
NOVEL SYSTEM COMPARTMENTALIZATION AND
REVERSE ENGINEERING METHODS

by

Derrick McKee

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Mathias Payer, Co-Chair

School of Computer Science

Dr. Sonia Fahmy, Co-Chair

School of Computer Science

Dr. Kihong Park

School of Computer Science

Dr. Dongyan Xu

School of Computer Science

Dr. Christina Garman

School of Computer Science

Approved by:

Dr. Kihong Park

2

To my parents, siblings, and teachers along my way.

3

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Mathias Payer, for his guidance

throughout my doctorate. Simply put, my success is due in large part to his unending help

and encouragement to improve, and I am eternally grateful. I also thank my parents, siblings,

and the rest of my family for their undying support and love. They mean the world to me,

and I am lucky to have such a supportive, motivating group of people. I would like to thank

my colleagues at MIT Lincoln Laboratory, particularly Dr. Nathan Burow and Dr. Hamed

Okhravi. I have thoroughly enjoyed working with them, I have learned so much from them

about being a good researcher, and I cannot wait to continue working with them for many

years to come. Finally, I would like to thank the students and post-doctoral members of the

HexHive lab at Purdue University and EPFL, and in particular Prashast Srivastava, Atri

Bhattacharyya, Antony Vennard, and Hui Peng. They have provided valuable feedback,

friendship, and much-needed frivolity.

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABBREVIATIONS . 12

ABSTRACT . 13

1 INTRODUCTION . 14

1.1 Problems with System Security and Semantic Identification 14

1.1.1 Threat Model . 16

1.1.2 Hardware-Assisted Kernel Compartmentalization 16

1.1.3 Flexible Compartments . 18

1.1.4 IOVec Function Identifier . 19

1.2 Thesis Statement and Dissertation Layout 22

2 HARDWARE-ASSISTED KERNEL COMPARTMENTALIZATION 24

2.1 Introduction . 24

2.2 Background and Motivation . 27

2.2.1 Hardware Primitives . 29

2.2.2 Kernel Vulnerability Analysis . 30

2.3 Threat Model and Assumptions . 31

2.4 HAKC Compartmentalization API and Enforcement 33

2.4.1 Compartmentalization Policy API . 34

2.4.2 Compartmentalization Enforcement Mechanism 37

2.4.3 Example Case Study . 38

2.5 Compartment Policy and Enforcement Mechanism Implementation 39

2.5.1 Access Enforcement . 42

2.5.2 Developer Effort . 43

2.5.3 Policy Creation . 45

5

2.5.4 Optimizations . 46

2.6 Evaluation . 47

2.6.1 Instruction Analogs . 48

2.6.2 Single Compartment Performance Overhead 49

2.6.3 Multiple Compartment System Overhead 50

2.6.4 User Website Browsing . 51

2.6.5 Security Evaluation – CVE Case Studies 53

2.7 Discussion and Threats to Validity . 56

2.7.1 Security Limitations . 56

2.7.2 Performance Limitations . 56

2.8 Related Work . 57

2.8.1 Isolation in Computer Systems . 57

2.8.2 Hardware Based Isolation . 58

2.8.3 Arm PAC and MTE Extensions . 59

2.8.4 Isolation with Hypervisors . 60

2.8.5 Memory Safety Mechanisms . 60

3 FLEXIBLE COMPARTMENTS . 62

3.1 Introduction . 62

3.2 Design . 63

3.2.1 Call-and-Type Graph . 63

3.2.2 Compartmentalization Policy Generation 66

3.3 Implementation . 67

3.3.1 HAKC Instrumentation Changes . 67

3.3.2 CTG Partitioning . 68

3.3.3 Kernel Node . 69

3.3.4 Metrics for Policy Evaluation . 70

3.4 Evaluation . 71

3.4.1 Effects of CTG Refinements . 71

3.4.2 Compartmentalization Security Evaluation 71

6

3.4.3 Initial Results . 72

3.4.4 Dynamic Information Effects . 73

3.5 Discussion . 73

3.5.1 Indirect Target Elimination . 74

3.5.2 Alternative CTG Partitions . 75

3.6 Summary . 75

4 IOVEC FUNCTION IDENTIFICATION . 77

4.1 Introduction . 77

4.2 Challenges and Assumptions . 79

4.2.1 Semantic Function Analysis . 79

4.2.2 Assumptions . 80

4.3 IOVFI Design . 81

4.3.1 IOVec Discovery . 87

4.3.2 Pointer Derivation . 88

4.3.3 Matching Program States . 90

4.4 Evaluation . 92

4.4.1 Accuracy Experimental Setup . 92

4.4.2 Accuracy Amid Environment Changes 96

4.4.3 Equivalence Class Distributions . 100

4.4.4 Training and Labeling Time . 101

4.5 Case Studies . 102

4.5.1 Accuracy Against Obfuscated Code 102

4.5.2 AArch64 Evaluation . 103

4.5.3 Large Shared Libraries . 105

4.5.4 Semantic Differences and Versioning 106

4.6 Discussion . 108

4.7 Future Work . 110

4.8 Related Work . 111

5 SUMMARY . 114

7

REFERENCES . 116

8

LIST OF TABLES

2.1 Clique and Compartment properties. 40

2.2 Computed PAC context used for access enforcement for a pointer p used by Clique
M . 42

2.3 Summary of needed developer effort and automated instrumentation provided by
the LLVM pass. 44

2.4 The measured time differences between the compartmentalized kernel of the low-
est and highest standard deviations of unmodified kernel load times. Negative
delta numbers indicate slower compartmentalized load time. 52

4.1 Data stored in IOVecs. 86

4.2 Backwards Taint Propagation. t and u can be a register or memory address. T(x)
taints x and R(x) removes taint from x. ◦ denotes any logic or arithmetic operator. 88

4.3 Geometric mean F-Score (left) for coreutils-8.32 per decision tree compilation
environment (rows) across evaluation suite compilation environments (columns),
and percent increase F-Score over BinDiff 6 (right). 93

4.4 asm2vec F-Scores (left), average similarity of true labels (middle), and average
similarity of predicted label (right). 93

4.5 Geometric mean count of classified functions (N), average number of functions
per equivalence class (N) for all coreutils-8.32 generated decision trees. The
median equivalence class size is 1.00 for all decision trees. 100

4.6 Obfuscated code accuracy comparison when bogus control-flow (bcf), control-flow
flattening (fla), or instruction substitution (sub) is enabled for coreutils-8.32. 103

4.7 F-Scores for identifying functions in coreutils-gcc-O3 AArch64 binaries using
decision trees generated from x64 wc (1), realpath (2), and uniq (3). 104

4.8 F-Scores identifying functions in libz (A), libpng (B), and libxml2 (C) using
a clang-O0 decision tree. We did not evaluate against the clang-O0 binary. . . 104

4.9 Decision tree (N), average equivalence class sizes (N), and CPU hours needed to
generate the decision tree (T). 105

9

LIST OF FIGURES

1.1 Critical CVEs as Percentage of all CVEs have remained consistent for years de-
spite decades of vulnerability mitigation research. 14

1.2 Binary differences caused by changing compilation environments 21

2.1 Pointer signing using PAC. The upper/lower bit indicates if higher bits are used
in the PAC signature. 28

2.2 Address space coloring using MTE. 28

2.3 A breakdown of mitigations for Linux kernel high severity CVEs. “Either” indi-
cates that if memory safety or compartmentalization were present, the bug would
not be exploitable. “Remaining” indicates that memory safety or compartmen-
talization would not mitigate the CVE. 31

2.4 An example compartmentalization involving four Compartments, each of which
contains four Cliques. Edges between Compartments are allowable transitions.
Bold Cliques are valid Compartment entry points, and dotted Cliques are valid
Compartment exit points. 33

2.5 An example Compartment transferring data ownership to an external Compart-
ment. During this Compartment transition, orange data is recolored purple, and
the data ownership is moved to the target Clique in the external Compartment.
Upon return, the data is colored orange, and data ownership is restored. 34

2.6 MTE Instruction Analogs . 48

2.7 ipv6.ko overhead normalized to unmodified kernel when transferring various
sized payloads. 49

2.8 Average HAKC operations per second and per KB transmitted while running
ApacheBench. 50

2.9 Overhead imposed when using multiple Compartments in a single system, nor-
malized to the unmodified kernel (U) and single Compartment systems (S). . . . 51

3.1 Kernel dynamic dispatch . 65

3.2 The CTG FlexC creates from the sources in Figure 3.1 66

3.3 Average percent increase in test suite execution time over the uncompartmental-
ized kernel. D indicates dynamic data was used for the compartmentalization. . 73

3.4 HAKC operations per second for different compartmentalizations when executing
the net.features test suite. D indicates dynamic data was used in the compart-
mentalization. 74

4.1 IOVFI Ahead-of-Time Learning Phase. 84

10

4.2 IOVFI Identification Phase. The ✓ and ✗ indicates that the IOVec was accepted
and rejected respectively. Paths in the tree leading to green leaves indicate seman-
tic equivalency in the unknown binary X.exe to a previously analyzed function
(foo, bar, or baz), while paths leading to red leaves represent unseen/new behavior. 86

4.3 Backwards taint analysis to infer pointer arguments. 88

4.4 Distribution of all equivalence class sizes across all decision trees in the coreutils-8.32
evaluation. 101

4.5 Semantic changes measured by function mismatches between IOVecs generated
for a particular version (rows) and other versions (columns). Labels indicate the
number of line additions and removals in source files between versions. 107

11

ABBREVIATIONS

HAKC Hardware-Assisted Kernel Compartmentalization

FlexC Flexible Compartments

IOVFI IOVec Function Identifier

IOVec Input/Output Vector

CVE Common Vulnerability Enumeration

IoT Internet of Things

CTG Call-and-Type Graph

ROP Return-Oriented Programming

CIS Characteristic IOVec Set

DCIS Distinguishing Characteristic IOVec Set

FUT Function Under Test

12

ABSTRACT

The need to secure software systems is more important than ever. However, while a lot

of work exists to design and implement secure systems, a fundamental weakness remains.

Instead of implementing software with least privilege policies, developers create monolithic

systems that allow any instruction near universal memory access. This dissertation attempts

to rectify this fundamental weakness to software design through three different contributions.

First, I address the monolithic software design problem by proposing and evaluating a novel

compartmentalization enforcement mechanism called Hardware-Assisted Kernel Compart-

mentalization (HAKC). HAKC is capable of enforcing an arbitrary compartmentalization

policy using features of the ARMv9 ISA, without the need of any extra virtualization or

trusted software layer. I then introduce a method of determining an optimal compartmen-

talization policy based on user performance and security constraints called FlexC, which

is tested using HAKC as the enforcement mechanism. The end result is a hardened, com-

partmentalized kernel, customized to a user’s needs, which enforces a least privilege policy

that minimizes overhead. Finally, as an avenue for further compartmentalization policy gen-

eration, I introduce a novel program analysis framework called IOVec Function Identifier

(IOVFI), which foregoes the use of language processing and model learning, but instead uses

program state changes as a unique function fingerprint. I show that IOVFI is a more stable

and accurate function identifier than the state-of-the-art, even in the presence of differing

compilation environments, purposeful obfuscations, and even architecture changes.

13

1. INTRODUCTION

1.1 Problems with System Security and Semantic Identification

Secure software—software that is well tested, updated frequently with security patches,

and utilizes the latest security mitigations, such as Address Space Layout Randomization,

Data Execution Prevention, stack canaries, and Control-Flow Integrity—is more important

today than ever before. We increasingly depend upon secure software, and serious calls are

starting to be made for its importance to national security [1].

However, despite decades of research [2]–[4] into compiler-based defenses, run-time pro-

tections and immense computing resources allocated to finding bugs [5]–[8], secure software

remains decidedly insecure. The NIST National Vulnerability Database tracks an average

14,502 CVEs annually since 2016, and as Figure 1.1 shows, the most severe CVEs constitute

a remarkably consistent 15% of all CVEs issued every year. Clearly a different tack is needed.

We performed an analysis of the last five years of CVEs issued for the Linux kernel, which is

detailed in § 2.2.2 , and found that the lack of a least privilege policy is the underlying reason

that most bugs can be exploited, leading to whole system compromise.

2016 2018 2020 2022

5

10

15

Year

Pe
rc

en
ta

ge
of

C
rit

ic
al

C
V

Es

Figure 1.1. Critical CVEs as Percentage of all CVEs have remained consistent
for years despite decades of vulnerability mitigation research.

14

The principle of least privilege states simply that an entity should have access to only the

resources needed to complete its task, and no more. Despite it being an idea in computing

that dates back to at least the early 1970s [9], [10], some of the most important software

projects, such as the Linux kernel, the Apache web server, or OpenSSL, do not enforce

the principle of least privilege. Those software systems, like most others, are designed as

monoliths, which allow any instruction to access virtually any memory address (barring

address space-wide restrictions on accessible pages). Any pointer is considered valid and

relevant to the current task by the instructions performing the access, regardless of what

data the pointer addresses. Least privilege seeks to reduce excess privilege by restricting

access only to data (and code) that instructions must access to function properly. Excess

privilege is a security risk, because unintended actions can be performed that destabilize the

system, elevated privileges can be assigned to unauthorized users, and sensitive data can be

made public.

A classic example of the damage caused by the lack of a least privilege policy is the

Heartbleed [11] bug in OpenSSL disclosed in 2014. Heartbleed was a vulnerability in the

Heartbeat Extension for TLS, which allows for an established connection to keep alive and

test its continued viability. This extension avoids the expensive reestablishment of a secure

connection. However, the OpenSSL implementation trusted unverified user-supplied data,

and allowed the continuous exfiltration of 64 KB of memory from the target. The contents

of that memory often contained private keys, cookie session keys, and user passwords. 24–

55% of the Alexa Top 1 Million websites [11] were affected, and, consequently, Heartbleed is

considered one of the most catastrophic bugs ever found. However, the Heartbeat Extension

does not need access to user passwords or private keys, and in a system designed with

least privilege such access would be forbidden. Unfortunately, Heartbleed is not an isolated

incident relegated to the past; in just the first three months of 2022, NIST reports over 2,000

high severity CVEs issued.

To address the least privilege problem, I propose Hardware-Assisted Kernel Compart-

mentalization and Flexible Compartments. Hardware-Assisted Kernel Compartmentaliza-

tion is a general method of enforcing a compartmentalization policy using new hardware

extensions. Flexible Compartments allows for the generation of a compartmentalization pol-

15

icy that allows for user customization in terms of performance and security which scales

to large computer systems. Flexible Compartments utilizes type and call information to

generate its compartments, but other avenues exist for compartment discovery. One ex-

ample, µScope [12], builds compartments based on measurements of memory accesses and

control-flow transfers performed during concrete executions. However, dynamic approaches

like µScope are inherently imprecise (as they only observe the executed paths through the

program), so other approaches should be explored. To that end, I propose IOVec Func-

tion Identifier, a semantic similarity framework that operates on stripped binaries, yet is

resilient to significant changes to compiler, optimization, or even architecture. Using code

similarity, one could develop a compartmentalization policy that is explainable, a trait that

is becoming more desirable [13], and more accurate than using only dynamic code interaction

measurements.

1.1.1 Threat Model

Throughout this dissertation, the threat model I assume is a strong attacker with full

knowledge of the compartmentalization policy in place on the system, and I do not assume

probabilistic defenses like KASLR [5] are enabled. I further assume that the attacker has

direct access to the target system, and can execute arbitrary programs as their user, and

can send any external data, e.g., network traffic or USB data, to the system via arbitrary

hardware. However, the attacker cannot change kernel code or install and run their own

kernel module. The attacker also cannot modify system-wide settings or active CPU features.

The following sections are brief introductions to each of the three works, followed by my

thesis statement.

1.1.2 Hardware-Assisted Kernel Compartmentalization

Hardware-Assisted Kernel Compartmentalization (HAKC) is an enforcement mechanism

for arbitrary least privilege policies in the Linux kernel. As the name suggests, HAKC relies

on hardware features, and does not expand the trusted computing base via virtualization

mechanisms. HAKC uses a novel combination of two ARMv8.5-a (and soon-to-be released

16

ARMv9) extensions, Memory Tagging Extension (MTE), and Pointer Authentication Code

(PAC), to ensure that the current program state allows pointer dereference or control flow

transfer. The programmer defines the compartmentalization policy, that catalogs the code

and data that belong together in a compartment, and to which compartments a given com-

partment can transfer control. During compilation, HAKC reads the desired compartmen-

talization policy, and inserts validity checks before pointer dereference or indirect control

flow transfer. If the current program state does not allow the dereference of a pointer or a

control flow transfer to occur, HAKC prevents the pointer from being accessed.

MTE allows for the association of a tag (i.e., a color) to a virtual address range. Unfor-

tunately, MTE, like many memory tagging architectures, only allows for a small number of

tags. In MTE’s case, only 4 bits are used for tags, and 16 compartments are inadequate for

large systems like the Linux kernel. Therefore, HAKC introduces a novel two-tiered com-

partmentalization scheme, where code and data are bundled together into a structure called

a Clique, and a set of Cliques are further bundled into a Compartment. Cliques are assigned

a color unique to the Compartment (but not unique to the whole system), and each Clique

has an access control policy that details what colors the Clique can access. Data is owned

by exactly one Clique within a Compartment, and the Compartment and Clique ownership

mapping is established and checked using PAC. PAC computes a hash of a pointer value, and

a user-specified context parameter, and stores the result in the upper unused bits of a 64-bit

pointer. Pointers are signed when memory is allocated using the color and Compartment

identifier, and checked at run-time by code in a Clique that it conforms to its data access

graph. If control flow leaves the Compartment to another Compartment, data ownership

passes to the target through a recolor and resigning operation, which is then undone when

control flow returns.

We compartmentalized the ipv6.ko and nf tables.ko Linux kernel modules as a proof

of concept. We evaluated the performance overhead induced by HAKC using apachebench

serving several file sizes, and find that the overhead is 1.6%–24% when only the ipv6.ko

module was compartmentalized. When both modules are used, we measure a reasonable

linear growth in overhead. We also simulated browsing Alexa Top Websites that provide

an IPv6 address using the compartmentalized ipv6.ko module, and found no significant

17

difference from the unhardened kernel module to retrieve and render webpages and streaming

videos.

1.1.3 Flexible Compartments

Creating an enforcement mechanism for compartments is not sufficient for truly effective

compartmentalization; the corresponding tight compartmentalization policy must also be

created. By compartmentalization policy, we mean the specification of what code and data

should belong in the same compartment, what outside data should a compartment be able

to access, and what are legal control-flow transitions to outside compartments.

