu.regs.pc = qemu.avatar.callables[’

extint_register_callback ’] | 1

return False , None
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Table 4.5.
Fuzzing experiments results using HALucinator.

Name Time Executions Total Paths Crashes

WYCINWYC 1d:0h 1,548,582 612 5
Atmel lwIP HTTP (Ethernet) 19d:4h 37,948,954 8,081 273
Atmel lwIP HTTP (TCP) 0d:10h 2,645,393 1,090 38
Atmel 6LoWPAN Sender 1d:10 1,876,531 23,982 0
Atmel 6LoWPAN Receiver 1d:10 2,306,569 38,788 3
STM UDP Server 3d:8h 19,214,779 3,261 0
STM UDP Client 3d:8h 12,703,448 3,794 0
STM TCP Server 3d:8h 16,356,129 4,848 0
STM TCP Client 3d:8h 16,723,950 5,012 0
STM ST-PLC 1d:10h 456,368 772 27

by AFL during the fuzzing sessions. Crucially, we were able to scale these experiments

to the full capacity of this hardware, due to removing the dependence on the original

hardware.

We include the WYCNINWYC example here, as it provides a benchmark of crash

detection in an embedded environment. This firmware uses the same STM HAL

used in previous experiments, and no additional handlers were implemented. We

substituted our fuzz model for the serial port model, and fuzzing was seeded with

the non-crashing XML input included with the binary. We triggered four of the five

crashes in [98], without the need for additional crash detection logic, and were able

to trigger the final crash by simply adding the ASAN-style sanitizer described in

Section 4.4.4.

The remaining firmware were re-hosted as in the interactive experiments, save for

disabling the I/O server, and adding fuzzing-related instrumentation. We replaced

the network components in each example with the fuzz model, provided handlers for

disabling library-provided non-deterministic behaviors (e.g., rand()), and generated

inputs by simply recording valid interactions performed in the previous experiments,

and serializing them into a form that can be mutated by AFL.
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These experiments uncovered bugs in the firmware samples. The ST-PLC im-

plements a WiFi-connected device that parses and executes ladder logic programs

provided via an Android app. This sample is extremely timer-driven, and made use

of the deterministic timer mechanism to ensure that each input produced the same

block information for AFL. We provided AFL with only a minimal sample ladder

logic program obtained from the STM PLC’s Android app by capturing network traf-

fic. After only a few minutes, AFL detected an out-of-bounds memory access; upon

further inspection, we identified a buffer overflow in the firmware’s global data sec-

tion, which could result in arbitrary code execution. As far as the authors are aware,

the vulnerability is previously unknown, and we are working with the vendor on a

mitigation.

The Atmel HTTP server firmware is a small HTML and AJAX application run-

ning on top of the popular lwIP TCP/IP stack. After nearly 9 days, AFL detected

267 “unique” crashes, which we disambiguated to 37 crashes using the included mini-

mization tools. Manual examination revealed the crashes related to two bugs: a heap

double-free in lwIP itself, and a heap use-after-free caused by the HTTP server’s er-

roneous use of lwIP functions that perform heap management. The firmware, and

the Atmel ASF SDK itself ships with an outdated version of lwIP (version 1.4.1), and

both issues have since been fixed by the lwIP developers.

Fuzzing this binary is somewhat straightforward, and even triggered bugs, but

required a significant amount of time due to the large size of Ethernet frames. Thus,

individual mutations are not likely to have much effect, particularly on the actual

HTTP application. To focus more directly on the HTTP server, and not the IP

stack, we can exploit the flexibility of high-level emulation, and instead re-host the

binary in terms of the TCP APIs of the lwIP library (discovered by LibMatch) that

the HTTP server itself was written with, allowing the fuzzed packets to reach deeper

into the program. Fuzzing quickly found a buffer over-read in the HTTP server’s

handling of GET request parsing, which provides an information disclosure in the

heap.
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The three crashes in the 6loWPAN sample correspond to a buffer overflow in

the handling of the reassembly of fragmented packets, resulting in overwriting many

objects in the binary’s data section with controlled input, and eventually remote

code execution. The issue relates to the Contiki-OS platform, and as in the previous

example, has been fixed since the version included in the latest SDK was produced.

These experiments show that HALucinator enables scalable emulation and prac-

tical security analysis of firmware with reasonable effort without any hardware. The

scalability is in both the types of firmware that can be emulated, and the number

of instances that can be concurrently emulated. This enables large parallelization

of analyses and testing such as fuzzing. The discovery of real bugs in the sample

firmware demonstrate that the emulation is useful for dynamic analysis of real and

complex firmware.

4.7 Related Work

HALucinator draws upon related work in binary function identification, function

and library labeling, and firmware emulation.

