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ABSTRACT

Biswas, Priyam Ph.D., Purdue University, December 2020. Usage of Dynamic Anal-
ysis to Strengthen Control-Flow Analysis. Major Professor: Mathias J. Payer.

System programming languages such as C and C++ are ubiquitously used for
systems software such as browsers and servers due to their flexibility and high per-
formance. However, this flexibility comes with a price of lack of memory and type
safety.

Control-Flow Hijacking (CFH), by taking advantage of the inherent lack of mem-
ory and type safety, has become one of the most common attack vectors against
C/C++ programs. In such attacks, an attacker attempts to divert the normal con-
trol flow of the program to an attacker-controlled location. The most prominent
defense against these kind of attacks is Control-Flow Integrity (CFI), which restricts
the attack surface by limiting the set of possible targets for each indirect control-flow
transfer. However, current analyses for the CFI target sets are highly conservative.
Due to the ambiguity and imprecision in the analyses, CFI restricts adversaries to
an over-approximation of the possible targets of individual indirect call sites. State-
of-the-art CFI approaches fail to protect against special attack classes such as over-
writing variadic function arguments. Furthermore, mitigation of control-flow attacks
are not explored to its full potential in the context of language boundaries in current
literature. Hence, we need effective solution to improve the precision of the CFI ap-
proaches as well as strong protection mechanisms against commonly abused corner
cases.

We leverage the effectiveness of dynamic analysis in deriving a new approach to
efficiently mitigate control-flow hijacking attacks. We present Ancile, a novel mech-

anism to improve the precision of the CFI mechanism by debloating any extraneous
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targets from the indirect control-flow transfers. We replaced the traditional static
analysis approach for target discovery with seed demonstrated fuzzing. We have
evaluated the effectiveness of our proposed mechanism with standard SPEC CPU
benchmarks and other popular C and C++ applications.

To ensure complete security of C and C++ programs, we need to shield commonly
exploited corners of C/C++ such as variadic functions. We performed extensive case
studies to show the prevalence of such functions and their exploits. We also devel-
oped a sanitizer, HexVASAN, to effectively type-check and prevent any attack via
variadic functions. CFH attacks, by abusing the difference of managed languages
and their underlying system languages, are very frequent in client and server side
programs. In order to safe-guard the control-flows in language boundaries, we pro-
pose a new mechanism, FitJit, to enforce type integrity. Finally, to understand the
effectiveness of the dynamic analysis, we present Artemis, a comprehensive study of

binary analysis on real world applications.



1 INTRODUCTION

1.1 Motivation

C and Ct++ are popular systems programming languages. This is mainly due
to their low overhead abstractions and high degree of control left to the developer.
However, these languages guarantee neither type nor memory safety, and bugs may
lead to memory corruption. Memory corruption attacks allow adversaries to take
control of vulnerable applications or to extract sensitive information.

Modern operating systems and compilers implement several defense mechanisms
to combat memory corruption attacks. The most prominent defenses are Address
Space Layout Randomization (ASLR) [1], stack canaries 2], and Data Execution
Prevention (DEP) [3]. While these defenses raise the bar against exploitation, so-
phisticated attacks are still feasible. In fact, even a combination of these defenses
can be circumvented through information leakage and code-reuse attacks. For exam-
ple, an attacker can manipulate the control-flow of a program by carefully choosing
gadgets within the program; e.g., Call Oriented Programming (COP) [4], Return
Oriented Programming (ROP) [5].

Control-Flow Integrity (CFI) [6] is a defense mechanism that prevents control-
flow hijacking attacks by validating each indirect control flow transfer based on a
precomputed Control-Flow Graph (CFG). While CFI allows the adversary to corrupt
non-control data, it will terminate the process whenever the control-flow deviates
from the predetermined CFG. The strength of any CFI scheme hinges on its ability
to statically create a precise CFG for indirect control-flow edges (e.g., calls through
function pointers in C or virtual calls in C++). Due to the dependency on static anal-
ysis, traditional CFI approaches cannot resolve aliasing problem and hence, restrict

adversaries to an over-approximation of the possible targets of individual indirect call



sites. Additionally, traditional CFI approaches fail to provide security against CFH
attacks via variadic functions and language boundaries. Therefore, we need effective

solutions to shield against all the possible CFH attacks.

1.2 Thesis Statement

This report explores compiler based defense mechanisms to secure applications
written in C and C++ as well as inspects the applications of dynamic analysis. Hence,
the thesis statement is:

State-of-the-art CFI approaches are over-approrimate due to the static nature of
the analyses and leave several areas unprotected such as variadic functions and code
pointers. We strengthen CFI along these two unprotected dimensions by providing
tighter enforcement mechanisms using dynamic analysis and then analyze its appli-

cations on real-world programs.

1.3 Contribution

The goal of the thesis report is to secure systems software against CFH-like attack
vectors. We present three different mechanisms to effectively mitigate control-flow
hijacking attacks by applying dynamic analysis. Our CFI based mechanism Ancile
is under review for ACM CODASPY 2021, our work on defense against variadic
function exploits, HexVAS AN, was published in USENIX Security 2017, and we are
currently working on the prototype of FitJit and Artemis with an aim to submit

them to peer reviewed conferences.

e Ancile

— We design a mechanism that reduces a program to the minimal amount
of required code for a given functionality. We remove the unnecessary
code as well as specialize CFI by creating strict target sets to solve over-

approximation problem.



— Our analysis successfully infers code targets based on the user-provided

functionality.

— By re-purposing the efficient LLVM-CFT from a per-equivalence class mech-
anism to a per-callsite mechanism, we achieve the same performance while

significantly increasing the security guarantees through a finer-grained pol-
icy.
e HexVASAN
— By utilizing dynamic call type information, we enforce a tighter bound on

variadic function parameters passed on the stack, protecting against type

errors and stack overflows/underflows.