In order to specify a compartmentalization policy, one must know the allowable memory

accesses and control-flow transitions. Manual specification of a policy is too cumbersome,

because the amount of legal operations in a complex software system are too numerous.

Therefore, an automatic solution to compartmentalization policy generation is needed. How-

ever, there are two types of data sources one can use to generate policies, static and dynamic

data. Static analysis is able to fully identify all possible interactions between instructions

and data, such as the set of data a particular instruction can access, or the set of target

instructions of a particular indirect jump. However, that analysis is imprecise and over-

approximative (due to aliasing), and will therefore add interactions that, in reality, may

never happen. Dynamic analysis, however, records only the memory accesses and control-

flow transfers that occur during actual observed executions. This analysis provides the lower

bound of interactions that are possible within a system, but will not include legitimate

code paths and accesses, because they simply were not observed. For example, error code

paths are unlikely to be triggered during any particular execution, but need to be accounted

for in a compartmentalization policy. Dynamic analysis does provide memory access and

control-flow frequency information, and that information can inform compartmentalization

policy generation. Placing code and data that frequently interact in the same compartment

improves overall performance, because cross-compartment interactions are expensive.

Flexible Compartments is a system for generating performant compartmentalization poli-

cies. Flexible Compartments works by generating a weighted directed graph, with edges

18

between source files in the Linux kernel. The edge weights between two source files contain

information that summarizes the level of interaction between them. Static and dynamic

information are stored with each edge, and a compartmentalization policy generation can

specify how much weight to give to each. By varying the static and dynamic weights, as well

as the number of compartments in the final compartmentalization, Flexible Compartments

allows the user to specify their security or performance needs, and will automatically gen-

erate a compartmentalization policy that meets those needs. We evaluate the performance

overhead of several compartmentalization configurations, including varying the number of

compartments and static/dynamic edge weight contributions.

1.1.4 IOVec Function Identifier

Flexible Compartments utilizes type and call information to generate compartmentaliza-

tion policies. Another avenue for compartmentalization policy generation is through code

similarity. However, determining how similar two pieces of code are is a difficult problem [14].

One method of determining code similarity is through binary semantic function analysis,

which attempts to identify a function’s behavior expressed in the source code through inves-

tigation of its final binary output.

A lot of work has been done on semantic function analysis, particularly in semantic

identification [15]–[27]. Semantic identifiers are either static or dynamic, depending on how

they gather the data they analyze. Static identifiers only analyze binary data without

executing any instruction in the binary, while dynamic data will execute instructions in the

binary, but can also do static analysis. Both techniques have their strengths and weaknesses.

Static analysis is quick, relative to dynamic analysis, and its analysis can be complete and

correct, because any code path can be explored. However, the incomputability of pointer

aliasing [28] and path explosions limits the precision of static analysis. Meanwhile, dynamic

analysis is more precise, at the expense of long analysis time relative to static analysis,

because the binary is typically executed many times, usually in a virtual machine for safety.

Additionally, dynamic analysis is not complete, because some code paths are not traversed.

19

However, both types of state-of-the-art semantic identifiers share a commonality: they

all measure binary code properties. Namely, current semantic identifiers attempt to measure

control-flow graph isomorphisms, order and type of instructions, and memory or register

access. The assumption is that code property similarity closely correlates with semantic

similarity. While it is certainly true that similar code properties indicate similar semantics,

measuring different code properties does not indicate different semantics. The same source

compiled using different compilers, optimizations, or compiler versions can all lead to ar-

bitrarily different binaries. In other words, the compilation environment used to generate

a binary strongly determines the output, and the compilation environment information is

not preserved in the final binary. For example, Figure 1.2 shows how the musl C library

implementation of strlen produces different assembly when the compilation environment

changes. The full disassembly of the various binary versions of this strlen implementation

can differ by up to 70%.

The fact that such a simple function can produce such different binaries points out a

serious flaw in binary property measuring semantic identifiers. There are many ways to per-

form the same semantic action, and measuring or inferring all possible semantic expressions

is impractical. Therefore, when a semantic identifier sees a binary produced by a compila-

tion environment outside of its model, its accuracy is reduced significantly. Since analysts

cannot know the compilation environment used to produce a binary, the utility of semantic

identifiers that rely on binary properties is limited.

IOVec Function Identifier (IOVFI) is an accurate, compilation environment and archi-

tecture agnostic dynamic semantic function identifier. Unlike other state-of-the-art seman-

tic identifiers, which relies on code measurements to determine semantic similarity, IOVFI

uses program state transformation sets as its fingerprinting metric. IOVFI automatically

finds valid program states for a particular function, and then measures the program state

post-execution. The combination of initial program state, and the resulting post-execution

program state are called an Input/Output Vector, or IOVec. Since compilers guarantee cor-

rect semantic behavior given a source file regardless of compilation environment, the sets of

IOVecs generated by IOVFI are highly resistant to changes in compilation environment or

even purposeful obfuscation. Using IOVecs, IOVFI can also be used to identify unknown

20

1 size_t strlen (const char *s)
{

3 const char *a = s;
const size_t *w;

5 for (; (uintptr_t)s % ALIGN; s++)
if (!*s) return s-a;

for (w = (const void *)s; ! HASZERO
(*w); w++);

7 for (s = (const void *)w; *s; s++)
;

return s-a;
9 }

Listing 1.1 Source

strlen :
2 pushq %rbp

movq %rsp , %rbp
4 movq %rdi , -16(% rbp)

movq -16(% rbp), %rdi
6 movq %rdi , -24(% rbp)

.LBB0_1 :
8 movq -16(% rbp), %rax

andq $7 , %rax
10 cmpq $0 , %rax

je .LBB0_6

Listing 1.2 clang-4.0 -O0

1 strlen :
movq %rdi , %rax

3 testb $7 , %dil
je .LBB0_4

5 movq %rdi , %rax
.p2align 4, 0x90

7 .LBB0_2 :
cmpb $0 , (% rax)

9 je .LBB0_8
addq $1 , %rax

11 testb $7 , %al

Listing 1.3 clang-4.0 -O3

1 strlen :
testb $7 , %dil

3 movq %rdi , %r8
je .L2

5 cmpb $0 , (% rdi)
jne .L4

7 jmp .L22
.p2align 4,,10

9 .p2align 3
.L6:

11 cmpb $0 , (% rdi)

Listing 1.4 gcc-7.3.0 -O3

1 strlen :
testb $7 , %dil

3 movq %rdi , %rax
je .LBB0_4

5 movq %rdi , %rax
.p2align 4, 0x90

7 .LBB0_2 :
cmpb $0 , (% rax)

9 je .LBB0_8
incq %rax

11 testb $7 , %al

Listing 1.5 clang-3.9 -O3

Figure 1.2. Binary differences caused by changing compilation environments

binary versions based on function behavior, and detect major semantic differences between

different versions of known binaries. As a first in class feature, IOVecs generated using one

architecture can be used to identify functions in another architecture through the use of a

small translation layer.

21

IOVFI utilizes a guided, mutational fuzzer to generate IOVecs, although other schemes

could be used. Fuzzing, which rapidly and repeatedly executes code with a randomized

program state, is ideal for analyzing unknown binaries, because no a priori knowledge is

required. For every function in the binary, IOVFI randomizes the input arguments, and

begins executing the instructions. When the function returns, IOVFI records the program

state, and saves the initial input and the resulting program states, along with the unique

system calls made during execution, into an IOVec. This process continues until a user-

specified amount of code coverage is achieved, or the fuzzer has run for a user-specified

amount of time. IOVFI also automatically determines which input arguments are intended

to be pointers, and preserves that information in the IOVec. When a pointer is detected,

during the initial fuzzing step, the target memory area is also fuzzed. When IOVFI completes

its training phase, IOVecs are sorted into a binary tree, with known functions as leaves. This

sorting later allows for quick classification of unknown functions.

We evaluated IOVFI on F-Score (harmonic mean of precision and recall) accuracy, and

found that it achieves an overall average of .779 ±.0777. When the compilation environments

of the IOVec binaries differ from those of the unknown binaries—the situation in which cur-

rent state-of-the-art semantic identifiers find most difficult—IOVFI achieves a .766 ±.0682

average F-Score. IOVFI’s F-Score accuracy shows a 94% to 39% improvement over the

static BinDiff 6 analyzer, in overall and differing compilation environment scenarios respec-

tively. We significantly outperform the state-of-the-art asm2vec static analyzer in all but the

matching compilation environment case. Evaluating against dynamic semantic identifiers,

IOVFI is 25%–53% more accurate than the state-of-the-art. When identifying functions in

purposefully obfuscated binaries, we are 39.3% more accurate than dynamic identifiers. Fi-

nally, IOVFI achieves a similarly high accuracy of .811 when identifying AArch64 functions

using X64 IOVecs.

1.2 Thesis Statement and Dissertation Layout

With the problems of least privilege and semantic identification described, and my work

outlined, I arrive at my thesis statement:

22

External (potentially abstracted) program state aids in the discovery, establish-

ment, and enforcement of compartments in monolithic computer systems.

By external program state, I mean program state that is established or maintained outside

of the control of the executing program. In particular, external program state includes the

memory tagging functionality provided by MTE, and the IOVecs generated by IOVFI. The

tags maintained by MTE are required to provide Clique ownership information at runtime,

yet are only accessible through specific instructions and not through pointer dereference. By

design, IOVecs establish an external program state outside the influence of the target function

to detect semantic similarity, as well as quantify the similarity of disparate functions.

This dissertation provides three works that utilize program state in novel ways to support

the compartmentalization of computer systems. The following chapters will detail HAKC,

FlexC, and IOVFI respectively, as well provide experimental results, discussion, and related

works for each. Taken together, the works provide strong evidence in support of the thesis

statement.

23

2. HARDWARE-ASSISTED KERNEL

COMPARTMENTALIZATION

2.1 Introduction

Modern kernels have expanded their functionality well beyond the “three easy pieces”

of concurrency, virtualization, and persistence [29]. Users expect additional features, such

as protocol implementations, advanced filesystems, and driver support for an ever growing

number of devices. However, as the kernel has grown, its monolithic design, which provides

only a single address space for all kernel functionalities, persists. With the increased size

and complexity of the kernel, the number of CVEs issued for Linux per year has grown by

over 270% from 2005 to 2020.

Loadable kernel modules (LKMs), which are the mechanisms through which additional

functionality gets added, provide a natural compartmentalization boundary for the kernel.

As kernel module code can always be compiled into the main kernel image, at the source

level, there is no clear difference between core kernel code and LKM code. However, when

compiled as individualized units, LKMs are not part of the core kernel image that gets loaded

by the bootloader. Instead, the kernel dynamically loads an LKM when the kernel needs the

particular functionality offered by the LKM. Thus, at runtime, there is a clear and logical

separation between LKMs and the rest of the kernel, but the monolithic design of the kernel

effectively erases that separation [30].

Bugs in LKMs become just as severe as other kernel bugs, as all code and data exist in the

same address space, with no isolation and executing with elevated privilege. Unfortunately,

the sheer size and complexity of LKM code create an attack surface much larger than the

core kernel. Of the 567 high severity CVEs we analyzed (see § 2.2.2), 301 were found in the

drivers/ and sound/ directories (or contained the word “driver” in the CVE description for

cases of proprietary code, such as the Nvidia GPU driver). We argue that most of the code

in those directories are intended for LKMs, and thus that most high severity CVEs come

from LKMs, despite our underapproximation of CVE sources.

As an example of a high severity Linux CVE, consider CVE-2016-4997 [31] listed in

 Listing 2.1 . The code is part of the IPv4 packet filtering subsystem, and is executed during

24

1 static void compat_release_entry (struct compat_ipt_entry *e) {
struct xt_entry_target *t;

3 struct xt_entry_match * ematch ;

5 /* Cleanup all matches */
xt_ematch_foreach (ematch , e)

7 module_put (ematch ->u. kernel .match ->me);
t = compat_ipt_get_target (e);

9 module_put (t->u. kernel .target ->me);
}

Listing 2.1 Packet filter code that allows root access. A user-controlled pointer
value can be passed to module put in line 7 without violating memory safety
or control-flow integrity, and an underlying integer is decremented.

error cleanup. The exploit involves the attacker supplying a small positive integer value via

a system call, which, due to the LKM only performing an upper bound test and not a lower

bound test, can lead to a corruption of a structure submember used as an offset value in a

pointer computation. The pointer, computed using the offset submember corrupted by the

user, is then written to the me pointer in line 7, which decrements an underlying integer,

allowing an arbitrary kernel integer (e.g., the current process UID) to be decremented.

This exploit is an example of a data-only attack that allows for accessing data beyond

what the developer intended, which the monolithic design of the Linux kernel happily al-

lows. A properly executed exploitation of this CVE does not violate memory safety, as all

memory accesses are in validly allocated and live memory regions, and no practical memory

safety mechanisms [32] prevent submember corruption, of which this exploit takes advantage.

Control-flow integrity [33] is not violated either, because execution flows along a valid path

at all times. Consequently, while existing mitigations such as memory safety and control-

flow integrity have a place in securing the kernel, compartmentalization is necessary for

truly secure kernels. Compartmentalizing the packet filtering functionality so that accessi-

ble memory is restricted to only that which the developer intends prevents such data-only

exploits, even in the presence of buggy code. In that way, compartmentalization provides

similar security guarantees to microkernels, but without the significant engineering changes

that microkernels impose.

25

Current state-of-the-art commodity kernel protections (as opposed to embedded kernel

defenses [34], [35]) generally fall into one of three categories: virtualization-based, microkernel-

based, or compiler-based. Virtualization-based protections [36]–[39] employ a hypervisor to

monitor execution or provide stronger isolation between execution domains. Microkernel-

based protections [40], [41] completely redesign the operating system to minimize the Trusted

Computing Base (TCB) to typically include only the virtual memory management and IPC,

and isolate other traditional kernel services as user-space processes. Compiler-based pro-

tections [5], [32], [33] introduce security checks or randomization [42] by the compiler that

attempts to thwart code-reuse or data-only attacks. Virtualization and microkernel defenses

provide the strongest protections, but are the least performant, and still rely on additional

software TCB. Compiler protections, with the exception of KASAN [32], are more per-

formant, but only protect a subset of the attack surface, as with kCFI [33], or are often

circumvented [43].

In this paper, we present Hardware-Assisted Kernel Compartmentalization (HAKC), a

mechanism for compartmentalizing kernel code and data. HAKC relies on hardware features

for enforcement, which avoids growing the TCB, yet provides strong data and control-flow

protection. HAKC splits code and data into partitions that contain a developer-specified mix

of both, and collects the partitions into a larger grouping for efficient policy enforcement.

A data-access policy is specified for each partition within the larger group, and a control

policy is defined for the larger group if control flow needs to exit its constituent partition set.

HAKC provides fine-grained data-access and control-transition policies to prevent arbitrary

data access and code execution. The data-access policy ensures that all data belongs to

exactly one partition, and the accessed data conforms to the data-access policy defined for

each partition. The control-transition policy checks that indirect control flow targets also

conform to the partition set access policy. When control flow exits the partition set, data

ownership is transferred to the target, and then restored upon return. In this way, HAKC

optimizes and enforces safe local data access; code and data access within a partition is

secure and quick, relative to those outside. However, data and code defined outside the

partition is accessible, but only if explicitly needed. While we designed HAKC around

26

compartmentalizing LKMs, it is not limited to only that use case; HAKC can be applied to

core kernel code, as well as user-space code.

We implement Hardware-Assisted Kernel Compartmentalization for the ipv6.ko and

nf tables.ko LKMs in Linux 5.10.24 using hardware features present in the ARMv8.5-

A ISA. We measure the performance overhead of compartmentalizing ipv6.ko using mi-

crobenchmarks, and find that HAKC imposes an average 1.6%–24% overhead. Additionally,

we measure the overhead of using two compartmentalized LKMs together, and find that the

overhead grows linearly. Finally, when simulating typical browsing behavior using the Alexa

Top websites, we find no significant difference using our compartmentalized LKM over an

unmodified LKM. To summarize, this paper provides the following contributions:

• A compartmentalization policy API for defining fine-grained compartmentalization

policies.

• A practical, hardware-based compartmentalization enforcement mechanism.

• An implementation of a compartmentalization policy on the ipv6.ko and nf tables.ko

LKMs

1
 .

• An extensive evaluation on the overhead imposed by our compartmentalization policy

and enforcement, demonstrating its practicality.

2.2 Background and Motivation

Here, we present some background about Pointer Authentication (PAC) and Memory

Tagging Extension (MTE), the hardware security primitives we used to build our proto-

type HAKC implementation. Both PAC and MTE are present in the ARMv8.5-A ISA. We

additionally provide an analysis of high severity CVEs that motivate the need for HAKC.
1

 ↑ Available at https://github.com/mit-ll/HAKC

27

https://github.com/mit-ll/HAKC

PAC PAC Address
va_size

55

63
lower/upper bit

Context

Address

pacda

Figure 2.1. Pointer signing using PAC. The upper/lower bit indicates if
higher bits are used in the PAC signature.

Address

Color stg

Address Space

Figure 2.2. Address space coloring using MTE.

28

2.2.1 Hardware Primitives

Pointer Authentication

Introduced in ARMv8.3, Pointer Authentication is used to cryptographically sign point-

ers, and store the signature in the “unused” upper bits of a 64-bit pointer (see Figure 2.1).

PAC implements two instruction classes, one for signing and one for authenticating a

signed pointer, and allows for using five different keys, two for data and code pointers each

and one user-specified key. For example, in Figure 2.1 , the pacda instruction specifies using

the a key for signing data pointers. Signing involves specifying a pointer to be signed, the key

to use for signing, and a 64-bit signing context. PAC was initially designed to mitigate code

reuse and pointer substitution attacks [44], because the signed pointer no longer references

validly mapped memory, and an invalidly modified pointer will fail future authentication.

The attacker, therefore, will have to guess a valid signature for a replacement pointer, which

is hard because the signature uses the cryptographically secure QARMA block cipher [45].

However, separate address space domains can be established by varying the signing context,

because it can be any 64-bit value. For instance, the stack pointer can be used as the

context to ensure stack-based buffer overflows do not overwrite valid return addresses with

attacker controlled values. Liljestrand et al., implemented a type safety mechanism by

using an object ID as the PAC context [46], and Farkhani et al., implemented a temporal

memory safety mechanism using allocated object metadata as the context [47]. Other uses

for PAC have been proposed [48], [49], and HAKC uses PAC (combined with MTE) to

enforce compartments’ access policies.