Function Identification and Labeling. Previous work has explored various as-

pects of “function identification”. As this term has many over-loaded uses, it is im-

portant to distinguish the problem LibMatch solves (labeling specific binary function

names in firmware samples) from others. ByteWeight [115] identifies the locations

(e.g., start and end) of functions by computing a prefix-tree of likely sequences based

on a database of known libraries. LibMatch must also perform this analysis to even-

tually label function names in firmware, but ByteWeight itself does not attach any

label to the functions it locates. The angr platform underlying LibMatch incorporates

the results of ByteWeight in its CFG recovery algorithm. BinDiff [110, 123], and its

open source counterpart Diaphora [111] use graph-matching techniques to effectively

and efficiently compare two programs. While these tools can be effectively used to

label functions, by matching a target binary to each library object, the tool does not
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account for collisions. Furthermore, these approaches assume the two binaries are

intended to be similar. To perform binary-to-library matching similarity scores need

to be put in the context of the entire dataset of libraries.

Multiple previous works have explored the problem of function labeling. IDA

Pro [124] uses its FLIRT signature engine, which identifies functions by looking for

common byte sequences that are used as function preambles. Jacobson et al. [125]

use semantic descriptors, to identify function calls based on system calls and identify

wrapper functions commonly used to in standard glibc, by using back slicing from

system calls to look for constant parameters. FOSSIL [126] identifies open-source

software libraries in malware binaries by extracting opcodes, CFGs, and opcode distri-

butions. These are then scored using individual heuristics and combined into a single

probability that the two functions match, using a Bayesian network. Debin [127] per-

forms a similar analysis, but uses a neural network based approach to assign function

names. Qui, et al. [128,129] uses execution-flow graphs, based on symbolic execution,

to label library functions in binaries.

However, none of these systems are currently suited to the task of labeling func-

tions in firmware. While symbolic execution-based approaches provide a superior

resistance to some compiler optimizations, we cannot execute the firmware correctly,

even in a symbolic setting; achieving firmware execution is, indeed, the goal of HALu-

cinator and LibMatch. While the signature and machine learning approaches achieve

high accuracy on conventional desktop applications, we note that the similarity and

small size of many firmware functions lead to collisions, which can only be fully re-

solved through some form of context. Additionally, of these systems, only FLIRT and

Debin supports an architecture other than Intel, and neither offers Cortex-M support,

leaving us unable to explore these comparisons in detail. Furthermore, FLIRT’s sig-

nature generation requires the manual resolution of collisions before a signature can

be built, or the complete removal of collided functions from consideration; given the

results in Section 4.6, this would render FLIRT unusable for our purposes. These

challenges led us to the development of our own approach, which trades off the need
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to tolerate heavy program transformations and obfuscation with the ability to more

accurately match the kinds of functions found in firmware, in the limited environment

of the chip vendor’s own toolchain.

Firmware Emulation. Many previous works have explored the challenge of emulat-

ing embedded firmware. The most prevalent approach employs hardware-in-the-loop

execution, as found in AVATAR [101], AVATAR2 [102], and SURROGATES [103].

In these systems, the physical target device is tethered to the analysis environment,

typically using a debug port, and its hardware peripherals are used by a standard

emulator during execution. This approach is effective, and achieves the highest level

of accuracy (as it uses the real hardware), but requires the device to be present and

instrumentable.

Another approach [130, 131] to emulation involves using the presence of a high-

level operating system, such as Linux, as a point of abstraction, and replacing the

firmware’s version with one able to be run in an emulator. This could be thought of

as a form of high-level emulation, as it uses the user-kernel barrier as the modeling

boundary. However, it only works on firmware with a file-system image which can

be booted without any device-specific code being run. In this work, we specifically

target “blob” firmware, found in devices without such an operating system.

All of these systems, including HALucinator, rely on an underlying emulator to

execute code and provide real or emulated peripherals. The popular open-source

QEMU [106] provides the basis for most, and itself includes support for a range of

chips and the on-board peripheral models needed to boot some firmware. However,

as the number of popular embedded CPUs has exploded, the usefulness of this set

in re-hosting a given firmware has decreased drastically. SIMICS [99,100] allows one

to emulate both the main CPU and its external peripherals, but requires significant

effort, as implementation is done at the MMIO level.

Cooja [132] is a network simulator for Contiki-based wireless sensors, enabling

emulation of Contiki applications by compiling them to the host systems (e.g., Win-

dows/Linux) native instruction set and using a HAL mapping to the host system.
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Other OS-libraries such as mBed [63] and RIOT-OS [133] provide similar capabilities

where they provide ports of their API’s to common desktop OSes. Conceptually, this

is similar to HALucinator where the HAL is replaced with calls to the host system’s

implementations. However, HALucinator does this at the binary level, and allows the

re-hosting of unmodified firmware that would be used on the real device.

4.8 Discussion and Future Work

We believe that high-level emulation represents a major step in the practicality

and scalability of the dynamic analysis of embedded firmware. However, the problem

in general is not fully solved. Here we will discuss the limitations, open problems,

and future directions in embedded firmware analysis.

Library Matching. LibMatch implements extensions on top of library matching

algorithms that allow them to be used for the purpose of finding HALs and libraries

in firmware. However, we note that the usefulness of LibMatch, especially when the

compiler or library versions used is unknown is limited. This limitation comes from

function matching technique’s ability to cope with compiler-induced variations in

generated code. While partial techniques have been proposed, most recently in [134],

the problem is not solved in the general case. However, high-level emulation and

LibMatch will benefit directly from any advancement in this orthogonal problem area

of function matching in the future.