— We have conducted an extensive case study on large programs to show the

prevalence of direct and indirect calls to variadic functions.
— We present several exploit case studies and CFI bypasses using variadic
functions.
e Artemis
— We present a systematic study of cryptographic function identification ap-
proaches.

— We create a standardized suite of performance metrics and benchmarks
to evaluate the effectiveness of current detection mechanisms and analyze

existing tools based on this suite.

— Based off of this analysis, we discuss the research gaps in this domain and

propose directions for future work.

— We present a comprehensive framework to understand the scalability and

impact of dynamic analysis in detection mechanisms.



e Future Work. In addition, and as an extension to Ancile and HexVASAN,
we propose FitJit as future work, to enforce type integrity and control-flow

integrity to defend against CFH attacks in the context of language boundaries.



2 ANCILE

Modern software (both programs and libraries) provides large amounts of function-
ality, vastly exceeding what is needed for a single given task. This additional func-
tionality results in an increased attack surface: first, an attacker can use bugs in the
unnecessary functionality to compromise the software, and second, defenses such as
control-flow integrity (CFT) rely on conservative analyses that gradually lose precision
with growing code size.

Removing unnecessary functionality is challenging as the debloating mechanism
must remove as much code as possible, while keeping code required for the program
to function. Unfortunately, most software does not come with a formal description
of the functionality that it provides, or even a mapping between functionality and
code. We therefore require a mechanism that—given a set of representable inputs
and configuration parameters—automatically infers the underlying functionality, and
discovers all reachable code corresponding to this functionality.

We propose Ancile, a code specialization technique that leverages targeted fuzzing
to discover the code necessary to perform the functionality required by the user. From
this, we remove all unnecessary code and tailor indirect control-flow transfers to the
minimum necessary for each location, vastly reducing the attack surface. We evaluate
Ancile using real-world software known to have a large attack surface, including
image libraries and network daemons like nginx. For example, our evaluation shows
that Ancile can remove up to 93.66% of indirect call transfer targets and up to 78%

of functions in libtiff’s tiffcrop utility, while still maintaining its original functionality.



2.1 Introduction

Similar to the second law of thermodynamics, (software) complexity continuously
increases. Given new applications, libraries grow to include additional functional-
ity. Both applications and libraries become more complex based on user demand
for additional functionality. The Linux kernel is an important example of this phe-
nomenon: its code base has grown substantially over the last 35 years (from 176K
LoC to 27.8M LoC [7,8]). Yet, given a single task, only a small subset of a program
(or library) is required to be executed at runtime. This increase in code size can
also be seen in network facing applications such as nginx or tcpdump, which deal
with, e.g., IPv4, IPv6, or proxy settings, as well as image processing libraries, which
face increasingly complex file formats as standards expand to support more features.
This feature bloat results in a massive amount of unneeded complexity and an ever-
growing attack surface. Ideally, applications would be customized with the minimal
set of features required by the user, and only the minimum amount of code inlined
from imported libraries.

Software complexity results in a flurry of challenges rooted in security, perfor-
mance, and compatibility concerns. In our opinion, security is the most pressing
of these challenges as security flaws can lead to potentially irreversible losses from
adversarial exploitation. While functionality may not be required for a given task,
adversaries may still find ways to exercise it, increasing the attack surface of a pro-
gram [9-11]. Additionally, the precision of popular mitigations such as control-flow in-
tegrity (CFI) degrades when more code is introduced. Deployed CFI mechanisms [12]
leverage function prototypes to disambiguate the target sets of valid targets. Addi-
tional complexity increases the probability that functions with the same signature
pollute the same target set.

Removing unnecessary functionality is extremely challenging, as the majority of
programs and libraries do not come with a formal description of their functionality.

Even worse, there is no clear mapping between functionality (i.e., an exposed API)



and the underlying code. Reducing the attack surface and removing unnecessary
code requires a mechanism to infer this functionality to code mapping based on an
informal description of the necessary functionality.

Debloating has been embraced by the security research community to remove un-
necessary code at various levels of granularity [13-17]. Removing dead code reduces
the number of gadgets and unreachable functionality (which may be buggy). Due
to the lack of a formal description of functionality, these approaches all remain con-
servative and must include potentially unneeded functionality. Unfortunately, past
research has shown that debloated code still contains vulnerabilities and sufficient
targets for an attacker [18].

Our core idea is to facilitate the help of the user who selects the minimum required
functionality (by providing a set of example seeds), thus establishing an informal de-
scription of functionalities in a program. While this approach was previously used to
reverse engineer and extract functional components [19], we are the first to leverage
user help to specialize complex software. The user provides a set of inputs that exercise
the required functionality and a configuration of the software (as part of the envi-
ronment). Our approach, Ancile, then specializes the program in three steps. First,
Ancile infers the required functionality and code through targeted fuzzing. Second,
Ancile removes all unnecessary code in a compilation pass. Third, Ancile computes
minimal CFI target sets (based on individual indirect call locations instead of over-
approximation on function prototypes) to enforce strong security properties.

Note that we propose fuzzing not primarily as a bug finding tool (although Ancile
may discover bugs during focused fuzzing that can be reported to the developer) but
as a tool for analyzing exercised code. Coverage-guided greybox fuzzing uses code
coverage as a feedback to map code to inputs. We use this insight to discover the
exercised functionality and to map the corresponding code to user-selected inputs.

The primary contributions of our approach are below:

e We design a code specialization technique that repurposes fuzzing to reduce a

program to the minimal amount of code required for a given functionality. Our



technique not only removes unnecessary code, but also specializes control-flow

checks by creating a reduced target set.

e We present a comprehensive analysis of Ancile on real-world applications to

show the effectiveness of fuzzing as a way to generate precise path information.

2.2 Background

We provide a brief introduction of debloating and CFI to minimize the attack
surface of applications. We also describe fuzzing and sanitization as these concepts

are integral to our approach.