To obtain a valid pointer, the signed pointer must be authenticated using the same key

and context. If either the pointer (sans signature) or the context are different from the

values used during signing, the authentication results in yet another invalid pointer. If the

pointer, key, and context are the same values used during signing, the signature is stripped

from the pointer, and the original (presumably valid) pointer value is restored. HAKC relies

on this behavior to compute a context that was expected to sign a particular pointer, using

a combination of information known at compile time and gathered during runtime.

29

Memory Tagging Extension

Memory tagging extension (MTE), introduced in ARMv8.5-A [50], allows for assigning

a “color” or tag to a memory region, which can be used to segregate the address space into

distinct regions. MTE introduces two instruction classes, one to assign a color to a memory

region (shown in Figure 2.2), and one to retrieve the current color of a memory address.

Given infinite tags, one could very simply create highly compartmentalized code — each

compartment could be individually colored. However, MTE imposes some constraints on

how it can be used: only 16 colors are available for use, the memory address must be aligned

to 16 bytes, and the region to be colored can be no smaller than 16 bytes. The limited

number of colors available makes simplistic compartmentalization inadequate, because the

compartments are too broad in scope. The attack surface of only 16 compartments in the

Linux kernel is large enough that bugs are unlikely to be mitigated. However, as this paper

will show, the combination of PAC with MTE allows for the creation of significantly more

compartments than the available colors. Colors are reused, but compartments are protected

using PAC contexts computed from hard-coded values known at compile time and from

the address tags retrieved during runtime in order to prevent reused colors from enabling

spurious access.

2.2.2 Kernel Vulnerability Analysis

As inspiration for HAKC, we analyzed high severity (CVSS 3.0 rating 7.0 or higher)

CVEs issued for the Linux kernel from Jan. 2015 through May 2021, and determined if the

CVE could be mitigated with memory safety or compartmentalization. A CVE is considered

mitigable if the presence of memory safety and/or compartmentalization would prevent the

bug, and unmitigable if neither mechanism would prevent the bug. The basis for classification

was determined by searching for keywords in the description that map to the two defense

mechanisms (i.e., arbitrary code execution maps to compartmentalization, while use-after-

free maps to memory safety), or manual analysis of patches in cases where the description

was unclear. Figure 2.3 presents a summary of our findings. Out of the 567 CVEs in our

dataset, 229 could be mitigated through compartmentalization, and 193 could be mitigated

30

34.04%

40.39%

12.52%

13.05%

Memory Safety
Compartmentalization
Either
Remaining

Figure 2.3. A breakdown of mitigations for Linux kernel high severity CVEs.
“Either” indicates that if memory safety or compartmentalization were present,
the bug would not be exploitable. “Remaining” indicates that memory safety
or compartmentalization would not mitigate the CVE.

using memory safety. Only 71 could be mitigated by either defense mechanism, implying the

continued importance of memory safety alongside compartmentalization, and only minimal

overlap in protection when both are enabled. There are 73 CVEs that are unmitigable with

compartmentalization and memory safety, of which 57 involve incorrect or missing domain-

specific logic, such as discarding returned error values or a cold path missing a data validity

check. The remaining unhandled CVEs involve race conditions (9), integer over/under-flows

(8), and a configuration that enables unsupported functionality (1).

2.3 Threat Model and Assumptions

In line with other kernel security mechanisms, we assume that an attacker does not

have root access, and thus cannot modify kernel modules. However, they can take arbitrary

actions in attempt to compromise a victim kernel module, including making arbitrary system

calls or having peripherals send arbitrary data [51]. We also assume that the LKM itself

is not malicious, but contains exploitable bugs. Kernel functionality outside of the victim

31

100 static unsigned long * m1_counts ;
typedef struct msg {

102 long idx;
unsigned long val;

104 } msg_t ;

106 unsigned long m1_get (msg_t * m) {
return m1_counts [m->idx]; // idx not checked -> ARBITRARY READ

108 }
EXPORT_SYMBOL (m1_get);

110
int m1_init (void) {

112 m1_counts = kmalloc (SIZE* sizeof (unsigned long));
}

Listing 2.2 LKM 1 (Arbitrary Read)

200 static unsigned long counts [SIZE];
extern unsigned long m1_get (msg_t *);

202
static int m2_ioctl (struct inode *inode ,

204 struct file *file ,
unsigned int ioctl_num ,

206 unsigned long ioctl_param) {
msg_t *tmp;

208
switch (ioctl_num) {

210 case MSG_PUT :
tmp = (msg_t *) ioctl_param ;

212 counts [tmp ->idx] = tmp ->val; // idx not checked -> ARBITRARY WRITE
break ;

214 case MSG_GET :
tmp = (msg_t *) ioctl_param ;

216 tmp ->val = m1_get (tmp);
break ;

218 default :
return FAILURE ;

220 }
return SUCCESS ;

222 }

Listing 2.3 LKM 2 (Arbitrary Write)

LKM is part of the trusted source base, and we assume that data originating from the kernel

is valid. Trusting data passed into the LKM could lead to a confused deputy attack, but

preventing such an attack would require full code and data flow analysis in the kernel. Such

an analysis is currently impractical, and thus we require the kernel to be a trusted agent

(similar to the trusted core of a microkernel). Additionally, we include the core SoC in the

trusted computing base, including its tagging and pointer authentication implementations,

but IO devices are outside of our trusted components and can be malicious. Three exceptions

to our hardware assumption, however, are direct memory access (DMA) actions, hardware

32

0 13 4

Figure 2.4. An example compartmentalization involving four Compartments,
each of which contains four Cliques. Edges between Compartments are allow-
able transitions. Bold Cliques are valid Compartment entry points, and dotted
Cliques are valid Compartment exit points.

glitching attacks [52], and side channel attacks, such as Spectre [53], Meltdown [54], or

Rowhammer [55].

We do not assume any further virtualization or security layer that provides a level of trust,

such as a hypervisor or verified microkernel. Instead, HAKC moves policy enforcement to

the hardware, and removes the difficult problem of verifying trusted software [56]. HAKC is

designed to run on bare metal, but is capable of running in a virtual machine provided an

existing implementation of hardware features.

 Listing 2.2 and Listing 2.3 is an example of two partial LKM implementations that con-

form to our threat model, but provide an arbitrary read and write. Listing 2.3 is dependent

on Listing 2.2 , and the programmer’s intent is to only read from the defined arrays. How-

ever, due to a missing check on idx, if the user calls ioctl with MSG PUT or MSG GET, and

an index outside the range of [0, SIZE], then any address can be written or read (barring

page permissions). The monolithic design of the kernel will simply allow these accesses, but

HAKC prevents them by compartmentalizing the two LKMs.

2.4 HAKC Compartmentalization API and Enforcement

HAKC is built around two core contributions, which, when combined, are instrumen-

tal to its ability to establish isolation within the kernel without further virtualization: the

33

40

(a) Pre-Compartment Transition

40

(b) Post-Compartment Transition

Figure 2.5. An example Compartment transferring data ownership to an
external Compartment. During this Compartment transition, orange data is
recolored purple, and the data ownership is moved to the target Clique in the
external Compartment. Upon return, the data is colored orange, and data
ownership is restored.

Compartmentalization Policy API and a hardware-based Compartment Enforcement Mecha-

nism. The Compartmentalization Policy API exposes primitives that allow the developer to

establish a fine-grained compartmentalization policy on code and data, while the Compart-

ment Enforcement Mechanism efficiently enforces the specific compartmentalization policy

at runtime. We detail each here.

2.4.1 Compartmentalization Policy API

The HAKC Compartmentalization Policy API allows developers to assign code and global

variables to compartments. Stack and heap variables are assigned to the same compartment

as the code that allocates them. The compartmentalization policy also specifies allowed

control flow between compartments. When control flow transitions between compartments,

any required data is also automatically transferred.

The HAKC compartmentalization policy API allows users to configure the following in

HAKC’s novel two-level compartmentalization scheme:

1. Cliques, a partitioning of code and data into one or more groups, with each function

and data object belonging to exactly one partition.

34

2. Compartment, a second level grouping of at least one Clique, with each Clique belonging

to exactly one Compartment.

3. Clique Access Policy, the set of Cliques within a Compartment that a particular Clique

can access, including itself.

4. Compartment Transition Policy, the set of Cliques that can legally transition control

to outside the Compartment, and the set of allowable external Cliques that are valid

control-flow targets.

 Figure 2.5 shows two example Compartments. The red Clique in Compartment 0 can ac-

cess the red, purple, blue, and orange Cliques, while in Compartment 4, red can only access

itself. Figure 2.4 illustrates an example of several Compartments, and the allowable transi-

tions; Compartment 0 can transfer control flow to Compartments 1 and 4, but Compartment

3 can only transfer to Compartment 4.

The two-level compartmentalization policy API introduced by HAKC provides three key

benefits: 1) the ability to create a large number of compartments with a limited number of

colors — overcoming the classic limitation of few tag bits; 2) efficient access to data defined

in a Compartment, i.e., local data optimization; and 3) the flexibility for the developer to

make fine-grained security/performance trade-offs. The first benefit frees the developer from

practical limitations present in any commodity tagged hardware when designing compart-

mentalization policies. The number of desired compartments will exceed the number that

any hardware-only system can supply (e.g., 2tag bits), inspiring our new two-level scheme

that allows tag bit reuse across Compartments. As we will show later, grouping Cliques into

a Compartment allows for creating several orders of magnitude more compartments than

available tags would otherwise allow.

The second benefit allows for easier policy creation, and more efficient policy validation

checks. While a Clique is executing, any data that is accessed by a pointer must satisfy two

conditions: 1) the data must belong to the Compartment in which the Clique resides; and

2) the data must belong to a Clique the current Clique is allowed to access under the Clique

access policy. These conditions are checked at runtime prior to the first dereference of a

35

pointer in a function, but are not checked again unless the pointer is modified. Satisfying

these two conditions ensures that arbitrary data access is prevented, and that data ownership

is enforced. These conditions also enable faster checks as only the Clique access policy needs

to be checked, and that policy only concerns 2tag bits Cliques, allowing a highly optimized

implementation compared to the Compartment access policy.

To illustrate the third benefit — fine-grained security/performance trade-offs — we first

describe how Clique and Compartment access policies work. The developer establishes a

Compartment by partitioning code and data into one or more Cliques, determining which

Cliques each particular Clique should legally access, and which Compartments are valid

control-flow targets. The specific compartmentalization policy can be determined manu-

ally, or automatically through static or dynamic analysis, and can be different for different

Compartments. All data and code in a Compartment must belong to exactly one Clique,

and directed edges between Cliques indicates valid access. The directed edges represent a

forward-edge Clique-based control-transfer policy, and does not need to be symmetric. For

instance, the developer might want a green Clique to call a function in a red Clique, but

forbid the red Clique from calling a green Clique.

When control flow must exit a Compartment, through either a direct or indirect function

call, then the ownership of data that exits must be transferred to the target destination, and

then restored upon return. The transfer ensures that data checks in Cliques can proceed

as intended, which maintains valid data ownership. In the case of indirect function calls,

the target is checked to ensure that it conforms to the valid transition policy that the

Compartment defines, and that the target is a valid entry to the target Compartment. If

the target of an indirect call is within the same Compartment, the access policy for the

current Clique must be followed, but no data ownership is transferred. The control-flow

checks ensure a valid control path is followed, and arbitrary code execution is prevented.

By adjusting how code and data are partitioned into Cliques and Compartments, the

developer can make fine-grained trade-offs between security and performance. As the number

of Compartments increases, i.e., the more compartmentalized the kernel becomes, the harder

an attack becomes, because the attacker has to find a valid control-flow path that obeys both

the Clique access policy and Compartment control-transfer policy. However, the increased

36

Compartment count necessarily leads to more data ownership transfers, which can incur

large performance overhead. HAKC allows developers to specify fine-grained boundaries to

suit their particular performance and security needs.

2.4.2 Compartmentalization Enforcement Mechanism

While Clique code is executing, HAKC does not rely on any additional TCB, but instead

uses hardware for access policy enforcement. Prior compartmentalization mechanisms rely

on additional layers of abstraction, e.g., kernel code for user-space compartments [57]–[59], or

hypervisors for kernel code [36], [60]–[62]. Breaking this “turtles all the way down” paradigm

for compartmentalization by rooting trust in hardware avoids adding layers of abstraction

and growing the TCB. HAKC is the first to solve this challenge for realistic, commodity

hardware.

In order to provide compartmentalization, HAKC needs to be able to partition the virtual

address space separately from traditional paging, and the ability to associate a pointer

with metadata of bit-size larger than the available address space partitions, referred to as

the pointer’s conjoined metadata (CM). By virtual address space partitioning, we mean a

method of designating a virtual memory address range as distinct from the rest of the address

space. Tagged architectures, which typically provide a small number of bits to associate

with (or color) a virtual memory address range, are an existing partitioning method. All

pointers, either statically created at load time or allocated dynamically, are associated with

a specific CM encoding which Clique owns the underlying data. The association must be

hard to compute given the pointer and CM. HAKC enforces partition access policies by, for

every pointer accessed during runtime, computing a candidate CM using the address space

partition information (which equates to Clique membership), and Compartment information.

Before the pointer is accessed, the candidate CM is compared with the pointer’s actual CM.

If the runtime information causes the candidate CM to differ from the actual CM, then the

pointer dereference cannot happen.

As long as the hardware provides address space partitioning and pointer CM association

primitives, then HAKC guarantees that the defined compartmentalization policy is followed.

37

If some bug inside the compartment modifies a pointer such that it points to data that

violates the access policies defined for either the Clique or Compartment, the candidate

CM will differ from the pointer’s CM. Accordingly, if some bug outside the Compartment

modifies a pointer that is currently being used by the Clique to violate access, the candidate

CM will again differ from the correct CM. In both cases, data access is prevented, and

compartmentalized code is prevented from accessing data not explicitly granted to it. While

we implemented HAKC using ARMv8.5-a, HAKC is not tied to any specific architecture.

Any mechanism that provides the necessary partitioning and association primitives may

implement HAKC.

2.4.3 Example Case Study

Here we describe how HAKC can compartmentalize the two LKMs listed in Listing 2.2

and Listing 2.3 . In this example, all code and data in Listing 2.2 will be in the same Black

Clique in Compartment 1 (referred to as (1, Black)), while the code and data in Listing 2.3

will be in the Gold Clique in Compartment 2 ((2, Gold)).

When m2 ioctl executes, it first validates that tmp is accessible by checking its (2, Gold)

CM with the candidate CM computed with runtime data. m2 ioctl will also check if the

(2, Gold) CM for counts + tmp->idx matches the computed candidate CM, and, if m1 get

is called, will recolor tmp to black, and associate its value with (1, Black). When m1 init

executes, it associates m1 counts with (1, Black). Finally, when m1 get executes, it checks

m and m1 counts + m->idx with (1, Black).

If an attacker directs control flow to m2 ioctl, then ioctl param must be properly

associated with (2, Gold), which is computationally hard to perform. Similar conditions

must be satisfied for m1 get. Additionally, if a bug outside of (1, Black) changes the value

of m1 get to point outside the Compartment, then the pointer will not be associated with

(1, Black), and HAKC prevents its dereference.

38

2.5 Compartment Policy and Enforcement Mechanism Implementation

Here, we detail how HAKC enforces the data and control-flow policies that provide isola-

tion to compartmentalized code. The HAKC Compartment Enforcement Mechanism uses a

combination of tagged architecture and cryptographic hashes to provide access enforcement.

Namely, the Compartment Enforcement Mechanism uses Arm’s MTE to provide tagging

support, and PAC to provide cryptographic hashing. See § 2.2 for details. PAC is used to

ensure that pointers have not been tampered with inadvertently, and that they conform to

the various access-control policies defined for Cliques and Compartments, while MTE pro-

vides the runtime Clique membership. By combining information known at compile time,

such as a Compartment identifier and access-control policies, with MTE colors gathered dy-

namically, HAKC can provide significantly more compartmentalization granularity than the

16 compartments natively provided. HAKC recycles colors in different Compartments, but

the compile time information effectively creates “hues” of the available colors to allow for a

large number of compartments.

Cliques

A Clique belongs to exactly one Compartment, and combines code and global, stack, and

dynamically allocated data into a logical group, all of which is assigned a color, Cc. Cc needs

to be unique to the Compartment the Clique belongs to, but it does not need to be globally

unique. In fact, one of the primary contributions of this paper is a design that allows for

the safe multiplex use of colors in different compartments. A good example of the type of

information that a Clique contains is what is defined in a typical C source file: exported

and static functions and global variables, stack allocated objects, and dynamically allocated

memory. We do not, however, force all functions or data in a source file to belong to the

same Clique, and the developer is free to partition as they see fit.

Using their specific Cc, Cliques also define two tokens, Tokacl and Toks, used in authen-

ticating a pointer and signing pointers respectively. Tokacl is used to generate the context

used for PAC authentication, and encodes both the Clique’s Compartment identifier, IDn,

and allowable Clique code and data accesses. Toks encodes IDn and Cc, and provides the

39

Table 2.1. Clique and Compartment properties.
Clique Compartment

Access Token (Tokacl) Entry Token (Tokent)
Signing Token (Toks) Valid Compartment Targets (T ∗

n)
Color (Cc) Unique Identifier (IDn)

PAC context when signing pointers. We will detail how these tokens are used to enforce

compartments in § 2.5.1 .

Compartments

A Compartment consists of at least one Clique but no more Cliques than the number of

available tags, Ntag, and is assigned a globally unique identifier, IDn. All data accessed by

any Clique must belong to the Compartment, and the identifier is used to ensure that is the

case during pointer authentication.

Additionally, a Compartment defines an entry token, Tokent, which encodes the Cliques

that can be targets of indirect jumps, along with IDn. Tokent is known to all other Com-

partments that could potentially execute code in a Clique. Similarly, a Compartment must

know all valid potential Compartments to which it could transfer control flow. Therefore,

a Compartment maintains a mapping of valid Compartment IDn and the respective Tokent

in T ∗
n . Before an indirect call is executed, the target function is checked that it belongs to a

valid Compartment, and is a valid entry Clique using each entry token in T ∗
n . Figure 2.4 is

an example of several Compartments, along with their allowable Compartment transitions.

In this instance, control flow is able to transfer from Compartment 0 to either Compartment

1 or 4, but not Compartment 3. Additionally, if control flow is going from Compartment 0

to Compartment 4, the target Clique must be orange or red, and cannot be green or purple.