Embedded Fuzzing. While exploring HALucinator’s use as a fuzzer, we encoun-

tered many aspects of fuzzing “blob” firmware that differ significantly from those of

desktop programs, such as input generation, program termination, crash detection,

and how one handles non-determinism. We overcame these challenges in a way that

allows our fuzzer to successfully operate, but more exploration of these key areas

will enable analysis of more diverse devices. For example, AFL and many other

fuzzers heavily rely on the abstraction of input as a continuous stream of data, where

firmware can also receive inputs as discrete events, such as GPIO operations, inter-
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rupts, or other length-less chunks of data. We worked around this in the examples

presented here, but would like to explore the efficient generation and mutation of

event-based inputs for embedded systems in the future.

Devices without HALs. Not every firmware sample is written with a HAL, while

we have observed this to be very uncommon in modern firmware for connected devices,

the lack of a HAL prevents LibMatch from identifying interfaces usable for high-level

emulation. However, this does not prohibit high-level emulation entirely; a reverse-

engineer could manually identify a useful abstraction in the binary, and this is still

likely to be preferable to writing low-level QEMU peripherals.

Using HALucinator with ACES. Binaries compiled using ACES could conceptu-

ally be used in HALucinator. This would require proper support for privileged and

unprivileged execution and proper implementation of the MPU in the ISA emulator.

These are primarily engineering efforts. In addition, HALucinator needs extended

to address conceptual problems with how compartment transitions that occur within

intercepted libraries are handled and how those trade offs influence the validity of

analysis when performed within HALucinator. For example, are handler functions

given can access to all code and data, or are they restricted by the current com-

partment configuration? If they are given access to all memory then vulnerabilities

may be possible in HALucinator that are mitigated on the physical system. Con-

versely, if they are restricted to the current compartment, the handler may not have

access to required data, as functions called by the intercepted function may switch

compartments when accessing the required data.

4.9 Conclusion

We explored the concept of high-level emulation to aid in the practical re-hosting

and analysis of embedded “blob” firmware. To find useful abstractions, we showcased

improvements in binary library matching to enable hardware abstraction layers and

other common libraries to be detected in binary firmware images. Implementations
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were then broken down into abstract components that are reusable across firmware

samples and chip models.

Our prototype implementation, HALucinator, is the first system to combine these

techniques into a system for both interactive dynamic analysis, as well as fuzzing. We

re-hosted 12 firmware samples, across CPUs and HALs from two different vendors, and

with a variety of complex peripherals. High-level emulation made this process simple,

allowing for re-hosting to take place with little human effort, and no invasive access

to the real hardware. Finally, we demonstrated HALucinator’s direct applications to

security, by using it to detect security bugs in firmware samples. We believe that high-

level emulation will enable analysts to broadly explore embedded firmware samples

both for fuzz testing as well as other analyses. Our prototype implementation will be

open-sourced upon publication.
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5. CONCLUSION

As the deployment of the Internet of Things continues, embedded systems will be

deployed in greater numbers with increasing connectivity. We are living in a world

where nearly every device is or soon will be connected. This connectivity brings great

convenience to our lives – e.g., thermostats can be controlled from anywhere in the

world – however, its comes with the risk that a single vulnerability can compromise

millions of devices.

This makes the security of embedded systems vitally important, not only to pro-

tect the functionality of individual devices, but also to protect the larger systems

comprised of these devices. The tight constraints on memory, processing power, and

energy consumption on these systems, particularly bare-metal systems, make apply-

ing security mechanisms challenging. In addition, the diversity of hardware creates

challenges to enable scalable testing and analysis of these systems.

This thesis Chapter 2 and Chapter 3 demonstrates how protections equivalent to

or exceeding those currently deployed on desktop computers, can be applied to highly

constrained bare-metal systems. These protections include applying least privileges,

data execution prevention, strong stack protections and diversity. These protections

prevent memory corruption attacks, control flow hi-jack attacks, and code reuse at-

tacks – some of the most common and powerful attacks used today. These defenses

are applied automatically by the compiler using static and dynamic analysis of the

software to ensure its functionality is preserved while adding these defenses. Using

the compiler removes the burden of manually implementing these defenses from the

developer.

In addition, Chapter 4, provides a technique for dealing with the diversity of

hardware to enable re-hosting of firmware in a generic system emulator. This en-

ables performing dynamic analysis of and testing of the firmware without specialized
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hardware. Removing the dependency on specialized hardware enables analysis of the

firmware’s behavior when used as part of a system of devices. It also enables large

numbers of the same device to be executed concurrently, which is critical for testing

techniques such as fuzzing.

In conclusion, this thesis demonstrates that static and dynamic analysis can be

used to protect modern micro-controllers from memory corruption errors and em-

ploy defenses against memory corruption and control-flow hijack attacks within the

constraints of bare-metal systems. These protections are needed today, and will be

increasingly needed in the future.
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