2.2.1 Attack Surface Debloating

To increase software versatility for different users, its size and complexity has
grown dramatically over time, resulting in software bloat. For example, a recent
study showed that most applications only use 5% of libc [15]. This code bloating
comes with the burden of increasing the attack surface. Software debloating is a
technique that helps prune the program’s attack surface by removing extraneous
code. Several approaches have been proposed such as debloating via reinforcement
learning [14] or trimming unused methods [20]. However, trimming unused or rarely
used features cannot alone prevent Control-Flow Hijacking (CFH). By manipulating
the remaining indirect call sites, an attacker can still perform code-reuse attacks.

Code debloating improves security along two dimensions: code-reuse reduction
and bug reduction. First, code debloating reduces the amount of available code,
making it harder for an attacker to find gadgets for a code-reuse attack. Second, fea-
ture based code debloating approaches reduce attack surface by removing potentially
reachable buggy functionality, making it harder for the attacker to find an exploitable
bug.



Unfortunately, security effectiveness of existing code debloating is inherently lim-
ited by the amount of code that remains. Any functionality in the program requires
code, and even tiny programs 21| provide enough code for full code-reuse attacks.
While code debloating may be effective in removing some reachable bugs, it is not
effective in stopping code-reuse attacks as any remaining code will be sufficient for
such attacks.

Debloating restricts attack surface by removing unneeded code, whereas CFI does
so by removing extraneous targets from indirect branches. In a sense, code debloat-
ing is comparable to Average Indirect Target Reduction (AIR), a metric to measure
effectiveness of early CFI mechanisms. Even coarse-grained CFI mechanisms rou-
tinely removed more than 99% of targets, yet remained exploitable. An adversary
only needs a single usable target but a defense must prohibit all reachable targets to
be effective. Partial target reduction is insufficient to stop an attack. Similarly for

debloating, the remaining code may still allow the adversary to carry out the attack.

2.2.2  Control-Flow Integrity

Another prominent mechanism for reducing attack surface is Control-Flow In-
tegrity (CFI), the state-of-the-art policy for preventing code-reuse attacks in C and
C++ programs. Its key insight is that to perform a control-flow hijacking attack, at-
tackers must modify the code pointer used for an indirect control-flow transfer (direct
control-flow transfers are protected as the target is encoded in read-only code). CFI
builds, at compile time, a set of legitimate targets for each indirect and virtual call,
and, at runtime, validates that the observed target is in the allowed set. By verifying
the target, CFI prevents the use of any corrupted code pointer.

State-of-the-art CFI mechanisms have focused on a conservative static analysis for
building the target sets which leads to include more targets than the valid ones. This
approach has no false positives, but is prone to false negative as it over-approximates

targets. It is also possible to use dynamic analysis to construct the target sets,
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potentially introducing false positives, but greatly improving the precision of the
analysis. Here, we discuss both analysis techniques and their trade-offs, for a more

in depth survey of CFI see [22].

Static Analysis-Based CFI

Static analysis-based CFI mechanisms compute the allowed target sets at compile
time. The goal of the analysis is to discover the set of functions that the programmer
intends to target at a given indirect call site. In compiler terms, the analysis is
looking for every reaching definition of the function pointer used at the indirect call
site. Implementations of the analysis quickly run into the alias analysis problem, and
so have to fall back to more tractable, albeit over-approximate, techniques. Early
mechanisms reverted to allowing any address taken function [6] to be targeted at
any indirect call site. Subsequent mechanisms improved this to any function with a
matching prototype [23]. Recent work has even looked at using a context-sensitive
and flow-sensitive analysis to further limit the target sets [24}25]. While such works

increase the precision of the analysis, aliasing prevents achieving full sensitivity.

Dynamic CFI

Unlike the static signature-based approach, Dynamic CFI approaches generate
or change the target sets of the control-flow transfers during the execution of the
program. Dynamic CFI is generally more precise than static CFI as it starts off with
a static target sets but then uses runtime information to further constrain the target
sets.

Several works have leveraged the support of hardware to restrict the target sets
during runtime. wCFT |26] begins with an empty control-flow graph and activates con-
trol transfers as required by specific inputs. However, this approach does not execute
any address deactivation which may degenerate to the full static control-low graph

(CFG). PathArmor [27] takes advantage of hardware support, specifically the 16 Last
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Branch Record (LBR) registers to effectively monitor per-thread control-flow trans-
fers. It limits the verification process to only security critical functions, and verifies
the path to these critical functions by using a path cache. PittyPat |28] improves on
this by collecting runtime traces via Intel PT, and verifies them in a separate process,
halting execution at system calls to synchronize with the verification process. While
it is precise (assuming the entire execution is traced), PittyPat also consumes signif-
icant additional resources, e.g., another core for the verification process. pCFI |29]
improves PittyPat by recording full execution context using Intel PT, and observing
unique code target for each invocation of an indirect control-flow transfer. Similar to
PittyPat, it relies on a separate monitoring process.

Orthogonally, CFI does not protect against data-only attacks. An attacker that
compromises the data of a process can bend execution [9H11] to any allowed func-
tionality and, if a path in the original CFG exists, CFI will allow execution of that
path. While CFT limits code execution to legitimate targets under some execution of
the program, it does not remove unneeded functionality.

CFI prohibits rogue control flow to unintended locations while code debloating
removes unnecessary code. In combination, CFI and code debloating can reduce the
exposure of a program but are limited by the remaining code as both approaches are

conservative, resulting in an over-approximation of the required functionality.