Cliques in different Compartments have different access-control policies, yet share colors.

Data Access Policy

All data accessed by a Clique through a pointer must belong to the currently executing

Compartment, and be validly accessible according to the current Clique access-control policy.

40

PAC is used to validate both conditions hold. Pointers are signed using Toks, and when

authenticated later, Toks is calculated using Tokacl, and the pointer target MTE color. If

the pointer is erroneously manipulated, or points to data that is either the incorrect color

or does not belong to the Compartment, then the computation of the PAC authentication

context will differ from Toks and will thus fail authentication.

Compartment Transitions

When a Compartment needs to transfer control to another Compartment, two actions

need to occur: 1) the target must be validated against T ∗
n ; and 2) data ownership must be

transferred to the target destination. In the event of a direct function call to outside the

Compartment, only step 2 needs to occur.

Function pointers are signed by their Clique using their Toks, and, similar to how data

pointers are authenticated, that same token is computed using the target MTE color and

the Tokent from T ∗
n . Each Tokent in T ∗

n is used to compute a possible PAC authentication

context. If the authentication of the signed function pointer succeeds with the computed

context, then control flow is allowed to the target Clique in the different Compartment. If

authentication fails, then a different Tokent is tried until all valid transitions are exhausted,

at which point control flow to the target is prevented.

If the Compartment transition is allowed, all pointer arguments (and any submember

pointers) are recolored the target Clique color, and the pointers are resigned using the

target Clique Toks. The act of recoloring and resigning pointers transfers ownership of data

from the current Clique to the target Clique, and pointer validity happens within the new

Compartment as previously described. When the indirect call returns, data ownership is

restored to their previous state prior to the indirect call.

We note that only transferred pointers are resigned (and retagged). No effort was made

to automatically invalidate any aliases of transferred pointers. This means that lingering

aliased pointers in the origin Clique could allow access to data owned by another Clique

of the same color, because the original signature would be valid. Pointer struct members

and pointers to objects allocated on the current stack frame are resigned and protected, but

41

Table 2.2. Computed PAC context used for access enforcement for a pointer
p used by Clique M .

Operation PAC Context
Transfer to M Toks,M

Data Access Check Tokacl,M ∧ V (Cp)
Valid Transfer to Compartment G Tokent,G ∧ V (Cp)

HAKC does not solve the general aliasing problem. We rely on the programmer to invalidate

aliased pointers when necessary.

2.5.1 Access Enforcement

For both signing and authentication, PAC takes as input a pointer and a user-specified

64-bit context. For a signed pointer to pass authentication, the exact context used to sign

the pointer must be provided. In order for HAKC to ensure that the signing context can

be correctly provided when authenticating, all tokens (e.g., Tokacl or Tokent) have the same

general form:

Toki,n = IDn ⊕ (V (Ci) ∨ · · ·) (2.1)

where V (Ci) is a bitvector of size Ntag with the bit corresponding to color Ci set to 1 and

all other bits set to 0. In other words, HAKC tokens consist of the particular Compart-

ment identifier concatenated with one or more vectorized color values bitwise OR’d together.

The composition of colors with Compartment identifiers is what allows for the reuse of

colors in different Compartments, and the creation of far more compartments than Ntag,

while still providing strong compartmentalization guarantees. The number of compartments

potentially available is 264−Ntag ·Ntag, which for MTE (Ntag = 16) equates to 4 ·1015 compart-

ments. Dynamically allocated data is immediately transferred to the Clique which created

it, and stack-allocated data passed to compartmentalized functions must be transferred to

the current Clique if not proven safe (see § 2.5.4). All other data must have been previ-

ously signed, either by the kernel when control first flows into the Compartment, or by other

Cliques during a cross Compartment transfer.

42

Signing tokens, which always belong to a specific Clique, utilize only one vectorized color:

their own. Access tokens (i.e., Tokacl or Tokent) are comprised of the relevant allowable

colors. For example, in Figure 2.5 , the purple Tokacl in Compartment 0 consists only of

the vectorized blue and purple values OR’d together, while the Compartment 0 red Tokacl

has all four color values set to 1. Similarly, in Figure 2.4 , Tokent for Compartment 4 will

be composed of the vectorized purple and red, as those are the valid entry Cliques to that

Compartment (indicated with bold outlines).

To confirm that a Clique can access data at a signed pointer, a candidate signing token

is formed by computing the color vector of the underlying pointer data, and concatenating

IDn. The candidate signing token is then bitwise AND’d with Tokacl to provide the PAC

authentication context. If the Clique is allowed access to the pointer color, and the pointer

was signed by the current Compartment, then the bitwise operation results in the exact

context used to sign the pointer, and PAC authentication succeeds. If data belongs to a

different Compartment, but is colored an accessible color, PAC authentication fails, because

the upper bits of the computed PAC context are different from the signing context. Likewise,

if data belongs to the Compartment, but colored an inaccessible color, PAC authentication

also fails, because the lower bits of the computed PAC context differ from the signing context.

Only valid control and data flows are allowable inside the Clique, and that is enforced

through requiring valid signatures before dereference. Table 2.2 presents a summary of

compartmentalization operations, and the PAC context computations.

2.5.2 Developer Effort

Manual development is limited to specifying a compartmentalization policy, transferring

dynamically allocated data to a Clique, and specifying which kernel data needs to be trans-

ferred to a Clique entry function before its invocation. While the annotations are lightweight

(the largest single annotation we made is 74 lines to transfer data into a Clique), we have it

as future work to automate these efforts.

The pointer validity checks and Compartment transitions are added via an LLVM [63]

pass, which runs on annotated sources and skipped otherwise. Compiling the Linux kernel

43

Table 2.3. Summary of needed developer effort and automated instrumenta-
tion provided by the LLVM pass.

Operation Developer LLVM
Compartmentalization policy definition ✓

Data ownership transfers from kernel to Compartment ✓
Dynamic memory allocation transfers ✓
Data access validity check insertions ✓

Valid Compartment transition check insertions ✓
Data ownership transfers to external Compartment ✓

Data ownership transfers from external Compartment ✓
Signature stripping in unprotected code ✓

Ensure all dynamic allocations are transferred ✓
Signing of global variable addresses ✓

using LLVM is supported, and no custom modifications to the LLVM source were needed.

To establish a Clique, the LLVM pass places all similarly colored code and data into specially

defined ELF sections, which the kernel module loader looks for when loading. When the com-

partmentalized LKM is first loaded, the kernel colors the code and data appropriately before

any initialization code is executed. Once initialization code begins executing, the kernel

performs its typical page-level permission enforcement in addition to the compartmentaliza-

tion enforcement provided by HAKC. However, the page enforcement prevents changing the

colors of code and read-only data, and for safety HAKC does not enable write permissions

when changing colors. Therefore, the developer must be aware of these limitations when

developing the access-control policy for Cliques.

As mentioned earlier, HAKC computes a PAC signing context using some compile-time

information, specifically in which Clique and Compartment particular data and code belongs.

Currently, the developer must annotate code and global data in the source to establish the

Clique and Compartment membership. The annotations make the compartment membership

permanent, since, for example, Compartment identifiers become encoded in instructions

moving immediate values into registers. However, this is purely a performance optimization

to avoid additional memory lookups, and HAKC can be extended to dynamically change

compartmentalization policies at runtime.

44

In the simplest case where all functions and data defined in a source file belong to the

same Compartment and Clique, the annotations are very lightweight; only a single addition

of a macro defining the Compartment and Clique at needs to be added. In a planned future

iteration, the LLVM pass will perform this operation for the user. If further partitions are

required, the developer simply annotates the partitioned code or data, while the rest remains

in the original partition. HAKC makes no attempt to optimize the developer-established

partitions, The performance of the final system could be highly dependent upon the chosen

partitioning, since Compartment transitions can be expensive due to the recoloring and

pointer resigning process involved (see § 2.4). We leave it for future work to determine

effective partitioning strategies, but HAKC supports any partitioning as long as the Cliques

count in a Compartment does not exceed Ntag.

Finally, kernel module code is executed using function pointers registered to the kernel

by the module during initialization. These function pointers represent the functionality the

LKM implements. For example, a filesystem LKM implements a filesystem-specific read

function, and registers that function with the kernel, which the kernel then invokes when

reading the filesystem is required. Since all functions in a Clique expect all dereferenced

pointers to be properly signed and colored, before executing compartmentalized code, the

kernel must transfer the data to the target Clique. The developer must write a function to

transfer input data, and provide that function to the kernel instead of the original function.

 Table 2.3 provides a summary of all developer efforts and LLVM pass actions.

2.5.3 Policy Creation

The modules that we compartmentalized in our proof-of-concept implementation imposed

a very simple compartmentalization policy. Namely no more than two Cliques belong to a

Compartment, and control flow outside a Compartment was limited only to the kernel.

While such a policy is easy to define, and provides some protection, users will likely desire a

more complex and automatically generated compartmentalization scheme. As mentioned in

 § 2.5.2 , a more compartmentalized kernel makes attacks harder, but could affect performance

due to more Compartment transitions that need to occur. Unfortunately, developing a

45

performance optimal compartmentalization policy is a similar to the Partition Problem,

which is NP-Complete [64]. Therefore, we do not expect a general solution to optimal

compartmentalization to be found. However, like solutions to the Partition Problem, we

expect heuristics and dynamic analysis can provide good enough, if suboptimal, solutions

for real world applications. Little work has been done on bare-metal commodity kernel

compartmentalization, and we leave it for future work to develop strategies for automatic

policy generation.

2.5.4 Optimizations

HAKC utilizes two major optimizations to achieve its low overhead, an interprocedural

analysis that seeks to prove pointers have been validated by all caller functions, and an

intraprocedural analysis for efficient data check placements. We detail each optimization

here.

Interprocedural Optimization

Many functions in the Linux kernel are valid only for a single compilation unit, i.e., func-

tions defined using the static keyword. Because no other code outside of its source file can

rely on these static functions, for any such function F , we can determine the set of pointers

dereferenced in F that all caller functions authenticate prior to calling F . Those pointers

then do not need to be authenticated, and caller functions can provide the authenticated

pointer values instead of the signed versions. To ensure that our analysis can determine the

full set of dereferenced pointers, we schedule our LLVM pass late in the compilation process

after function inlining. The analysis HAKC performs here is similar to live variable analysis,

with every function maintaining a set of pointers, Pstart,F , that are known to be authenti-

cated at F ’s entry, as well as the set of pointers F authenticates, Pauth,F . Pstart is initially the

empty set for all functions, and let PF = Pstart,F ∪ Pauth,F . At every call site to F , we check

if each pointer argument, p, is in the caller function’s P , and if the pointer argument is in

all P , then Pstart,F = Pstart,F ∪ p. This analysis repeats until a steady state is achieved, and

no Pstart changes. For the LKMs we compartmentalized, this analysis reduced the number

46

of data check insertions by 2%. The number of global and stack variables that needed to

be signed, because their addresses are passed to other compartmentalization functions, is

reduced by 8%. These reductions translate to 12% fewer data authentication checks, and

19% fewer transfers when performing the 100KB overhead experiment detailed in § 2.6.2 .

Intraprocedural Analysis

A näıve approach to authenticating pointers would involve finding the set of dereferenced

pointers, and placing the authentication of each such pointer in the first basic block of the

function. However, some pointers are only dereferenced when specific conditions are satisfied,

and thus authentication of those pointers needs to happen only when they will actually

be dereferenced. Therefore, we place each pointer authentication only at the immediate

dominator basic block of all said pointer uses. We also ensure that if a pointer use is within

the same basic block as the authentication, then the authentication happens before the

dereference. We only create one authentication per dereferenced pointer in a function, which

can lead to some unnecessary overhead. If a pointer gets dereferenced in two basic blocks

whose immediate dominator is different from either, then the authentication can happen

without the pointer dereference taking place. This can occur, for example, when pointers

are only dereferenced in error handling with a goto statement for final cleanup.

2.6 Evaluation

When evaluating HAKC, we wanted to answer the following research questions:

1. What is the overhead imposed by HAKC?

2. What is the overhead of using multiple Compartments in a single system?

3. Will users notice any difference in performance under real-world work loads?

Here we describe our experimental setup, as well as address our research questions

through microbenchmark and simulated user browsing experiments. We performed all eval-

uations on a Raspberry Pi 4 8GB, and our kernel version was based off the Debian 5.10.24

source.

47

1 ldg xT, xN
ldr x16, [xN]

3 mov x17, #0xF0
lsl x17, x17, #49

5 and xT, x17, x17

1 stg xT, xN, imm
ldr x16, = TAG_MEM

3 mov x17, xT
lsr x17, x17, #49

5 str xT, [x16]

Figure 2.6. MTE Instruction Analogs

2.6.1 Instruction Analogs

As of June 2021, no hardware implementing MTE is available, and the most readily

available hardware implementing PAC are Apple devices containing the A12 processor, and

are unfortunately heavily locked down. Therefore, in line with the evaluation methodology of

Liljestrand et al. [46], we ensure correct functionality using emulation, and measure overhead

using instruction analogs in lieu of PAC and MTE instructions. An instruction analog is a

series of instructions that consumes the same CPU cycles and the same memory footprint as

the PAC/MTE instructions, but does not perform an actual check. Thus it can be used for

accurate performance evaluation without a PAC/MTE-enabled processor. The PAC analogs

are adapted from the PARTS system detailed in [46], and we detail the MTE analogs here.

Version 5.10.24 of the Linux kernel uses the load and store instructions for single or

multiple tags, namely ldg, stg, ldgm, and stgm respectively. For the single tag instructions,

the kernel only uses the post-index encoding. To simulate the ldg instruction, which writes

the tag to bits 49–53 of an input register, we perform a load of the target address, and

finally place a valid tag value in the appropriate register bits. To store a tag, we retrieve

the tag from bits 49–53 of the pointer address, and write to a global variable. Multiple

tag operations simply repeat these single tag operations. We took care to ensure that

memory accesses occur at every MTE instruction to simulate a worse case memory tag

access, but an actual implementation of MTE could include tag caching or other performance

enhancements. Thus, we claim that our performance overhead is an estimation of worst case

performance. The instruction substitutions are listed in Figure 2.6 .

48

Requests/sec. Transfer Rate
0

0.2

0.4

0.6

0.8

1
0.8 0.8

0.88 0.88
0.98 0.94

100KB 1MB 10MB

Figure 2.7. ipv6.ko overhead normalized to unmodified kernel when trans-
ferring various sized payloads.

2.6.2 Single Compartment Performance Overhead

To measure the compartmentalization overhead, we compartmentalized the ipv6.ko

LKM into a single Compartment with two Cliques. Both Cliques were given access to

each other’s code and data. We used ApacheBench to retrieve a 100KB, 1MB, and 10MB

file 1000 times from an unmodified Apache server running on the Raspberry Pi. We repeated

each experiment 10 times, and recorded the reported requests/sec and transfer rate in MB/s.

We measured all performance overhead relative to the unmodified kernel, and both kernels

sharing the same user-space.

The overhead measurements for ipv6.ko are listed in Figure 2.7 , normalized to the per-

formance of the unmodified kernel. Overall, the performance of our ipv6.ko compartmen-

talized LKM is good compared to the baseline, with only a 20% reduction in both requests

per second and transfer rate in the worst case.

When the transfer size is small, the establishment of the TCP connection imposes sig-

nificant overhead relative to the actual transferring process. Once the TCP connection has

been established, however, relatively few data checks need to be performed to transfer the

payload. This explains the low 2%–4% overhead for the 10MB payload measurement; larger

payloads spend less time establishing the TCP connection relative to the total transfer time.

49

100 KB 1 MB 10 MB
0

2 · 105

4 · 105

6 · 105

8 · 105

O
p

er
at

io
ns

p
er

se
co

nd
Compartment Transfers/s Data Auth/s Code Auth/s

0

5

10

15

20

25

30

35

Compartment Transfers/KB Data Auth/KB Code Auth/KB

(a) Only IPv6
100 KB 1 MB 10 MB

0

2 · 105

4 · 105

6 · 105

8 · 105

Compartment Transfers/s Data Auth/s Code Auth/s

0

5

10

15

20

25

30

35

O
p

er
at

io
ns

p
er

K
B

T
ra

ns
m

it
te

d

Compartment Transfers/KB Data Auth/KB Code Auth/KB

(b) IPv6 and nf tables

Figure 2.8. Average HAKC operations per second and per KB transmitted
while running ApacheBench.

 Figure 2.8a shows this behavior in the HAKC operations per kilobyte Apache sends. HAKC

operations include the number of Compartment transitions, the number of data pointer

authentications, and the number of code pointer authentications. While the number of op-

erations per second either increase or remain constant, the number of operations per KB of

transmitted data monotonically decreases with payload size.

2.6.3 Multiple Compartment System Overhead

nf tables.ko implements a packet filtering mechanism within the Linux kernel. We

compartmentalized this LKM by placing all code and data in a single Clique using a dif-

ferent color and Compartment from those used in the ipv6.ko LKM. The ipv6.ko and

nf tables.ko LKMs were not allowed to transition to each other directly. Since there is

only a single Clique, no further compartmentalization policy needed to be specified.

To measure the overhead of using both LKMs on the same system, we defined a packet

filter rule that drops packets with a source address from a specific IPv6 address. We then ran

our microbenchmark detailed in § 2.6.2 using the unmodified kernel, the compartmentalized

kernel with only the ipv6.ko LKM compartmentalized, and the compartmentalized kernel

50

100 KB 1 MB 10 MB
0

0.2

0.4

0.6

0.8

1

0.62
0.69 0.72

0.81 0.78 0.76
0.62

0.69 0.72
0.81 0.78 0.76

U Requests/sec. S Requests/sec.
U Transfer Rate S Transfer Rate

Figure 2.9. Overhead imposed when using multiple Compartments in a single
system, normalized to the unmodified kernel (U) and single Compartment
systems (S).

with both HAKC LKMs enabled. The results, normalized to the unmodified kernel (U) and

ipv6.ko-only (S) kernel overheads, are listed in Figure 2.9 .

The general trend regarding payload size and overhead shown in Figure 2.7 is again

present for the overhead against the unmodified kernel. However, the performance relative

to the single Compartment system degrades with payload size. The performance degrada-

tion comes from the additional Compartment transitions the kernel makes to perform both

packet filtering and TCP functionality with every TCP ACK packet received. This behavior

is shown in Figure 2.8b , with the higher number of data pointer authentications per kilobyte

than with just IPv6 compartmentalized. Regardless, Figure 2.9 shows a linear growth of

14%–19% per compartment when the compartments are related, but provide orthogonal func-

tionality. Compartmentalizing both the IPv6 and packet filtering represents a worst case

for performance loss, since all HAKC operations for both LKMs will occur in tandem, and

will thus be directly compounded. A better compartmentalization policy will likely amortize

individual overheads to a lower total overhead, but we leave that evaluation for future work.