2.2.3 Fuzzing

Fuzzing [30] is a widely used technique for automatic test case generation. Coverage-
based fuzzers such as American Fuzzy Lop (AFL) [31] create a new test case by mu-
tating interesting inputs that trigger new code paths. Their mutation based strategy
leads them to test many inputs that cover the same code paths, causing them to
explore the possible data-flows of the application as well. Fuzzers operate from a seed
input, mutating it in their search for new code-paths while simultaneously exploring

data paths as a result of their search.
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Ancile requires extensive path coverage, since it is crucial in generating a compre-
hensive target set for the indirect call-transfers in the desired functionality. Guided
fuzzing [32] by modern fuzzing approaches facilitates finding new code paths from an
indirect call site. With the knowledge of deeper path information, target discovery

has become more efficient.

2.2.4 Sanitization

Sanitization is a dynamic testing technique that effectively detects policy viola-
tions at runtime [33]. A sanitizer generally instruments the program during compi-
lation to enforce some security policy. The instrumentation collects metadata about
the program execution and continuously checks if the underlying policy is violated.

AddressSanitizer (ASan) [34] employs a specialized memory allocator, and in-
struments memory accesses at compile time to detect out-of-bounds accesses to heap,
stack, and global objects, as well as temporal bugs. ASan is a tripwire-based approach
that creates redzones, and checks each memory access to detect memory safety vio-
lations. Fuzzing then triggers memory access bugs, allowing ASan to detect them.
Apart from ASan, other types of sanitization exist. Memory Sanitizer (MSAN) [35]
detects accesses to uninitialized memory by using bit-precise shadow memory at run-
time. UndefinedBehaviorSanitizer (UBSan) [36] catches various kinds of undefined
behavior during program execution such as null-pointer dereferences.

As Ancile uses fuzzing for functionality inference, we must distinguish between
correct functionality and potential bugs. To avoid memory corruption bugs from
tainting our allowed functionality, we compile our target program with ASan during
the inference phase. Hence, Ancile ensures all the explored targets via fuzzing are

indeed valid targets.
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2.3  Threat Model

Ancile uses the standard threat model for modern defenses such as CFI and soft-
ware debloating. We assume that the attacker has the ability to read and write mem-
ory arbitrarily. Specifically, we assume that the attacker can modify arbitrary code
pointers on the heap and stack to hijack the program’s control flow. We also assume
that our target system is deployed with the standard software defenses: DEP [37],
ASLR [1], and stack canaries [38]. DEP prevents code-injection and forces an attacker
to rely on code-reuse attacks. ASLR and stack canaries make attacks harder but do
not stop an attack in the given attack model. We include them as they are on by
default in modern systems.

shows an example of a control-flow hijack attack [39]. In this example,
the function victimFunc has a buffer, a function pointer and an int pointer. By
setting var1 to 128, the attacker causes ptr to point to the function pointer on the
stack. The dereference of ptr at line 8 then causes var2 to be written to the function
pointer. Consequently, an attacker can divert execution to any executable byte at
line 9, specified by the value in var2. While real-world examples are more complex
than this — their spirit is the same. An attacker controlled value dictates a function
pointer, virtual table pointer, or return address, thereby hijacking the application’s

control flow.

Another prominent mechanism for reducing attack surface is Control-Flow In-
tegrity (CFI). It is the state-of-the-art policy for preventing code-reuse attacks in
both C and C++ programs. Its key insight is that to perform a control-flow hijack-
ing attack, attackers must modify the code pointer used for an indirect control-flow
transfer (direct control-flow transfers are protected as the target is encoded in read-
only code). CFT builds a set of legitimate targets for each indirect and virtual call,
and validates that the runtime target is in the allowed set. By verifying the target,

CFI prevents the use of any corrupted code pointer.
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3

void bar() { }

int victimFunc(int varl, int var2) {
void (*fnptr)();
char buffer[128];
int *ptr = buff + varl;
fnptr = &bar;
*ptr= var2;

fnptr();

return 0;

Listing 2.1 Control-flow hijacking example.

14
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To date, CFI mechanisms have focused on a conservative static analysis for build-
ing the target sets. This approach has no false positives, but is also fundamentally
over-approximate. It is also possible to use dynamic analysis to construct the target
sets, potentially introducing false positives, but greatly improving the precision of the
analysis. Here, we discuss both analysis techniques and their trade-offs, for a more

in depth survey of CFI see [22].

2.4 Challenges and Trade-offs

Code specialization is a technique used to generate more efficient code for a specific
purpose from a generic one [40]. The core issue of code specialization is the prediction
of effective code-behavior in order to generate precise control-flows. Specializing an
application allows us to apply both attack surface reduction techniques at once, by
removing code unused by the deployment scenario, and restricting targets to exactly
the purposefully valid sets. However, automatically specializing code to only support
a user specified configuration is challenging. Static analysis quickly degenerates to
the aliasing problem [41], and has difficulty determining if a function is required for
a particular functionality. Dynamic analysis is an attractive alternative, however, it
requires that all valid code and data paths for a particular configuration are explored.

Dynamic analysis has been made practical by recent advances in automatic testing,
and in particular coverage-guided fuzzing [31},32,142,43]. Given a minimal set of
seeds that cover the desired behavior, fuzzers are capable of quickly and effectively
exploring sufficient code and data paths through a program to observe the required
indirect control-flow transfers for a given configuration. CFI target sets are then
restricted to the observed targets for the desired functionality of the application, e.g.,
an [Pv4 deployment of nginx with no proxy. Note that the dynamic analysis can
occur offline, with only traditional CFI set checks, which incur minimal performance
overhead, required at run time. Ancile leverages fuzzing to correlate functionality with

code. Fuzzing’s code exploration serves as a mapping process from functionalities to
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relevant code-regions. The coverage information from fuzzing enables us to effectively
specialize software by replacing conservative analysis of valid cases with a more precise
analysis of what states are reachable in practice. Using fuzzing as a path exploration
technique introduces its own set of challenges: (i) generating a dynamic control-
flow graph (CFG) for user-selected functionality, (ii) projection of dynamic CFG in
functionality-based debloating, (iii) precision vs soundness in CFI target analysis, and
(iv) the risk of introducing false positives and false negatives due to the randomness
associated with fuzzing. We now discuss each of these challenges in turn and how we
address them.

Challenge i. Generating a dynamic CFG: Given a program with a set of
functionalities fi,fs, f3,...,fn and a user-specified functionality fs C {f1,f2, f3,---sfn},
we must discover the code required by that particular functionality, fs. For example,
a user may only require the tiffcrop functionality from the image library libtiff. To
generate a dynamic CFG for a given functionality, we need to explore all required
and valid control-flows exercised by that functionality within the program. Ancile
address this by taking as input a set of seeds and configuration demonstrating the
required functionality (f5), and then uses these to fuzz the application in order to
retrieve the relevant control flows. We start with an empty CFG and add edges only
if their execution is observed in the set of valid executions.

Challenge ii. Projection of dynamically generated CFG in functionality-
based debloating: To prune unneeded functionality, we need to map the control-
flow information into relevant code. In order to do so, we guide fuzzing by carefully
selecting inputs to explore the intended functionality. Similar to Razor [13] and binary
control-flow trimming [44], Ancile utilizes test cases to trace execution paths. Ancile
also takes advantage of the power of coverage-guided fuzzing to explore deeper code
paths pertinent to the desired functionality. To ensure that the fuzzed functionality
has covered all possible paths, we evaluate the targeted utility with a different set
of testcases. Ancile then removes any functions that have not been triggered during

fuzzing.
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Challenge iii. Precision vs soundness: Ancile trades theoretical soundness
for precision when constructing CFI target sets. State-of-the-art CFI mechanisms
have focused on a conservative static analysis for building the CFG, resulting in a
conservative over-approximation of indirect control-flow targets. These CFI mech-
anisms quickly run into the alias analysis problem, and so must fall back to more
tractable, albeit over-approximate, techniques. Recent approaches have looked at us-
ing context-sensitive and flow-sensitive analyses to further limit the target sets [24,25].
While such works increase the precision of the analysis, aliasing prevents achieving
full sensitivity.

It is also possible to use dynamic analysis to construct the target sets, potentially
introducing false positives, but greatly improving the precision of the analysis. Sev-
eral works [26-28] introduce hardware requirements to restrict the target sets during
runtime. Both static and dynamic approaches are inherently over-approximative as
existing CFI solutions are oblivious to a minimal, user-specified functionality. Static
analysis-based approaches leverage only information available during compilation,
while dynamic analysis-based approaches use runtime information to further constrain
the target sets. Still, existing dynamic mechanisms result in over-approximation in
the target set. Ancile extensively fuzzes the desired functionality to infer the required
control-flow transfers. Fuzzing’s efficiency comes from its fundamental design deci-
sion: to embrace randomness and practical results rather than theoretical soundness.
Consequently, fuzzing gives no guarantees about covering all possible code or data
paths, but covers them well in practice.

Challenge iv. False positives and false negatives: Our goal is to minimize
the number of targets for individual CFI checks. Ancile restricts per-location CFI
targets by combining per-function removal along with CFI-based target removal. An
unintended function included in the target set is a false negative This can happen in
two scenarios, (i) a fuzzing campaign performing invalid executions; and (ii) exploring
traces outside of the desired functionality. Ancile guarantees valid executions by

using Address Sanitizer (ASan) along with fuzzing. Furthermore, by restricting our



18

fuzzing campaigns to only the intended functionality, we guide our fuzzing campaigns,
cautiously selecting the input seeds as well as tuning the fuzzing campaign.

A false positive happens if a valid and intended target is not included in the
generated set. This may happen due to lack of fuzzing coverage. Ancile starts with
the minimum set of seeds that exercise the intended functionalities, giving a lower-
bound of targets. Next, fuzzing discovers targets that were not previously included.
Moreover, to increase confidence in the discovered target set, we repeat each fuzzing

campaign multiple times. We explore the issue of false positives/negatives further in

Section 2.7

2.5 Ancile Design

Based on the user-selected functionality (through provided seeds), Ancile gener-
ates specialized binaries. The design of Ancile is motivated by the need for precise
control-flow information so that this information can be used to debloat the target
program, reducing its exposed attack surface. The user informally specifies the de-
sired functionality by providing seed inputs that explore that functionality. Ancile
operates in three distinct phases, as shown in First, Ancile performs
targeted fuzzing (using the seeds provided by the user) to infer the CFG and to ex-
plore code associated with the required functionality (including error paths). This
step infers all of the necessary information for the next two steps. Second, Ancile
removes any unnecessary code using a compiler pass, reducing the program’s attack
surface. Third, Ancile leverages the precise CFG to customize CFI enforcement to
the observed CFG. This customization increases the precision of CFI to only observed
targets. These observations result in the following requirements:

Desired Functionality. Every application has its own set of features. By desired
functionality, we mean one or more features of the application that the user intends
to exercise. For example, in tcpdump, the user may only want to exercise the feature

that reads pcap files.
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Seed Selection. The minimum number of inputs required to exercise the desired
functionalities is selected. For example, to exercise the feature of reading a pcap file,
the user only needs to provide a captured pcap file.

User Involvement. Ancile requires two sets of input from the user, (i) necessary
command line arguments to select the functionality; and (ii) a minimum set of seeds
that exercise this functionality. For reading a pcap file, the user must provide (i) the
-r command-line argument, and (ii) a pcap file as an input seed.

The key insight of Ancile is the functionality analysis. It is this analysis which
allows us to automatically specialize an application, simultaneously removing extrane-
ous features and shrinking the attack surface by restricting the set of allowed indirect
control-flow transfers. Selection of the required functionality depends on the type
of application as well as user requirements. Ancile minimizes the user burden for
feature selection. For example, if a user wants to read pcap files using tcpdump, she
will configure Ancile to execute tcpdump with the command line option -r, and a
sample pcap file as input. Ancile also takes advantage of existing unit test-suites that
comes with the application package to exercise functionality.