2.6.4 User Website Browsing

Using ApacheBench to measure raw performance does not necessarily provide a good

indication of whether a user will notice any performance difference when using the compart-

51

Table 2.4. The measured time differences between the compartmentalized
kernel of the lowest and highest standard deviations of unmodified kernel load
times. Negative delta numbers indicate slower compartmentalized load time.

Website Delta (s) Stdev (s)
linkedin.com -0.47 0.065

hdfcbank.com -0.12 0.085
google.cn -0.068 0.086
bing.com -0.087 0.13

investing.com 38 62
okezone.com -11 20

cnn.com -9.8 15
yahoo.com -4.9 15

mentalized kernel for everyday activities. For example, activities unrelated to the kernel

networking stack, such as routing delays, website rendering, or advertisement negotiation,

can add significant time to end-user web page loading. To answer Research Question 3, we

want to measure any significant difference in IPv6 website loading time between using the

unmodified kernel and our compartmentalized ipv6.ko LKM given these external factors.

To that end, we created a Selenium script that spawns a headless Firefox instance, and

proceeds to play a specific YouTube video, and then visits the 50 most popular websites (as

determined by the Alexa Top 1M) that advertise an IPv6 address in their DNS Authoritative

Record (an AAAA entry). We disable all memory and disk cache use and enable IPv6 use

in Firefox. Additionally, before retrieving each website, we delete all cookies, and perform

a DNS query to ensure that ISP DNS entries are fresh. Afterwards, we measure the time

the Selenium web driver takes to fully render the page, or the time the YouTube video

takes to complete. To account for possible differences in advertisements, we retrieve each

website using the unmodified kernel and compartmentalized kernel in turn before retrieving

the next website. We repeated this experiment 5 times, with each retrieval separated by

approximately 1 hour.

Overall, we measured the average load time of the compartmentalized kernel to be 1.19 ±

4.34 seconds slower than the unmodified kernel. Because the standard deviation of load time

differences is much larger than the average, we conclude that the compartmentalized kernel

52

is not significantly different from the unmodified kernel, and that a user will not notice a

difference using a compartmentalized kernel.

Despite our efforts to mitigate any possible difference between website retrievals, we

did measure large differences in load times of some websites, on both large and short time

retrieval spans. For example, investing.com would sometimes load in 4 seconds, and then

after rebooting into a new kernel, the website would take 151 seconds. For this reason, we

did not include investing.com in the average cited above. We were unable to determine

any correlation between time of day or kernel type; the same website would be slow for

the unmodified kernel at one time, and similarly slow for the compartmentalized kernel at

another time, while the different kernels would statistically tie at every other time. The

websites that exhibited the highest variance are those that serve dynamic content, such as

cnn.com, while the lowest variance websites, such as hdfcbank.com, do not. We attribute the

high variance to the underlying dynamic content generation on the server side, i.e., outside

of our control.

 Table 2.4 lists the websites with the smallest and largest unmodified kernel load time

standard deviations, along with the measured time differences when using HAKC. In to-

tal, 20% (10/49) of the websites were measured to be faster using the compartmentalized

kernel, and in all but one case, the load time delta was within 2 standard deviations (95%

confidence). This provides further evidence that HAKC compartmentalization would go

unnoticed by users in everyday usage.

2.6.5 Security Evaluation – CVE Case Studies

Here, we will provide a security evaluation on two real-world bugs, chosen to illustrate

HAKC protection against bugs within and outside of compartmentalized code: CVE-2017-

9074 [65] and CVE-2019-14815 [66]. CVE-2017-9074 is an internal IPv6 bug, while CVE-

2019-14815 is an external bug in the Marvell Wifi driver. Of the 567 CVEs in our analysis set

(see § 2.2.2), only 12 involved IPv6, demonstrating the importance of having compartments

be hardened against external bugs, as most kernel bugs will be outside of a compartment.

53

int ip6_find_1stfragopt (struct sk_buff *skb , u8 ** nexthdr)
80 {

u16 offset = sizeof (struct ipv6hdr);
82 struct ipv6_opt_hdr * exthdr =

(struct ipv6_opt_hdr *)(ipv6_hdr (skb) + 1);
84 unsigned int packet_len = skb_tail_pointer (skb) -

skb_network_header (skb);
86 /* ... */

while (offset + 1 <= packet_len) {
88 struct ipv6_opt_hdr * exthdr ;

switch (** nexthdr) {
90 /* ... */

}
92 offset += ipv6_optlen (exthdr);

* nexthdr = &exthdr -> nexthdr ;
94 exthdr = (struct ipv6_opt_hdr *)

(skb_network_header (skb) + offset);
96 }

98 return offset ;
}

Listing 2.4 CVE-2017-9074

CVE-2017-9074 (Listing 2.4) allows for reading memory outside the bounds of the in-

tended object. The bug involves a missing check on offset against packet len that ensures

that the code is reading within the bounds of the socket buffer, skb. Through a series of

system calls, a malicious user can craft an IPv6 packet that contains an invalid option, which

causes offset to be much larger than the size of the allocated buffer for skb. offset is used

to compute *nexthdr, which is read in the switch statement. This read is the out-of-bounds

memory read.

HAKC prevents arbitrary out-of-bounds memory accesses like this, and instead limits the

code’s ability to only access the data explicitly allowable by the Clique ip6 find 1stfragopt

belongs to. The large, corrupted offset value can place exthdr in one of several places: 1)

a different Compartment and a different colored Clique; 2) a different Compartment but the

same colored Clique; 3) the same Compartment and a different colored Clique; and 4) the

same Compartment and the same Clique. In the first two situations, PAC authentication

will fail because the computed PAC context will not match the PAC context used to sign

exthdr. The third situation allows access only if the Clique is accessible according to the

defined access-control policy, and the fourth situation will be allowed by HAKC.

54

256 void mwifiex_set_uap_rates (
struct mwifiex_uap_bss_param *bss_cfg ,

258 struct cfg80211_ap_settings * params) {
struct ieee_types_header * rate_ie ;

260 /* ... */

262 rate_ie = (void *) cfg80211_find_ie (WLAN_EID_SUPP_RATES , var_pos , len);
if (rate_ie) {

264 memcpy (bss_cfg ->rates , rate_ie + 1,
rate_ie ->len);

266 rate_len = rate_ie ->len;
}

268
rate_ie = (void *) cfg80211_find_ie (

270 WLAN_EID_EXT_SUPP_RATES ,
params -> beacon .tail ,

272 params -> beacon . tail_len);
if (rate_ie)

274 memcpy (bss_cfg -> rates + rate_len , rate_ie + 1,
rate_ie ->len);

276
return ;

278 }

Listing 2.5 CVE-2019-14815

To successfully perform this out-of-bounds read on HAKC-protected code, the attacker

would have to construct offset such that the resultant pointer points to an accessible Clique,

and contains the correct signature. The first condition already limits arbitrary accesses, and

the second condition is computationally hard. This is how HAKC compartmentalizes code

and data. The attacker is able to only access data allowed by the access-control policy, even

in the presence of bugs, and the attacker must perform a computationally hard task to do

so.

CVE-2019-14815 (Listing 2.5) is a bug in the Marvell Wifi driver that uses data from

user-space in memcpy without checking the data length, leading to a heap overflow. Assume

that the attacker uses this CVE from uncompartmentalized code to overwrite a pointer in

compartmentalized code. The new pointer must again conform to all data access policies,

and must contain a valid signature for the new pointer. Only if the new pointer is validly

accessible and correctly signed, then the attack will succeed. However, as mentioned earlier,

satisfying all the conditions is computationally hard.

Unfortunately, non-pointer compartmentalized data can be corrupted. However, this

will likely only cause a denial of service, which, though severe, is considered less serious than

55

privilege escalation. One mitigation would be to utilize the “traditional” MTE, and store

the color in the pointer along with the PAC signature. The MTE hardware can retrieve the

color of accessed addresses, and check that value with the stored value, and throw a fault if

they mismatch. The use of MTE and PAC in this way reduces the available signature bits

by half, making brute force guessing of a signature easier.

2.7 Discussion and Threats to Validity

Here we discuss Hardware-Assisted Kernel Compartmentalization security and perfor-

mance limitations.

2.7.1 Security Limitations

HAKC does not prevent all attacks. An attacker might find a valid control-flow path

that adheres to all Clique and Compartment access policies, yet allows the corruption of

data within a Clique. However, that corrupted data pointer cannot belong to some invalid

Clique when dereferenced, and thus the damage the bug causes is contained to the compart-

mentalized code. Additionally, data provided by the kernel is assumed to be valid, which

can lead to a confused deputy exploitation. Some bug in the kernel can allow invalid data

to be signed and passed to compartmentalized code. Unfortunately, no practical solution to

this problem, beyond formal verification [40], has been found. Instead, we envision a po-

tential solution: formally verify the memory management and IPC code [67], and make all

other functionalities HAKC-protected LKMs. Such a system could provide microkernel-like

security, while keeping the robust functionality of existing kernels.

2.7.2 Performance Limitations

As indicated in § 2.6.3 , LKMs that compute on the same data compound their over-

heads in the worse case. We have it as future work to evaluate the performance overhead

of compartmentalizations that are largely unrelated. For example, we hypothesize that the

overhead introduced by compartmentalizing ipv6.ko will not affect a compartmentalized

Bluetooth LKM, and the overall system overhead will be the maximum overhead of either

56

compartmentalized LKM. We have it as future work to evaluate more compartmentaliza-

tions, and their effect on overall system overhead.

During the development of HAKC, we theorized strategies to reduce overhead of com-

partmentalization. For example, minimizing recolor operations by coloring all entry Cliques

the same color might reduce overhead, since pointers only need to be resigned with the target

IDn. Additionally, static or dynamic analysis might indicate efficient compartmentalization

policies. Existing tools, such as the Syzkaller [68] fuzzing engine or the KUnit unit testing

framework, can provide insight into novel compartmentalization strategies. We also have it

as future work to pursue interesting compartmentalization strategies, building on HAKC to

allow empirical comparisons.

2.8 Related Work

Prior work includes isolation solutions that effect almost all parts of the computing stack,

ranging from hardware extensions to novel user-space abstractions.

2.8.1 Isolation in Computer Systems

Kernel security is a long-standing and ongoing research topic. Prior work includes creat-

ing and improving isolation domains in both microkernels [69] and monolithic kernels [12],

[36], [60], [70], [71]. Non-monolithic kernels, as well as some monolithic isolation methods,

require significant kernel redesign, while HAKC is not as intrusive. Furthermore, HAKC

allows for fine-grained isolation, unlike some of the methods listed above. There is also

work regarding isolation in user-space [57], [72]–[78]. However, these techniques often rely

on kernel abstractions, hence they are not applicable for kernel isolation, or would require

the introduction of a trusted software layer beneath the kernel, i.e., hypervisor. Much of

the work to handle privilege separation and isolation can significantly affect performance,

hence works like Split Kernel [79] have been developed to select the level of protection and

isolation for kernel functions based on if a trusted process is utilizing kernel functionality.

HAKC is an always on solution that protects against exploits even from trusted processes.

57

Another approach for operating system isolation are library OSes [80]–[84], which restrict

the operating system exposed to applications. Built on library OSes, multiple works [61],

[85]–[90] have investigated unikernels — purpose-built kernels and user-spaces for a single

application — and ways to create, improve, and use these minimalistic systems. Compared

to HAKC, these approaches achieve isolation by separating kernel memory based on what

each application needs. However, unlike the previous work, HAKC runs directly on bare

metal, without any monitor reducing the trusted computing base. Furthermore, HAKC is

much more flexible in defining different levels of granularity to allow for trade-offs between

performance and security.

Finally, there have been research efforts in leveraging language properties to address

memory related issues. Previous work uses Rust to implement operating systems [91]–[93] as

well as unikernels [89], to utilize the language’s type and memory safety to obtain isolation

and increase security. While Rust prevents many memory related bugs, in order to pre-

vent data-only attacks involving accessing valid, live memory areas, a compartmentalization

system like HAKC is required.

2.8.2 Hardware Based Isolation

Intel’s Memory Protection Keys (MPK) is an x86 extension that allows a process to

partition memory into 16 domains. R/W privileges for each domain are then controlled by

modifying a special key policy register, which is accessible from ring 3. User space access

has motivated efforts to enforce isolation using MPK in a secure manner [58], [59], [94]–

[97]. Certain MPK-based isolation schemes are vulnerable to attacks that leverage kernel

system calls to subvert MPK permissions [98]. Unlike HAKC, MPK is designed to provide

coarse-grained, page level isolation. Intel’s Software Guard Extensions (SGX) [99] provide

another avenue for compartmentalization, however, SGX is intended for user-space enclave-

like protection against a malicious operating system. SGX has also been shown to induce

significant overhead [100].

Other works have focused on using hardware to support safe regions — regions of mem-

ory only accessible by privileged instructions — but have only extended simulated hardware

58

and have focused on user-space applications [101], [102]. There are several works on us-

ing hardware tagging to support various compartmentalization and pointer bounds checking

schemes [103]–[107], however most of these works are implemented on simulated architec-

tures. One effort in particular, Mondrix [108], provides inter-modular Linux kernel com-

partmentalization using a 2-bit word granularity tagging extension [109]. Unlike HAKC,

Mondrix is implemented in simulation, and requires a memory supervisor that monitors

all kernel permission changes. Furthermore, Mondrix only implements inter-module isola-

tion, whereas HAKC supports both inter-module and intra-module isolation. The Cheri

project [110] provides architecture extensions to support pointer capabilities, which can be

used to encapsulate memory. Cheri’s fixed capability model provides less flexibility than

PAC, where arbitrary information can be used as the context to sign pointers. Further,

Cheri’s focus on capabilities misses data-only attacks.

Arm TrustZone is a security feature on Armv8-A and Armv8-M [111] architectures that

provides strict memory isolation between a privileged secure world and an unprivileged

normal world. Lack of inter-process isolation between applications in the secure world as

well as applications in the normal world have inspired isolation schemes that leverage the

TrustZone ecosystem [35], [112]–[114]. Unlike HAKC, these systems focus on enforcing inter-

process isolation and providing safe regions applications to store sensitive data.

Efforts have been made to provide isolation on embedded systems which lack an MMU

to support full virtual addressing, leading to applications and kernels often times sharing

a memory space [34], [115]–[118]. While these systems present interesting research ques-

tions, HAKC requires an MMU and advanced hardware features likely missing in embedded

environments.

2.8.3 Arm PAC and MTE Extensions

Recent works have utilized Arm PAC to enforce control-flow integrity (CFI), spatial

memory safety, and code pointer integrity (CPI). PACStack [119] is a CFI scheme that

secures return addresses stored on the stack through a chain of hashing, where a hash for

each return pointer is unique based on the current execution path of a program. PTAuth [47]

59

enforces temporal memory safety by storing a unique id at the base of data object, using the

unique id as the PAC context during signing and authentication. PARTS [46] is an LLVM

instrumentation framework that utilizes PAC to support a CPI scheme that is resistant to

pointer-reuse attacks, and thwarts control-flow and data-oriented attacks. Compared to these

schemes, HAKC can provide wider protection against many classes of attacks, and in some

cases, like with PACStack, can be used in conjunction. HAKC is the first design to the best of

our knowledge that utilize MTE-based isolation. However, designs have been proposed that

would leverage MTE-like architectural features to improve the Clang AddressSanitizer [120].

2.8.4 Isolation with Hypervisors

Monolithic kernels such as Linux are known to be vulnerable to faulty or malicious

subsystems, such as device drivers and network stacks. This issue has motivated researchers

to leverage hypervisors and virtualization schemes to isolate kernel subsystems [60], [70],

[121], [122]. One example of a hypervisor-based solution is VirtuOS [121]. VirtuOS isolates

various Linux kernel subsystems by using the Xen hypervisor to create service domains.

Although efforts are made to reduce domain communication overhead, the copying of data,

file descriptor translation, and the migration of domain-specific information incur significant

overhead. Another example is HUKO [123], also based on Xen, which isolates untrusted

extensions. Both these schemes include the hypervisor in the TCB, while HAKC relies on

hardware for enforcement. There are multiple known vulnerabilities in existing hypervisors,

and although work has been done to address this [38], [124], [125], verifying hypervisor

implementations is a difficult task. Unlike hypervisor based isolation schemes, which focus

on isolating systems at the granularity of kernel modules and subsystems, HAKC is capable

of compartmentalizing bare-metal LKMs at a finer granularity, including compartmentalizing

subsystems within an LKM.

2.8.5 Memory Safety Mechanisms

While HAKC provides some memory safety protections, the so-called eternal war on mem-

ory [3] continues. Luckily, many memory safety mechanisms — in particular, stack memory

60

protections — are compatible with HAKC, and can be deployed alongside. DataGuard [126]

improves upon the SafeStack [127] analysis to determine if stack-allocated objects (including

return addresses) are vulnerable to spatial, temporal, or type-based attacks. Objects clas-

sified as safe are placed on a separate stack, and a runtime component limits access to the

safe stack objects. Shadow stacks [128] employ a similar mechanism to separate function

return addresses from the rest of the stack, and allows for the detection of return address

corruption at low overhead. µRAI [129] is an embedded systems technique that reserves a

register (which is never spilled) to store the correct runtime return address, and all possible

return addresses are stored in RX memory. As embedded applications typically executes

much smaller applications, µRAI is able to compute and store all possible return values.

Finally, both tagged architectures [130] and PAC [131] have been used to protect the stack

from attacks. Since HAKC uses both hardware technologies, the possibility to co-opt those

techniques for stack protection exists.

61

3. FLEXIBLE COMPARTMENTS

3.1 Introduction

Imposing a least privilege policy on systems improves the overall security of the system

even in the presence of bugs, because the possible damage is confined to the affected com-

partment. After compromising a compartment, the attacker is limited to the exposed API

that compartment has access to, highly limiting their lateral movement. A true least priv-

ilege policy would break monolithic software into as many compartments as possible, and

only allow highly restrictive interactions between small sets of compartments relative to the

total compartment count. A least privilege policy would also enforce correct semantics in

cross-compartment calls.

Given its importance and ubiquity, a least privilege policy for the Linux kernel is desired,

but unfortunately, such a policy is difficult to define due to the Linux kernel size and scale.