Ancile uses fuzzing to infer the code covered by an informally-selected functional-
ity. Input seeds are used to exercise the desired functionality. Coverage-based fuzzing
excels at finding code paths from a given seed. For each target in our per CFI-location
target sets, fuzzing produces an execution that witnesses that specific target. The
challenge becomes ensuring that the set of executions used by our functionality anal-
ysis fully covers the control and data flows of the desired functionality. We show
that fuzzing, in conjunction with a small set of test cases that observe the desired
functionality, can be leveraged to generate a precise CFG.

Ancile then utilizes the dynamic CFG constructed in the dynamic CFG generation
phase as a mechanism for (i) debloat unnecessary code and (ii) tighten CFI checks to
restrict indirect control-flow to a set of targets required by a given user specification.

Ancile can achieve the best possible precision with negligible runtime overhead, i.e.,
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Figure 2.1. Ancile operates in three distinct phases: (i) Dynamic CFG
Generation (to record control flow), (ii) Debloating (to remove unnec-
essary functionality), and (iii) CFI Target Analysis (to tighten indirect
control flow checks to the minimal required targets).

set checks inserted at compile time. Therefore, we believe that increased specialization

is the way of the future for “prevent-the-exploit” defenses.

2.5.1 Dynamic CFG Generation

Ancile requires the user to select the desired functionality of the program by
providing corresponding input. These input seeds can come from, e.g., unit tests, ex-
amples, or be custom tailored by the user. For example, the network sniffer tepdump
offers a variety of features, from directly capturing network packets to processing
recorded traces. A user may want to only process recorded traces of a single pro-
tocol. Building off this informal specification, Ancile performs dynamic fuzzing that
identifies (i) all the executed functions, and (ii) the targets of indirect function calls.
Any function that has not been observed via direct or indirect calls during this phase
is considered extraneous and hence, is not included in the CFG. At this point, our
analysis is fully context and flow sensitive, as it directly depends on actual executions.

After this analysis, the observed targets are aggregated over each indirect call site.

This aggregation results in some over-approximation and a loss of full context and
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data sensitivity. However, every target we allow is valid for some execution trace,
which is a significantly stronger guarantee than is provided by static analysis-based
CFI [22]. Static analysis-based target sets only guarantee that every target may be
required by an execution trace. Put another way, our dynamic analysis recovers the
programmer-intended target sets, rather than an over-approximation thereof.

Ancile recompiles the application with not only the coverage instrumentation for
grey box fuzzing, but also to log the targets for direct and indirect control-flow trans-
fers. In particular, we cover forward edges, leaving return edges for more precise
solutions such as a shadow stack [45]. When running the fuzzing analysis, we use
AddressSanitizer [46] to validate that all observed executions are in fact valid and
free of memory errors.

As fuzzing is incomplete, the core risk of this approach is that some required func-
tionality is not discovered and therefore unintentionally removed. Our analysis could
potentially introduce false positives (prohibiting valid indirect control-flow transfers).
This is in direct opposition to the conservative approach employed by static analysis,
which over-approximates and thus weakens security guarantees. In contrast, Ancile
only allows the targets for a particular functionality.

The increased security guarantees through this specialization provide a new avenue
for the security community to explore. Our evaluation shows that with
the increasing power of automated testing techniques such as fuzzing [31], robust test
sets maintained by many projects [47,48|, and a wealth of prior work on sanitizers [46]

to validate execution traces, Ancile does not cause false positives in practice.

2.5.2 Debloating Mechanism

In automatic code specialization, unneeded code is discarded and the debloated
program contains only the required functionality. Given the user’s functionality selec-
tion, the challenge of debloating comes from mapping functionality to code regions.

One possible approach to address this challenge is to learn code regions through valid
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program executions that exercise the desired functionality. In other words, we require
a set of inputs that exercises, at least minimally, all desired functionality.

By taking advantage of the dynamic functionality observation performed in the
first phase of our analysis, Ancile discovers all reachable and executable code. This
code analysis can be considered a simple marking phase that records all reachable
code. Based on the recorded execution traces, Ancile removes all unneeded code. As
a second compilation pass, with the marked code from the fuzzing campaigns, we
then tailor and remove all unnecessary code on a per function basis. All functions
that are unreachable are replaced with a single empty stub. If this stub is reached,

the program is terminated with an error message.

2.5.3 CFI Target Analysis

Although, debloating restricts a program’s attack surface by removing unneeded
code, it is still possible that vulnerabilities remain in non-bloated code. To ensure
tighter security in the specialized binary, Ancile removes extraneous targets from
indirect control-flow transfers in the remaining code.

The main goal of Ancile’s CFI target analysis is to achieve minimal target sets
for indirect branches. It does so by only allowing targets that are required for the
specified functionality and actually observed at runtime. For each target, we ensure
that there is at least one dynamic witness, i.e., a valid execution trace that includes
the indirect call. Hence, Ancile solves the aliasing problem of static analysis based
approaches and increases precision.

Based on the inferred CFG that is tied to the actual execution of the desired be-
havior, Ancile learns—for each indirect control-flow transfer—the exact set of targets
observed during execution. This set is strictly smaller than the set of all functions
with the same prototype. Once the target sets are created, we recompile the applica-
tion to a specialized form, which enforces the target sets derived from our functionality

analysis.
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Since we focus on static CFI enforcement mechanisms, deciding if a target is al-
lowed depends purely on the information known at compile time, regardless of how
that information was obtained. For example, if two paths in a program result in two
different targets at a location then the most precise static mechanism will always allow
both targets (as it cannot distinguish the runtime path without tracking runtime in-
formation). In contrast, dynamic enforcement mechanisms can modify the target sets
depending on runtime information (e.g., data-flow tracking). Unfortunately, dynamic
mechanisms result in additional runtime overhead (e.g., to update the target sets),
increased complexity (for ensuring that the target sets remain in sync), and compat-
ibility issues (e.g., the runtime metadata for the CFI mechanism must be protected
against an adversary during the updates). For as long as no hardware extension exists
for protecting metadata (e.g., to protect attacker-controlled arbitrary writes from the

buggy program), realistically deployable CFI mechanisms will remain static.