State-of-the-art efforts to compartmentalize kernels rely on heavy developer annotations [60],

target small, niche systems such as IoT devices [34], [118], or only protect against control-flow

attacks [33] but do not limit data access.

The reasons for a lack of compartmentalization are varied, but a major concern is the

difficulty in determining what the compartmentalization policy should be. The size and

complexity of modern software makes determining compartments, the privileges each com-

partment needs, and the interaction between compartments difficult, and too impractical

for manual analysis. Another concern is the performance of a compartmentalized system.

An efficient compartmentalization policy is one that places the most commonly interact-

ing components together, minimizing the number of compartment transitions needed during

execution. Managing performance and security tradeoffs is key to user adoption for com-

partmentalization. A one-size-fits-all scheme does not exist, because different users will have

different security and performance needs. Any single policy would necessarily target one set

of users over another. For example, a large healthcare company might be more concerned

with securing their system against attack than a single user running a home server, and

would be willing and able to accept higher performance costs for more security. Ideally, the

user should define their desired security and performance needs, and a compartmentalization

62

policy is created to suit those needs. Inferring compartmentalization policies and optimizing

for performance are two problems that remain unsolved.

In this chapter, we present a system for Flex ible Compartmentalization policy generation,

FlexC. FlexC automatically analyzes the source code of the Linux kernel to create a Call-

and-Type Graph (CTG), a weighted, directed graph that summarizes the allowable data

and code flow between compilation units. The static information can be augmented with

dynamically measured data for potential performance gains by placing highly interactive

code and data together in a compartment. Edge weights are computed using a ranking

function, and a fitness function determines which compilation units should be merged in the

final compartmentalization that is tailored to the user’s security and performance needs.

The evaluation of FlexC is currently ongoing. We plan on generating differently compart-

mentalized kernels by varying both the number of compartments and the relative influence

of dynamically measured data, and measuring how those factors influence the performance

and security of the compartmentalization. Initial results from 6 compartmentalizations are

presented.

In short, this chapter presents a method for automatically inferring compartmentaliza-

tion policies that are tailored to users’ needs. Additionally, we provide a methodology for

measuring the effectiveness of generated compartmentalization policies in both performance

and security gains.

3.2 Design

Here, we detail the design of FlexC, including the generation of the Call-and-Type Graph,

which forms the foundation of FlexC, and how compartments are formed from the CTG.

3.2.1 Call-and-Type Graph

In order to automatically impose a least-privilege policy to compartmentalize a system,

one must determine the privileges each compartment needs, and how each compartment

interacts with other compartments. The data that a compartment accesses and the func-

tions that it calls represents the compartment’s required privileges, and thus both sets of

63

information must be captured. Through static analysis, we construct a Call-and-Type Graph

(CTG) that encodes the total needed privileges for all possible compartments. The CTG is a

directed graph consisting of compilation units as nodes, and edges between nodes indicating

the possible privilege access needed of the tail node by the head node. The creation of the

CTG involves a two stage analysis process, a local analysis on every compilation unit, and

a global analysis that coalesces all privileges into the final CTG.

In the first stage, for every compilation unit, we gather information on the types used, the

functions defined and directly called, the global variables defined and used, and which func-

tions “escape” the compilation unit. By escape, we mean functions that are either callable

from other functions outside the compilation unit (i.e., functions not declared static), and

functions that are passed as function arguments, or stored as struct members. We focus on

functions, as opposed to code bytes, because functions and function pointers are the main

mechanism with which programming languages interact with executable data. Additionally,

for every indirect function call, we capture the type of function that gets called. Most func-

tion pointer use in the kernel is for dynamic dispatch of functionality, and is retrieved by

multiple kernel object pointer dereferences. As Lu, et al. [132], shows, matching the source

of a function pointer with the functions that are written to the same struct member can

reduce possible target set by up to 98%. Therefore, in an effort to reduce the size of the

final graph, we also capture the source of function pointers used in indirect calls. See further

discussion regarding indirect target elimination (and how this relates to security) in § 3.5.1 .

If any additional privilege information is available (e.g., dynamically measured interactions

between two compilation units), the corresponding edge can be augmented with the data.

Once all the local analyses are performed, the Call-and-Type Graph is created by con-

suming all the information gathered in the first step. Every compilation unit C is compared

against every other compilation unit, O. Privileges C needs from O (if any) are computed

and stored on the edge connecting C and O. Privileges include global variable definitions,

direct function calls, type of indirect function calls and their sources if it can be determined,

and number of shared types. After every compilation unit is analyzed, the resulting graph

is the CTG used for generating a compartmentalization policy.

64

1 static int tegra186_gpio_remove (
struct platform_driver *pdev)

{ /* ... */ }
3

static struct platform_driver
tegra186_gpio_driver = {

5 /* ... */
. remove =

7 tegra186_gpio_remove ,
/* ... */

9 };
static void module_init () {

11 __platform_driver_register (
& tegra186_gpio_driver ,

13 THIS_MODULE);
}

Listing 3.1 gpio-tegra186.c

static int xlp_gpio_remove (
struct platform_driver *pdev)

2 { /* ... */ }

4 static struct platform_driver
xlp_gpio_driver = {
/* ... */

6 . remove =
xlp_gpio_remove ,

8 /* ... */
};

10 static void module_init () {
__platform_driver_register (

12 & xlp_gpio_driver ,
THIS_MODULE);

14 }

Listing 3.2 gpio-xlp.c

static int platform_drv_remove (struct device *_dev) {
2 struct platform_driver *drv =

to_platform_driver (_dev -> driver);
4 /* ... */

if (drv -> remove) {
6 ret = drv -> remove (dev); // Could be either remove above

/* ... */
8 }

/* ... */
10 }

int __platform_driver_register (struct platform_driver *drv ,
12 struct module *owner)

{ /* Writes drv to struct dev kernel structure */ }
14 EXPORT_SYMBOL_GPL (__platform_driver_register);

Listing 3.3 platform.c

Figure 3.1. Kernel dynamic dispatch

Consider the code listed in Figure 3.1 , in which two drivers implement a device removal

function, and registers the removal function with the kernel. If a device is removed, the

kernel will call the appropriate removal function through the registered function pointer.

After FlexC analyzes the source code, the resultant CTG is shown in Figure 3.2 . In this

example, the two device removal functions escape their compilation units, since, despite

being marked static, are written to an object that is passed as a function argument (the

struct platform driver global variable). When analyzing platform.c, FlexC finds the

65

platform.c

gpio-xlp.c
Direct Calls: 1
Indirect Calls: 0
Shared Types: 1

Direct Calls: 1
Indirect Calls: 0
Shared Types: 1

Direct Calls: 0
Indirect Calls: 0
Shared Types: 1

Direct Calls: 0
Indirect Calls: 1
Shared Types: 1

Direct Calls: 0
Indirect Calls: 1
Shared Types: 1

gpio-tegra186.c

Figure 3.2. The CTG FlexC creates from the sources in Figure 3.1

indirect call, finds the source of the function pointer, and adds one to the indirect call count

of all nodes that have a function written to the same type location. The drivers directly call

a function in platform.c, so FlexC increments the direct call count for both edges by one.

Finally, all three sources access the same data type, struct platform driver, so FlexC

increments the shared type count by one for all edges.

3.2.2 Compartmentalization Policy Generation

A compartmentalization policy can be seen as a partition of the CTG. The number of

nodes in a partition allows for finer-grain compartmentalization policies, and thus stronger

security guarantees, but also implies more work needed to ensure the compartmentalization

policy is followed. Therefore, the number of compartments in the final compartmentalization

policy broadly determines both the security and the performance of the final kernel.

A true least privilege policy would break the kernel into as many compartments as pos-

sible, while heavily restricting the allowable compartment interactions. In this sense, the

CTG itself represents the strictest form of least privilege, and thus the most secure policy

FlexC can achieve. However, since the CTG has the most number of compartments possible,

it is also the least performant. By combining two nodes together, a more performant kernel

can be made at the expense of (possibly minimally) expanded privileges. Combining two

66

nodes requires the definition of an edge ranking function, R, and a fitness function, F , that

selects the two nodes to be merged based on the output of R. R can make use of any of the

data stored with the edge, including any dynamic information. Thus, whether two nodes get

merged is dependent on the weight given to any available dynamic data on the edge. For

instance, one might opt to use only the dynamic information to create a very performant

compartmentalization policy, and augment the compartmentalization with needed missing

edges. We have implemented an R and an F for evaluation, but FlexC does not depend on

this particular concretization, and future work can explore the impact of different choices in

this design space.

FlexC allows the user to specify the number of compartments the final compartmental-

ization policy will contain. A new directed graph, G, containing the specified number of

compartments with no edges is created, and all edges in the CTG are processed according to

the output of F . The head and tail of the edge are placed in a compartment in G if they are

not already in one, and if R(head, tail) > 0, then an edge between the two compartments

in G is added. Once all the edges in the CTG are consumed, G is the compartmentaliza-

tion policy. During compilation, our compiler pass (see § 3.3.1) reads in the policy, and

automatically adds in the HAKC checks and transfers needed to enforce the compartments.

3.3 Implementation

In this section, we detail the implementation details involving changes to the existing

HAKC instrumentation pass, the data that is used to construct the CTG, and how that

data is used to partition the CTG into a final compartmentalization.

3.3.1 HAKC Instrumentation Changes

Previously, in order to specify a compartmentalization policy, the developer needed to

manually annotate the source code to place code and data into a specific Clique. Such a

mechanism does not allow enough flexibility, and is prone to error. We adapted the HAKC

instrumentation pass (see § 2.5.2) to read in a compartmentalization policy during compila-

tion, and add in the necessary changes based on the policy, and not source annotations.

67

Another challenge that hindered the performance of HAKC was the detection of per-CPU

pointers, which are pointers to memory areas reserved to each CPU running on the system.

These pointers, which are a form of lockless mutual exclusion, are stored as a base to which an

integer is added to arrive at the final valid pointer. Detecting these pointers was relatively

expensive compared to the rest of the HAKC data check, and had to be done at every

HAKC data check. However, the kernel source utilizes an annotation to mark every per-

CPU pointer, which unfortunately gets lost in the LLVM intermediate representation (IR).

We modified clang to preserve this metadata in the IR, and our pass adds the per-CPU

data check and data transfer wherever appropriate. A similar scenario exists for pointers

from user space, and we further modified clang to preserve that information in the IR as

well. However, for user pointers, we do not perform any validity checks, and we rely on the

developers to properly and safely handle them.

We implemented other changes to the HAKC LLVM pass to facilitate FlexC. The original

HAKC system forced the developer to write so-called transfer functions, which transferred

data from the kernel to compartmentalized code before compartmentalized code can execute.

This also does not scale when compartmentalizing large portions of the kernel, because thou-

sands of transfer functions need to be written. Our new pass automatically creates transfer

functions, and replaces the original function uses with the transfer function implementa-

tion. The kernel often uses function pointer value comparisons to determine control-flow.

For example, the kernel prints a warning if the delayed work callback function in a struct

timer list is not the expected delayed work timer fn function. Our pass also replaces

function pointer comparisons with transfer functions where appropriate. Finally, our pass

automatically transfers dynamically allocated data to the Clique that allocates it; something

the previous pass required the developer to perform.

3.3.2 CTG Partitioning

In addition to the static information stored with the edges in the CTG, we also added

dynamic information measured for the µScope evaluation [12]. This dynamic information

consisted of the source and target of all function calls, as well as memory accesses (both

68

read and write) at the instruction level. We mapped the instructions to compartments in

the CTG, and, for function calls, we augmented the relevant edge to include the number of

function calls. For memory accesses, we added the number of accesses to the same memory

location two nodes make to their mutual edge.

Our edge ranking function R computes a static weight, Ws, and dynamic weight, Wd,

and uses a user-specified toggle to decide which final weight, W , to use. If the user wants

to use dynamic weights, and Wd == 0 while Ws > 0 for some edge, R returns a W that

is a non-zero value smaller than the smallest Wd in the CTG. This ensures that an edge is

created in the final compartmentalization so no functionality is lost.

Our fitness function, F , for determining the order of edges to merge is a greedy algorithm

that sorts the edges by their descending final weight W . There are four scenarios to consider

when deciding which compartment to place the head and tail:

1. Neither the head nor the tail are in a compartment.

2. Exactly one is in a compartment.

3. The head and tail are in different compartments.

4. The head and tail are in the same compartment.

For the last scenario, no action needs to be done. The third scenario only requires

adding an edge in G between the two compartments. For the second scenario, we place the

uncompartmentalized node in a compartment selected at random that is already connected

with the compartmentalized node. Finally, for the first scenario, we add both to the same

randomly selected compartment.

3.3.3 Kernel Node

While most of the kernel consists of well-defined and self-contained systems, such as

driver or protocol implementations, there also is core kernel functionality that is more dif-

ficult to compartmentalize. Examples include the memory management and interprocess

communication, which are heavily vetted but widely used. Compartmentalizing important

69

code that receives a high level of scrutiny, but is used in many places throughout the ker-

nel, provides little benefit while imposing high costs to maintain the compartmentalization.

We, therefore, allow for the creation of a kernel compartment, where no HAKC checks are

performed, however, transfers are still performed.

3.3.4 Metrics for Policy Evaluation

Compartmentalization is only effective if it results in measurable security gains. However,

measuring security gains is an open area of discussion [2], [133]. We want FlexC to generate

compartmentalization policies that significantly reduce the overprivilege of the whole system,

and prevent attacks on common targets. Policies that are successful in both tasks are more

valuable to users than policies that only do one, and both are needed to defend against

current and future attacks. Attackers tend to focus on attacking crucial structures, e.g.,

struct cred, because permanent user privilege escalation is easily achieved if they are

compromised. However, other, less well-known structures could be leveraged in attacks; we

just do not know how yet. By lowering the overall privilege of the system, we can potentially

mitigate future attacks, and generating policies that separate commonly attacked structures

as much as possible mitigates current attack patterns.

To measure a compartmentalization policy’s ability to reduce the total overprivilege of

the system, and the separation of crucial structures, we propose the following two met-

rics: 1) normalized instruction privilege Hamming distance (NIPHD); and 2) Shortest Path

to Crucial Object (SPCO). NIPHD provides the overall reduction of privilege in a com-

partmentalized system, while SPCO provides the compartmentalization policy’s ability to

mitigate known attacks.

The following formula computes NIPHD:

N∑
i=0

M∑
b=0

Hamming(i, b, R ∨ W ∨ X)
3 · N · M

(3.1)

where N is the number of instructions, and M is the number of bytes of memory. NIPHD

provides the amount of privilege reduction achieved by a compartmentalization compared to

a completely permissive, monolithic system. For simplicity, we ignore page permissions, and

70

we make the assumption that code is always ∼W, and data is ∼X. Additionally, we measure

NIPHD on the static kernel image, ignoring dynamic memory.

Computing SPCO involves gathering proofs-of-concept exploits to determine the loca-

tions at which exploits happen, and what objects the targets exploit. We call the exploit

locations sources, and the target objects sinks. The SPCO is the shortest path in the com-

partmentalization policy from any source to any sink. Performing reachability analysis to

critical objects or functions is a commonly used metric to demonstrate security gains [134].

3.4 Evaluation

Here we detail our experimental methodology to measure the overhead and security gains

resulting from compartmentalization. The final evaluation is ongoing.

3.4.1 Effects of CTG Refinements

To evaluate the effects of compartmentalization, we will generate 6 different kernels, and

run the full Linux Testing Project suite for each kernel. Each kernel will contain either 100,

1000, or the max number of compartments, and we will create static and dynamic versions

of each compartment count. We will report the percent increase in execution time over the

uncompartmentalized kernel as the overhead measurement. Additionally, in line with the

HAKC evaluation, we also measure the number of HAKC data checks, code checks, and

transfers performed per second.

3.4.2 Compartmentalization Security Evaluation

To compute the SPCO, we will gather proofs-of-concept exploits from the publicly avail-

able Exploit Database and from posts to the Linux Kernel Mailing List that target our kernel

version, 5.10.24. Both SPCO and the NIPHD can be computed statically. We will present

both metrics for every compartmentalization generated.

71

3.4.3 Initial Results

We currently have generated the static and dynamic compartmentalized kernels, and are

currently measuring the overhead induced, as well as the effect the dynamic information

has on performance. Our compartmentalized kernel consists of the code contained in the

net/, driver/, certs/, crypto/, virt/, security/, drivers/, and fs/fat/ subdirectories.

These directories comprise 78% of the total lines of source compiled for the AArch64 Linux

kernel.

 Figure 3.3 lists the percent increase in execution time for compartmentalized kernels,

averaged across 5 executions of each listed test suite. The highest overhead comes from

the net.features test suite, which takes the longest to run of all the evaluated benchmarks.

 Figure 3.4 explains the overhead source. Because FlexC compartmentalizes the majority of

the kernel source, significantly more HAKC compartment transfers and authentications occur

(approximately 30x and 7x respectively) than in the HAKC evaluation presented in § 2.6.2

and § 2.6.3 . The optimizations and compiler changes detailed in § 3.3.1 — in particular,

the removal of the per-CPU check performed at every data pointer authentication — can

explain why the overall overhead does not similarly increase. However, further investigation

is warranted, and we plan on performing the IPv6 experiments from the original HAKC

evaluation with our improved compartmentalization instrumentation.

Only the net.features test suite shows any significant performance gain from the lowest

compartment count kernels. The uncompartmentalized kernel takes, on average, 275 seconds

to execute this benchmark, while the next closest benchmark, net.ipv6, takes only 9.27

seconds to complete on average. The longer testing time implies more of the kernel code is

exercised during the net.features suite execution, which, in turn, results in potentially more

compartment transfers. A compartmentalization policy that utilizes fewer compartments,

however, would lower the probability that a code path leads to a compartment transfer.

 Figure 3.4 hints at this conclusion, as the 100 compartment kernels show a slightly lower

compartment transfer rate, yet the rate of HAKC authentication checks remains constant

regardless of compartment count. We will execute more of the Linux Testing Project suites

to confirm this hypothesis.

72

net
.fe

atu
res

net
.ip

v6

ker
nel

misc

net
.m

ult
ica

st
0

20

40

60

Pe
rc

en
t

In
cr

ea
se

Ex
ec

ut
io

n
T

im
e 100 100-D 1000 1000-D Max Max-D

Figure 3.3. Average percent increase in test suite execution time over the
uncompartmentalized kernel. D indicates dynamic data was used for the com-
partmentalization.

3.4.4 Dynamic Information Effects

The results from Figure 3.3 indicate that the dynamic information used to generate a com-

partmentalization policy does not have a significant effect on the performance of the resulting

kernel. Therefore, we conclude that dynamic measurements are not needed when develop-

ing a compartmentalization policy. Considering the developer effort needed to dynamically

measure kernel interactions, our finding that dynamic measurements do not contribute to

the performance of a compartmentalized kernel is beneficial from an engineering perspective.

Unique analyses do not need to be performed for every desired use case, and a single static

analysis is sufficient for generating any number of compartmentalization policies.

3.5 Discussion

In this section, we discuss the elimination of indirect targets and alternative CTG parti-

tioning schemes we experimented with.

73

100 100-D 1000 1000-D Max Max-D
0

1

2

3
·106

1.44 1.45 1.53 1.55 1.57 1.57

2.39 2.37 2.36 2.36 2.35 2.35

Transfers/sec Checks/sec

Figure 3.4. HAKC operations per second for different compartmentalizations
when executing the net.features test suite. D indicates dynamic data was used
in the compartmentalization.

3.5.1 Indirect Target Elimination

Previous work demonstrates that various methods achieve over 99% reduction in the size

of indirect target sets [132], [135]. However, if an attacker can easily exploit the remain-

ing target sets, the high reduction rate is meaningless. This is a problem for monolithic

software, but much less so for compartmentalized code. Recall that compartments allow

for the exploitation of bugs inside a compartment, but any external access is prevented

by checks introduced by the compiler. An attacker conducting an attack involving indi-

rect control-flow, e.g., a ROP-style attack, will still be confined to the compartment by the

compartmentalization policy.

By reducing the size of the indirect target sets as discussed in § 3.2.1 , we remove extra-

neous edges from the CTG, and, thus, remove even more options for an attacker to exploit.

While an attack using over-approximated indirect target sets that obeys the compartmental-

ization policy is still possible, the attack is harder to perform, and the attack is useful only

for the single victim; a different compartmentalization policy would invalidate the attack,

because the attack is not allowable under the new policy. Additionally, preventing attacks

that exploit bugs within a compartment are outside the scope of any least privilege policy.

74

3.5.2 Alternative CTG Partitions

In addition to our greedy partitioning algorithm (see § 3.3.2), we pursued two other

possible partitioning algorithms. One algorithm used a multiple knapsack solver [136], and

the other algorithm computed a min-k cut of the CTG. The multiple knapsack algorithm

assigned each node a weight equal to the sum of its incident edge weights, and the used a

multiple knapsack solver to place each node into a knapsack. Each knapsack in the solution

would be a compartment in the new compartmentalization. The min-k cut algorithm com-

puted the sets of nodes in the CTG that are disconnected if k edges are removed, starting

with k = 1 and ending when all nodes are disconnected. All nodes that get disconnected

at k = n but are connected at k = n − 1 are placed in the same compartment in the final

compartmentalization.

These two algorithms unfortunately do not create “good” compartmentalizations, in that

the generated compartmentalizations do not place commonly interacting compartments to-

gether or effectively reduce over-privilege. The multiple knapsack algorithm places unrelated

compilation units into the same compartment, because the solver simply fits any node into

a knapsack. This is not ideal for performance, because nodes in the CTG with high edge

weights will likely interact more, but will require more frequent expensive compartment tran-

sitions in G. This is because the two nodes will likely be placed in different knapsacks. The

k-min cut algorithm is not increase overall security of the system. This is because there is a

highly connected core of the Linux kernel, and then many weakly connected nodes that are

disconnected at a low k. Essentially, small driver code was getting disconnected from the

highly connected core when k < 3, and then creates no further compartments until k > 30.

For these reasons, we decided to exclusively target the greedy algorithm, which results in

relatively good compartmentalizations, as demonstrated in our evaluation.

3.6 Summary

Creating an efficient and effective compartmentalization policy is needed to enforce least

privilege on computer systems. Manual efforts to create a compartmentalization policy are

impractical, necessitating an automatic solution. This chapter proposes Flexible Compart-

75

ments as a method of automatically determining whole system compartmentalization policies

tailored to desired performance and security requirements. FlexC constructs a Call-and-Type

Graph of the system, which encodes the level of interaction between two source files. The

CTG is then partitioned based on an edge ranking function and a fitness function, and the

resulting graph is the compartmentalization policy.

The evaluation of FlexC is ongoing, but we plan on measuring several aspects of the

compartmentalization policies it creates. We will measure the overhead imposed by com-

partmentalizing the majority of the Linux kernel using several configurations, created by

varying the number of compartments and the level of dynamic data influence. Addition-

ally, we will perform a two part security evaluation on the generated compartmentalization

policies. First, we will measure the total reduction of privilege achieved by counting the

allowable memory access all instructions have in both the compartmentalized and uncom-

partmentalized kernels. The ratio of compartmentalized privilege to uncompartmentalized

privilege is the metric we will use to show the level of whole system privilege reduction, and

compare the different compartmentalization policies FlexC generates. The second security

evaluation is intended to show the effectiveness of FlexC at preventing exploits. We will

gather a set of kernel proofs-of-concept exploits, and construct a set of source bugs and sink

exploit targets. For each compartmentalization, we will determine how many sources are

placed in different compartments from the sinks, preventing the exploit.

76

4. IOVEC FUNCTION IDENTIFICATION

4.1 Introduction

Semantic binary analysis—the act of determining a function’s “purpose” within a binary—

has applications in many research and engineering areas, such as plagiarism detection [137],

code debloating [138], and malware analysis [139]–[142]. Patching third party libraries [143]–

[146] requires determining the unpatched library version, and the full set of included func-

tions, because developers will frequently distribute a custom-tailored version of a third party

library that utilizes a subset of the possible functionality (e.g., only video decoding, and not

encoding). [147] showed the first requirement is feasible to satisfy, but the second require-

ment is much less straightforward. Without source or an exact knowledge of how the library

was generated, any user of a vulnerable library must either wait for the developer to fix the

library, which can take on average over 500 days [147], or use semantic binary analysis to

identify and locate vulnerable functions.

While source-based semantic inference work exists [26], [148]–[151], semantic binary anal-

ysis is a more difficult problem [14] due to the lack of information at the binary level. Manual

semantic analysis does not scale to large binaries, necessitating an automated solution. So

far, automated binary analysis [21], [152]–[156] measures binary code properties (e.g., order

and type of instructions [154], memory locations accessed [23], [153], or control flow [22]),

and approximates semantic similarity of functions based on the similarity of code. Although

it is true that code similarity implies semantic similarity, the converse is not true—machine

code may vary while still preserving semantics. We demonstrate that program state modifi-

cations serve as a better, more stable semantic function identifier. Program state change as

a function identifier relies on the fact that semantic behavior is stable across compilations,

environments, and implementations. Thus, program state change provides an ideal finger-

print, as it is impervious to compilation environment diversity or information loss. Code

measurement approaches are susceptible to these complicating factors.

We present IOVec Function Identification (IOVFI), an approach to precise binary seman-

tic analysis. Instead of relying on fragile function code properties, IOVFI abstracts functions

into characteristic sets of inputs and corresponding program state changes. The core idea of

77

IOVFI is to observe and identify the behavior or character of functions instead of the un-

derlying code, and then use the observed behavior as a unique function identifier. Our proof

of concept IOVFI implementation automatically discovers a subset of a function’s unique

set of valid input program states and corresponding program state changes (referred to as

Input/Output Vectors, or IOVecs). By observing data flow and program state transforma-

tions, IOVFI can classify functions, and, as a first-in-class feature, the IOVecs can transfer

to different architectures with minimal effort.

We evaluate our prototype on accuracy amid varying compilation environments, a task

existing works find difficult yet is crucial for binary patching and reverse engineering. We

measure accuracy by identifying functions in the coreutils-8.32 application suite, and find

that IOVFI achieves a high .779 average accuracy across 8 different compilation environ-

ments. When identifying functions from differing compilation environments, IOVFI is 101%

more accurate than the static BinDiff 6 [155] framework, and 25%–53% more accurate than

the dynamic BLEX [153] and IMF-SIM [154] frameworks. IOVFI achieves similar results to

asm2vec [157] when compilation environments are similar, and significantly outperforms it

for differing compilation environments.

We further demonstrate the generality of IOVecs by achieving similar accuracy when

analyzing obfuscated binaries and AArch64 binaries using unmodified x64 IOVecs. We also

demonstrate that IOVFI scales to large binaries by analyzing libxml2, libpng, and libz,

which shows only a linear growth in training time relative to the number of functions in

the binary. As an illustration of the utility of IOVFI, we perform a semantic analysis of

8 different versions of libz, and 6 different versions of libpng, and measure significant

semantic differences which correspond to major changes to the underlying source. Finally,

we use the libpng IOVecs to identify the versions distributed over the past 5 years of Ubuntu

releases.

This paper provides the following contributions:

1. Design of IOVFI, a framework for semantic binary analysis that infers function seman-

tics through program state changes;

78

2. A practical implementation of IOVFI that leverages coverage-guided, mutational grey-

box fuzzing to automatically infer program states and input structure layouts for func-

tions;

3. We show the effectiveness of IOVFI through a thorough evaluation on coreutils-8.32,

obfuscated and cross-architecture binaries using unmodified IOVecs, and large shared

libraries. We also perform a semantic analysis of 8 different versions of libz, and 6

different versions of libpng, and use the libpng training data to identify 5 years of

Ubuntu distributed versions.

4.2 Challenges and Assumptions

Here, we outline challenges for semantic function identification, and our assumptions

when designing IOVFI.

4.2.1 Semantic Function Analysis

Reverse engineering a binary is a tedious task. While initial extraction of binary code

and determining the size and location of functions is non-trivial [25], [27], [156], [158]–[160],

semantic identification is the hardest, most time-consuming part of reverse engineering. The

largest impediment to semantically recognizing known functions is the large code diversity

due to different compilation environments. Here, we refer to the compilation environment as

the exact compiler and linker brand and version, optimization level, compile- and link-time

flags, linker scripts, underlying source, and libraries used to generate a binary. Compilers

attempt to create efficient, optimized code, and different compilers utilize different optimiza-

tion sets. While compilers preserve the high level semantics expressed at the source level,

the generated binary code is highly variable. For example, an analysis we performed on the

strlen implementation in musl C library [161]—one of the simplest non-trivial functions in

the C library—showed that simply changing the compiler could result in more than a 70%

change in the disassembly. Optimizations, like dead code analysis and tail call insertions,

also greatly affect the generated machine code. Even worse, custom function implementa-

79

tions (as opposed to the use of system-distributed libraries) will likely produce significantly

different binaries.

However, regardless of compilation environment, the program state changes a function

performs must remain stable for a binary to exhibit correct behavior. Barring any bug in the

compiler implementation or inconsequential actions such as dead stores, the same source code

should produce the same semantic behavior in the final application. If this was not the case,

binaries would exhibit different, and likely incorrect, behavior in different builds. Therefore,

measuring program state changes presents a viable method for semantic identification that

does not rely on fragile measurements of code.

4.2.2 Assumptions

In line with existing semantic analysis tools, when designing IOVFI, we assumed the

following:

1. Binary code is stripped, but not packed.

2. Binary code is generated from a high-level language with functions, and function

boundaries are known.

3. Functions make state changes that are externally visible.

4. The binary follows a discernible and consistent Application Binary Interface (ABI).

5. Functions do not rely on undefined behavior.

When analyzing binaries, reverse engineers start with a stripped binary from which they

infer its behavior. The analysts have no access to the underlying source, debugging infor-

mation, symbol table, or any other human-identifiable information. We assume the same

setting for IOVFI. Semantic analysis frameworks also make the assumption that all code is

unpacked, and that the binary was generated from a high-level language with a notion of

individual functions and a known ABI. The latter assumption precludes applications written

wholly in assembly with no discernible functions, and, while packed code is another serious

challenge in binary analysis [158], [159], [162], that topic is orthogonal to the analysis that

80

semantic analysis frameworks perform. Finally, as it is rare in practice and most likely a bug,

no code may rely on undefined behavior to correctly function. The compiler is free to use

undefined behavior for optimization purposes, but the original source should not rely on any

specific compiler-based optimization utilizing undefined behavior for proper functionality.

Note that functions which rely on randomness (e.g., cryptographic functions) are still valid;

semantic analysis frameworks simply assume that function semantics do not change with the

compiler.

4.3 IOVFI Design

IOVFI is a function identification framework, which infers program semantics by measur-

ing the effects of execution. Instead of measuring code properties, it measures program state

changes that result from executing a function with a specific initial program state. When a

function executes, it does so with registers set to specific values, and an address space in a

particular state, with virtual addresses mapped or unmapped to the process’ address space,

and mapped addresses holding concrete values. We refer to the immediate register values

and address space state as the program state.

IOVFI performs its analysis by instantiating a specific program state before function

execution, and then measures the program state post-execution. Measurable program state

changes are writes to locations pointed to by pointers, data structures, and variables whose

valid lifetimes do not end when the function returns. These types of changes necessarily

must be made to registers or memory addresses outside the function’s stack frame. This

is because, once finished, any change would be overwritten by later instructions, and thus

the program would have been more efficient had it not called the function at all. Functions

that make only ephemeral changes are dead code, and the compiler will simply remove such

code. Additionally, depending on optimization level, some program state operations, e.g.,

dead stores which write to addresses but are never read, can be removed from the final

binary. We do not include such operations in the function’s set of program state changes,

but focus on persistent and externally measurable program state changes. We argue that

81

int my_div (int a, int b, int* c)
2 { *c = a / b; return 0; }

Listing 4.1 An IOVec Motivating Example.

most user space functions conform to these standards, however, we discuss the limitations

these standards impose in § 4.6 .

We also consider the immediate return value of a function to be a measurable program

state change, but exclude changes to general purpose registers (e.g., rbx on x64) and state

registers (e.g., rsp). They are excluded because, for caller-saved general purpose registers,

their values are immediately irrelevant upon function return, and state registers have no

bearing on function semantics. Additionally, measurable program state changes preclude

modifications to kernel state not reported to user space.

While executing, a valid program state for one function might cause another function to

fault, and the same function can perform arbitrarily different actions based on the program

state upon invocation. Therefore, a function implicitly defines the input program states

it accepts—states where the function can run and return without triggering a fatal fault—

and the corresponding output program states based upon these input states. We call these

accepting input and corresponding output program states Input/Output Vectors, or IOVecs.

A function A is said to accept an IOVec I if A accepts the input program state from I,

and the resulting state from executing A matches the expected program state from I. If

either of these conditions do not hold, then A rejects I. See § 4.3.3 for the discussion of

matching program states. Assuming functions make changes to input program states which

are measurable post-execution, we can reframe semantic function identification. Precisely

identifying a function can be seen as identifying the complete set of IOVecs which a function

accepts. We call that set the characteristic IOVec set (CIS).

Consider the toy example in Listing 4.1 . An accepting input program state is one that

has the first argument set to any integer, the second argument set to any integer except 0,

and the third argument set to any properly mapped memory address. The memory location

pointed to by c can initially have any value. The corresponding output program state has

82

the return value set to 0, and the memory location pointed to by c contains the value of

a/b. An IOVec is a single concrete tuple of accepting input state and corresponding output

state, and CISmy div is the full set of IOVecs my div accepts. Note that only the first two

arguments, the location pointed to by c, and the return value, are relevant, and that neither

the full address space nor every register value are relevant.

Every function has a CIS, and we hypothesize that most functions have a unique (non-

empty) CIS. A set of functions that share a CIS is called an equivalence class. For the sake

of brevity, unless otherwise noted, when we refer to a function, we are actually referring to

an equivalence class of functions with equal functionality.

In the general case, a function’s CIS is unbounded. So for practical reasons, we attempt

to find a subset of a function’s CIS, which we call the distinguishing characteristic IOVec

set, or DCIS. A DCIS for function f , DCISf , consists entirely of IOVecs which f accepts,

and only f accepts every member of DCISf . Another function, g, might accept a member

of DCISf , but there is at least one IOVec I ∈ DCISf which g does not accept. IOVFI is

used to identify a function foo in a binary by providing foo with IOVecs Ij ∈ DCISf . If

foo accepts all Ijs, then we say that foo ≡ f .

IOVFI needs an oracle to provide IOVecs in order to semantically identify functions, but

there is no definitive source of IOVecs. Our prototype was designed to be one such oracle,

but other oracles can be devised. For example, IOVecs can be derived from unit tests or

inferred from a specification. Symbolic execution [163], [164] or constraint tracking [165]

could similarly be leveraged to create IOVecs.

The number of IOVecs IOVFI needs in order to be precise is highly dependent on the

diversity and number of functions analyzed. The minimal theoretical number is equal to the

number of functions being analyzed, because IOVFI needs at least one accepting IOVec to

identify and distinguish a function. However, it is likely more IOVecs are needed to precisely

distinguish functions, but the use of differences in semantic behavior for discrimination

minimizes the number of required IOVecs. We currently focus only on accepting IOVecs for

semantic identification, however using rejected IOVecs also provides valuable feedback. For

example, if a function g rejects only 1 IOVec in DCISf , this can be a signal that g and f

are semantically related.

83

/lib/libc.so

bar.exe

/usr/bin/ld

Function Fuzzing
Module

/lib/libc.so
IOVecs

Function Fuzzing
Module

bar.exe
IOVecs

Function Fuzzing
Module

/usr/bin/ld
IOVecs

C
on

te
xt

 C
oa

le
sc

in
g

an
d

M
ap

pi
ng

Decision Tree Generation

Figure 4.1. IOVFI Ahead-of-Time Learning Phase.

IOVFI performs its analysis in two phases: a coalescing phase and an identification phase.

The coalescing phase, which only needs to be run once, is where functions are classified by

IOVec acceptances and rejections, and ordered into a binary tree accordingly. The second

phase is where unknown functions are semantically identified by providing the unknown

functions with specific IOVecs from the binary tree, and traversing the tree according to

IOVec acceptance.

Coalescing Phase

IOVFI starts its analysis by providing every function in its training set with every IOVec

the oracle provides. This establishes a full ground truth of which IOVecs are accepted and

rejected, ensuring that proper ordering can be achieved. Recall that an IOVec encodes both

an input state and expected output state. When an IOVec is given to a function f , one of

four results can occur:

1. The function receives a fatal signal (e.g., SIGSEGV), due to an improper input program

state.

2. The function does not return before a specified timeout.

3. The function returns, but the final program state differs from the expected output

program state.

84

4. The function returns, and the final program matches the expected output program

state.