2.6 Implementation

Ancile is implemented on top of the LLVM compiler framework, version 7.0.0. The
LLVM-CFTI framework has entered mass deployment [49./50], and its set checks are
highly optimized. Consequently, building on top of LLVM-CFI guarantees that our
enforcement scheme is efficient, and ready for wide-spread adoption. As mentioned
in the design, the Ancile implementation constitutes three parts: (i) dynamic CFG

generation, (i) debloating and (ii) CFI enforcement, following the description in

Section 3.4

Dynamic CFG Generation This functionality analysis phase is implemented as
a combination of an LLVM compiler pass and a runtime library. Our instrumentation
takes place right after the clang front-end and modifies the LLVM IR code. Ancile is
enabled by specifying our new fsanitize=Ancile flag.

C/C++ source files are first passed to the clang front-end. The compiler pass

adds instrumentation to log all indirect calls and their targets. At the IR level,
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Ancile adds a call to the logging function in our runtime library before every indirect
call. The logging function takes two arguments: location of the indirect call in the
source, as well as the address of the targeted function. Additionally, the pass logs all
the address taken functions to facilitate the remapping of the logged target addresses
to corresponding functions. The runtime library of Ancile generates a hash map
to store target set information per call site. To remove extraneous code, Ancile
collects information during profiling about function invocations via direct control-flow
transfers. This procedure follows the same mechanism described above for indirect
control-flow transfers. Hence, Ancile generates a dynamic CFG accommodating all
the observed control flows that reflect the user specified functionality.

The challenge associated with fuzzing is to guarantee that paths taken during
fuzzing are valid code and data paths. To address such challenges, we leverage
AddressSanitizer (ASan) [34], a widely-used sanitizer that detects memory corrup-
tions (e.g., use-after-free or out-of-bounds access). Only non-crashing executions are
recorded. Hence, Ancile ensures all the recorded control-flow transfers are from valid

execution traces and generates the dynamic CFG.

Debloating To prune unnecessary code, Ancile utilizes the dynamic CFG to con-
struct the list of observed functions. It then removes any functions that are not in
our observed white list, thereby ensuring a custom binary incorporating only the user

specified features. It relies on a compiler pass to remove any unintended function.

CFI Mechanism Ancile enforces the strict targets for the indirect calls based on
the dynamic CFG. Despite relying on dynamic profiling, Ancile still enforces target
sets statically (i.e., relying only on information available at compile time to embed the
target sets in the binary). We have customized LLVM-CFI to adopt Ancile’s strict
target set at each individual indirect control transfer check points. Our target-set sizes
are smaller in most cases and equal to the size of the LLVM analysis in the worst case.
In contrast to Ancile, vanilla LLVM-CFT relies on static analysis for target generation

and thus fails to solve aliasing, resulting in an over-approximate target sets. The main
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advantage behind adapting LLVM-CFT is that it is highly optimized and incurs only
1% overhead [12]. Our framework for using LLVM-CFI to enforce user-specified target
sets will help the research community to advance control-flow hijacking mitigation by

serving as an enforcement API for any analysis that generates target sets.

2.7 Evaluation

The evaluation of Ancile is guided by the following research questions:

RQ1. Can fuzzing be used to enable debloating?

RQ2. Can fuzzing be used as a CFI target generator?

RQ3. How can we analyze the correctness?

RQ4. How performant is Ancile (in particular, compared to LLVM-CFI)?

We performed a series of investigations on Ancile to answer the research questions
posed above. For our evaluation, we selected commonly attacked diverse software
that offers rich opportunities for customization and specialization. We chose two
popular, and frequently attacked, image libraries 1libtiff and libpng, as well as
two network facing applications, nginx and tcpdump which deal with different proxy
settings for our analysis. To show the impact of feature selection, we investigated
four different cases for each of the applications. We analyzed vanilla LLVM-CFIT and
Ancile with the application’s standard test-suite (included in the package), as well as
two user-selected functionality sets. For the two image libraries, we use the utilities
tiffcrop, tiff2pdf for libtiff and pngfiz, timepng for libpng. We used a set of tif and
png files as input seeds to fuzz the libraries respectively. For tcpdump, we leveraged
two sets of command line arguments -r and -ee -vv -nnr as well as network capture
files in the cap and pcap formats as input seeds. For nginx, we used methods such as
GET, POST, and TRACE operations as inputs along with two different configuration

settings.
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2.7.1 Effectiveness of fuzzing as a debloating tool (RQ1)

With the advancement of efficient coverage-guided mechanisms, fuzzers can be
used to observe valid code executions. Ancile learns valid targets yielding from valid
execution paths. Ancile utilizes mutational fuzzing via AFL and honggfuzz to explore
relevant code paths. To generate complete observed function sets for a desired func-
tionality, it is possible to carefully select input seeds for that particular functionality.
For instance, if the user only wants to read pcap files via tcpdump, we can provide
only pcap files as seed. In the case, where the user wants to read both cap and pcap
files, we can then use both type of files as seeds.

In the following sections, we have analyzed fuzzing’s effectiveness in debloating
and CFI checks. Fuzzing has been mainly used as a bug finding mechanism. To
demonstrate its effectiveness as a debloating mechanism, we evaluate code reduc-
tion by Ancile on our case studies. Additionally, Ancile improves the security of the
debloated binary by pruning gadgets as well as security-sensitive functions. All per-
formance measurement were done on Ubuntu 18.04 LTS system with 32GB memory

and Intel Core i7-7700 processor.

Function Debloating Ancile debloats applications by removing all unused func-
tions, i.e., code that was never executed during our functionality inference phase. It
generates a white list of functions based on the context of the user-specified function-
ality and removes functions that were not invoked during execution. com-
pares the number of functions before and after debloating is performed across different
benchmarks. Additionally, function reduction depends on the specified functionality.
Ancile reduces around 60% functions for libtiff standard test-suite that comes with
the library, where as for a more specialized scenario, for example in case of tiffcrop

utility, reduces 78% functions.

Pruning-Security Sensitive Functions The main goal of Ancile is to allow the

minimum set of control-flow transfers for the required functionality, thereby minimiz-
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Figure 2.2. Comparison of the number of functions before and after de-
bloating across our benchmarks: libtiff, libpng, tcpdump, and nginx. We
used the standard test-suite for each of these applications. Ancile reduces
more functions in specialized cases.

ing the available attack surface. Sensitive functions belonging to a target set increase
the attack surface. We measure if sensitive functions are reachable from (i) indirect
calls i.e., they are in the target sets, (ii) at distance-1 (indirection +1), i.e., if a func-
tion in the target set calls a sensitive function, (iii) at distance-2 (indirection +2),
i.e., if a function in the target set calls a function that calls a sensitive function, and
(iv) similarly at distance-3 (indirection +3). In short, we have observed different level
of indirect calls in the evaluated benchmarks. We considered execve, mmap, memcpy,
and system as the set of sensitive functions in our analysis. The main reason behind
selecting such functions as sensitive is that an attacker can modify the arguments of
these functions such as system to execute unwanted actions and gain control of the
system. Since, there were no security sensitive function directly in the target set, we
exclude criterion (i) from our analysis.

shows reachability to sensitive functions from an indirect call site through
a sequence of intermediate calls. For instance, in libpng several calls are made to the
sensitive function memcpy. At indirection+1, indirection+2, and indirection+3 level,
there are five, 20, and 17 reachable calls respectively in LLVM-CFI. Ancile restricts
these calls to three locations at indirection+1 and in rest of the two cases there are no

indirect call sequences to memcpy. We have observed another interesting case in nginx,
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where execve, a highly sensitive function, is reachable in indirection+1 in LLVM-CFT,
however, Ancile does not allow this call. This call is only made in one rarely-used
feature (to hot restart nginx without losing connections when the underlying binary
is replaced with a newer version). This demonstrates that focusing on control-flow
transfers based on functionality reduces the attack surface when such features are

restricted.

Case Study: Gadget Reduction To better understand the significance of Ancile,
we performed a case-study on gadget discovery. We focused on two metrics: (i) Jump
Oriented Programming (JOP) gadgets, and (ii) unintended indirect-call gadgets. We
did not consider ROP gadgets since our framework is aimed for securing forward edges
only and CET [51]-like technology will secure backward edges. We built two versions
of nginx: one with LLVM-CFT enforcement and the other with Ancile enforcement
along all the unit test-suite features. Using a gadget-discovery algorithm and manual
analysis, we observed a 54% reduction in JOP gadgets and a 44% reduction of unin-
tended indirect-call gadgets. This case study shows us that Ancile can indeed help in

reducing the number of gadgets in an application.

2.7.2 Effectiveness of fuzzing as a CFI tool (RQ2)

To show the effectiveness of fuzzing as a CFI analysis tool, our aim is to estab-
lish that fuzzing is effective in producing drastically smaller target sets for indirect
control-transfers than previous approaches. We found that Ancile can reduce target
sets by 93.66% and 97.94% for the tiffcrop, tiff2pdf utilities from the libtiff image
library. Target set reduction reduces the attack surface, increasing the security of
our customized binaries. Any additional target which is not intended to be taken
during valid program execution potentially increases an attacker’s capabilities. We
compare Ancile’s target set per call site with LLVM-CFT on libtiff-4.0.9, libpng-1.6.35,
nginx-1.15.2 and tecpdump-4.9.0, as well as the SPEC CPU2006 benchmark suite.
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Sensitive function analysis: Number of indirection level to the sensitive
functions from functions present in the target sets of LLVM-CFI and An-

cile.

Benchmark Function ind. +1 ind. + 2 ind. + 3
LLVM-CFI 5) 20 17
libpng memcpy
Ancile 3 0 0
LLVM-CFI 1 0 0
execve
Ancile 0 0 0
LLVM-CFI 1271 2276 2869
nginx memcpy
Ancile 167 272 352
LLVM-CFI 0 2 4
mmap
Ancile 0 1 1
LLVM-CFI 59 95 66
memcpy
Ancile 14 14 11
libtiff
LLVM-CFI 1 0 0
mmap
Ancile 1 0 0
LLVM-CFI 156 670 678
tecpdump memcpy
Ancile 34 22 26

To understand the differences in target set generation from different feature selec-

tions, we have analyzed the target applications with different user specifications and

input seeds. Varying the input seeds for a given specification allows us to examine

the effect of path exploration during fuzzing on target set generation.
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Figure 2.3. Mean and std. deviation of target sets across the four appli-
cations in our test-suite for LLVM-CFI and Ancile. LLVM-CFI has more
callsite outliers with large target sets than Ancile.

shows the mean and standard deviation of target set per call site
across the four benchmarks for Ancile and LLVM-CFI. We leverage the application’s
standard test-suite for Ancile’s functionality analysis. In each of the benchmarks
libtiff, libpng, nginx and tcpdump, LLVM-CFI has on average 73% more targets than
Ancile. Furthermore, LLVM-CFT has outliers of call sites with very large target sets.
For example, tcpdump has 48 call sites for which LLVM-CFI reports 130 targets,
whereas Ancile observes none to at most