IOVecs that satisfy the last result are added to DCISf . As future work, we want to

incorporate rejected IOVecs into the identification process, as rejected IOVecs classify the

rejected semantics of this function.

The result of the coalescing is a proposed DCIS for every function in the training set,

and the DCIS then fed to a decision tree generator. We use a decision tree generator

(as opposed to another machine learning classifier) because, decision tree generators make

classifications based on information gain, which is ideal for IOVec acceptance and rejection.

The output decision tree contains IOVecs as interior nodes, and functions at leaves, and can

be used for semantically identifying any number of functions later. As the tree is generated

using differences in semantic behavior, it only grows linearly in the worst case. Every path

from root to leaf encodes a minimal DCIS needed to distinguish one function from every

other in the tree. If the same path in the decision tree maps to more than one function,

then a potential equivalence class exists in the binary. The functions in the leaf are those

for which the generated DCIS is insufficient to fully distinguish one function from another.

This can be because the generated IOVecs cover the functionality poorly, or the functions

are truly an equivalence class.

Identification Phase

 Figure 4.2 shows the overview of the identification phase. To semantically identify func-

tions, the analyst provides IOVFI with an unknown binary and the generated decision tree

from the coalescing phase. Starting from the root of the decision tree, the IOVec is given

to the unknown function. If the IOVec is accepted, the true branch in the decision tree is

taken; otherwise, the false branch is taken. The unknown function is then tested against

another IOVec depending on the path taken. When the path arrives at a leaf, the unknown

function is tested against one more IOVec from the leaf function’s DCIS for confirmation.

Again, if the IOVec is accepted, then the function is given the label of the function at the

85

0

51

6 7

Fu
nc

tio
n

Id
en

tif
ic

at
io

n

X.exe

Va
lg

rin
d

X.exe, func0, IOV0

IOV0 ✓

X.exe, func0, IOV6

IOV6 ✓

X.exe.func0 = foo
X.exe.func1 = bar
 ...

IOV5 ✗
X.exe, func0, IOV5

0 6foo

bar 0 5 7

baz 1

IOVec

Distinguishing IOVec Set

Figure 4.2. IOVFI Identification Phase. The ✓ and ✗ indicates that the
IOVec was accepted and rejected respectively. Paths in the tree leading to
green leaves indicate semantic equivalency in the unknown binary X.exe to
a previously analyzed function (foo, bar, or baz), while paths leading to red
leaves represent unseen/new behavior.

Table 4.1. Data stored in IOVecs.

IOVec Data Use
Random seed Program state initialization
Pointer input arguments Program state initialization
Memory object information Program state initialization
Code coverage Fuzzer seed selection
Expected return value Program state comparison
Expected memory state byte values Program state comparison
Unique system calls Program state comparison
Originating architecture IOVec translation

leaf. If the unknown function gets to a leaf and remains unconfirmed, then the function is

labeled as unknown.

The policy used for determining matching program states must remain constant for both

phases. For IOVFI, we have implemented one such policy (see § 4.3.3), but others can be

devised. The program state matching policy should take into consideration the memory

model and features of the language in which the functions are written.

86

4.3.1 IOVec Discovery

IOVFI requires an oracle to generate IOVecs. Our prototype implements a coverage-

guided mutational fuzzer [166]–[178] to infer IOVecs. Since we have no information about an

unknown function’s semantic behavior, the ideas behind feedback-guided mutational fuzzing

are useful in discovering IOVecs. By rapidly feeding a function random inputs, and measuring

the program state change post-execution, we can build a corpus of function identification

data without any a priori knowledge. We chose fuzzing as our exploration strategy because

fuzzing is optimized to maximize code coverage, leading to maximal program state change

coverage. We do not need full path or code coverage to be accurate, only enough program

state change coverage (i.e., data-flow coverage) to differentiate semantics. While limitations

of fuzzing (e.g., passing complex data checks [179]) may limit the quality of the IOVecs,

we observe that they are sufficient in practice. Our experimental results reinforce our main

claim that program state change (however the IOVecs are generated) provides a more stable

semantic identification fingerprint than code measurements.

 Figure 4.1 shows the overall design of the first phase of IOVec discovery and coalescing.

Our prototype supports analyzing any executable code, including shared libraries, but static

libraries need to be included in either a shared library or executable. IOVFI requires neither

the source nor any debug information; however, it does need boundary information of each

function in an executable, or the exported symbol names in a shared library. Recent work

shows that this information can be recovered even for stripped binaries [25], [27].

For each Function Under Test (FUT), our prototype fuzzes the input arguments and

non-pointer memory object data if any have been deduced, and then begins executing the

FUT with this randomized program state. If that program state is accepted, then the newly

discovered IOVec is returned, and the resulting code coverage of the test is examined. If the

IOVec produced new coverage, it is added to the FUT’s DCIS, otherwise, it is discarded.

Either way, the IOVec in the FUT’s DCIS that produced the most coverage (or a completely

new, randomized IOVec in case the DCIS is empty) is chosen as a seed for additional fuzzing.

This process continues until the code coverage exceeds a user-defined threshold.

87

crash

Fix1 movq %rdi,-0x8(%rbp)
2 testb $7, %dil
3 je .LBB0_4
4 movq %rax,-0x8(%rbp)
5 .LBB0_2:
6 cmpb $0, (%rax)

Figure 4.3. Backwards taint analysis to infer pointer arguments.

Table 4.2. Backwards Taint Propagation. t and u can be a register or memory
address. T(x) taints x and R(x) removes taint from x. ◦ denotes any logic or
arithmetic operator.

Policy Instruction t Taint? u Taint? Taint Policy
1 t = u Yes No T(u); R(t)
2 t = u No Yes
3 t = u Yes Yes
4 t = t ◦ u Any Any

IOVFI stores the input program state and expected program state in an IOVec. Storing

the entire address space is both a waste of storage and imprecise. Instead, IOVecs save the

data listed in Table 4.1 . Memory object information is the coarse-grained input layout and

global memory objects inferred during the generation of the IOVec, and includes location,

size, and pointer sub-member offsets. While generating IOVecs, our implementation uses

code coverage to select an IOVec to mutate, so we include the instructions executed by the

FUT when provided with the IOVec.

4.3.2 Pointer Derivation

A major challenge to generating high-quality IOVecs is the detection of pointers as input.

As binaries contain no type information, determining if an input argument is a pointer is

an ongoing research topic [180], [181]. Without recovering which arguments are pointers,

determining a DCIS is generally impossible, and only incomplete behavior will be captured.

88

A simple solution would replace an invalid address with a valid address before an illegal

dereference occurs. While such a solution has been successfully used to solve other problems

in binary analysis [15], [16], it would not work in IOVFI, because the underlying problem—

semantically, an input is supposed to be a pointer when it is not—remains. IOVFI relies on

capturing program state changes that arise from executing a function with a specific input

program state. By replacing an illegal address in situ, the resulting output state does not

necessarily arise from actions performed given the initial state, and an IOVec with an input

state and an unrelated output state would be generated.

Consider the code in Figure 4.3 , which is adapted from the strlen implementation in

musl. The first pointer argument (passed in using register rdi) is stored on the stack (line 1).

Later, that address is written to register rax (line 4), and then is dereferenced and compared

with the null terminator (line 6). Our fuzzing strategy is unlikely to supply a valid address

as input, and line 6 will cause a SIGSEGV signal to be issued.

The simple approach would replace the invalid address in rax with a valid address. If the

function later returns with no other issue, then IOVFI would register strlen as accepting

the input program state with rdi set to a random (non-pointer) value. This is incorrect, and

during the identification phase, an implementation of strlen in an unknown binary would

not accept the input program state. That strlen implementation would then be marked

with an incorrect label.

The solution we propose is a backwards taint analysis inspired by Wang et al. [154], and

illustrated in Figure 4.3 . While generating IOVecs in its exploration phase, our prototype

records immediate register values before every instruction executes, and, if a segmentation

fault occurs (as in line 6 of Figure 4.3), we get the register containing the faulty address,

which is the taint source. The saved register values are used to propagate the taint back

to a root sink. The taint propagation policy is listed in Table 4.2 . Starting from the

last executed instruction, each instruction is parsed in reverse order until all instructions

are iterated through. The root sink is the last tainted register or memory address after all

instructions are processed. Our implementation utilizes the Valgrind framework [181], and its

architecture independent intermediate representation, VEX. As VEX instructions represent a

89

single action, and we record all register values prior to executing a single machine instruction,

we are able to precisely determine the root sink, and no false positives are possible.

After sink discovery, we search for previously allocated memory objects, and update the

allocated bounds accordingly if an object is found. If no object is found near the faulting

address, then a new memory object is built by allocating a fixed-size memory region, and

records the current location and size of the object. We use this information for inferring

new bounds and pointer sub-members if another segmentation fault occurs after execution

restarts. Analysts can use the bounds information for more sophisticated analysis after

decision tree generation. Once the object has been created or updated, the location is

written to the sink, and begins executing the FUT from its beginning using the newly

adjusted program state.

The backwards taint analysis restarts with every segmentation fault until the FUT suc-

cessfully returns. When the FUT finally completes, we record the correctly initialized input

program state, the corresponding output program state, and the coarse-grained object struc-

ture derived from the backwards taint analysis. IOVFI only tracks which memory areas are

supposed to be pointers, and no other semantic meaning is given to memory regions con-

taining non-pointer data. Further fuzzing iterations maintain the memory object structure,

and only the non-pointer memory areas are fuzzed.

4.3.3 Matching Program States

IOVFI uses matching program states to differentiate and classify functions’ semantics.

Here, we present our definition of matching states used to identify C functions.

Recall that our notion of input program state includes memory objects for both global

data as well as input arguments. Semantically similar functions modify memory objects in

similar ways (if at all), so we capture the resulting memory state of allocated objects post-

execution. Due to our fine-grained control over the memory state, any pointer value (either

as an input argument or as a structure sub-member) is the same across executions. The

allocated memory objects can be any arbitrary data structure, containing a mix of pointer

and non-pointer data at various locations within the structure. Program states match when

90

non-pointer values in memory regions are byte-wise the same, and any pointers to sub-objects

are located at the same offset from the object start. If there is a single mismatch in memory

objects between two program states, then the states do not match.

Return values are also pertinent, but can be implementation dependent. We recognize two

types of return values: pointers and non-pointers. Due to the lack of any type information in

binaries, precisely determining if a return value is a pointer is challenging. We conservatively

test if the return value maps to a readable region in memory, and if it does, we designate

the return value as a pointer. If a return value is not readable in memory, then we consider

it a non-pointer, and can represent functions that perform raw computations (e.g., sin or

toupper), or adhere to a contract (e.g., strcmp which can return any value < 0, = 0, or

> 0).

Finally, because system calls provide services that cannot be satisfied by user-space code

and cannot be optimized out, semantically equivalent functions must invoke the same set of

system calls. Order and number of system calls made, however, can differ among seman-

tically equivalent functions (e.g., calling read(fd, 1) 4 times could be the same as calling

read(fd, 4) once). Therefore, we include the set of unique system calls invoked while exe-

cuting with the specific input as part of the IOVec. Semantically equivalent functions must

invoke the same set of system calls, and can execute neither more nor fewer unique system

calls.

For two program states to match, the values contained in return registers must match

in the following ways. Return values must both be pointers or non-pointers. As we do not

know the size of the underlying memory region, we do not check the underlying memory

values if the return values are pointers; we simply say the return values match. Without

more sophisticated analysis, this can be a source of inaccuracy. If the return values are

non-pointers, they must be equal, or both must be positive or negative. If all input pointers

(including pointers to all sub-objects) match, the return values match, and the same set of

system calls are invoked, then the two program states match. As we do not perform any

static analysis, void functions will also go through return value analysis, leading to another

potential source of imprecision.

91

4.4 Evaluation

Our evaluation focuses on 64-bit System-V Linux binaries derived from C source code.

We performed our evaluation using an Intel Core i7-6700K CPU, with 32 GB of RAM,

running Ubuntu 16.04 LTS. We address the following research questions (RQ):

1. How accurate and scalable is IOVFI in identifying functions in binaries?

2. Is IOVFI truly resilient against compilation environment diversity?

3. Do IOVecs generated by IOVFI apply to other architectures?

4. Does IOVFI create meaningful equivalence classes?

Our results do in fact show that IOVFI is a feasible and accurate semantic function

identifier. Additionally, our results show that IOVFI is largely unaffected by compilation

environment changes, and that IOVFI can quickly identify previously analyzed functions.

We show that IOVecs truly preserve semantics by achieving high accuracy when identifying

functions in both purposefully obfuscated and AArch64 binaries. Finally, our large-scale

real-world application evaluation shows that IOVFI can scale to large, complex binaries.

4.4.1 Accuracy Experimental Setup

We selected coreutils-8.32 for evaluation because the suite is a common evaluation

metric in the literature, and used by both BLEX and IMF-SIM for their evaluation. To

conduct our evaluation of IOVFI’s accuracy, we selected wc, realpath, and uniq, which rep-

resent medium-sized applications using the default compilation environment. We compiled

the set of applications using gcc 7.5.0 [182] and clang 6.0.0 [63], at O0–O3 optimization

levels. We then generated a decision tree (see § 4.3) for each application, for a total of 24

decision trees. The total amount of fuzzing time allocated for generating IOVecs was limited

to 5 hours, after which the coalescing phase was allowed as much time as necessary. The

coverage threshold to stop fuzzing a function was set at 80%. Only 19% of the classified

functions hit that threshold during the exploration phase, and the average per-function cov-

erage was 61%. While low coverage could miss important semantic features, Jiang et al. [151]

92

T
ab

le
4.

3.
G

eo
m

et
ric

m
ea

n
F-

Sc
or

e(
le

ft)
fo

rc
or

eu
ti

ls
-8

.3
2

pe
rd

ec
isi

on
tr

ee
co

m
pi

la
tio

n
en

vi
ro

nm
en

t(
ro

w
s)

ac
ro

ss
ev

al
ua

tio
n

su
ite

co
m

pi
la

tio
n

en
vi

ro
nm

en
ts

(c
ol

um
ns

),
an

d
pe

rc
en

ti
nc

re
as

e
F-

Sc
or

eo
ve

rB
in

D
iff

6
(r

ig
ht

).

Su
it

e

D
-T

re
e

O
0

O
1

O
2

O
3

LL
VM

gc
c

LL
VM

gc
c

LL
VM

gc
c

LL
VM

gc
c

LL
VM

.8
74

27
.8

29
49

.7
28

85
.6

91
66

.7
02

12
3

.6
67

98
.6

94
13

3
.7

43
13

9
O

0
gc

c
.8

52
56

.8
51

24
.7

26
97

.6
85

67
.6

91
14

2
.6

55
13

1
.6

91
14

1
.7

36
20

1
LL

VM
.6

61
74

.6
92

82
.8

91
30

.6
36

66
.7

53
79

.6
90

73
.7

18
73

.6
71

11
0

O
1

gc
c

.8
48

11
3

.8
11

91
.8

15
12

8
.8

52
34

.8
08

13
7

.7
82

10
4

.8
04

14
6

.8
54

14
6

LL
VM

.7
23

10
7

.7
44

12
1

.8
36

76
.7

36
89

.9
29

49
.7

89
10

7
.9

16
53

.7
52

91
O

2
gc

c
.7

10
85

.7
57

11
7

.8
35

11
7

.7
18

74
.8

28
12

9
.8

92
49

.8
30

13
8

.7
99

68
LL

VM
.7

23
11

0
.7

42
12

0
.8

35
77

.7
35

93
.9

29
54

.7
98

12
2

.9
26

51
.7

60
99

O
3

gc
c

.8
49

13
7

.8
30

17
3

.8
25

15
3

.8
19

12
8

.8
22

12
4

.8
48

78
.8

20
13

7
.9

32
53

T
ab

le
4.

4.
as

m2
ve

c
F-

Sc
or

es
(le

ft)
,a

ve
ra

ge
sim

ila
rit

y
of

tr
ue

la
be

ls
(m

id
dl

e)
,a

nd
av

er
ag

es
im

ila
rit

y
of

pr
ed

ic
te

d
la

be
l(

rig
ht

).

Tr
ai

ni
ng

Te
st

O
0

O
3

LL
VM

gc
c

LL
VM

gc
c

LL
VM

.9
52

.9
73

.9
69

.2
24

.5
37

.6
42

.0
37

9
.2

70
.4

97
.0

19
9

.3
33

.5
48

O
0

gc
c

.2
96

.5
96

.7
04

.9
51

.9
66

.9
65

.0
37

9
.2

91
.5

00
.0

46
7

.4
79

.6
36

LL
VM

.0
65

6
-.2

18
.5

35
.0

37
0

.2
83

.5
86

.8
49

.9
55

.9
49

.1
59

.6
12

.6
26

O
3

gc
c

.0
51

9
-.0

40
7

.4
53

.0
10

8
.2

95
.5

65
.2

20
.3

81
.5

11
.8

57
.9

20
.9

39

93

found that in practice most functions are distinguishable using few executions. The accuracy

in our evaluation further backs up this finding.

Each tree was used to identify functions in du, dir, ls, ptx, sort, true, logname,

whoami, uname, and dirname, each also compiled using gcc 7.5.0 and clang 6.0.0 at O0–

O3 optimization levels, for a total of 80 binaries. These applications represent the 5 largest

and smallest applications as determined by the default coreutils compilation environment.

We used a subset of coreutils applications because an evaluation of one application requires

8 · 24 = 192 experiments. Evaluating all 100+ applications would therefore exceed 20, 000

experiments. Given that the applications share a lot of functionality, such an exhaustive

evaluation is unnecessary. In order to establish ground truth, we compiled all binaries with

debug symbols enabled. However, IOVFI does not use them for its analyses, and they were

only used for determining accuracy after all analyses had completed. Unfortunately, some

functions call abort or otherwise forcibly exit on invalid input, and thus our prototype in

its current iteration could not properly analyze those functions.

We report the geometric mean F-Score (harmonic mean of precision and recall) across all

compilation environments. In order to determine the correctness of a label, we performed a

simple string comparison between the name of the FUT and the functions in the assigned

equivalence class. If any matched, we record the function name as the assigned label, oth-

erwise we use the name of the first function in the equivalence class as the assigned label.

If a function is not matched to an equivalence class, we label the function as “Unknown”.

We then search for the function name among all the classified functions in the decision tree.

The ground truth label is the function name if it appears in the classified function list, or

“Unknown” otherwise. The classification labels and ground truth labels are then given to

the sklearn.metrics Python module for F-Score calculation.

To evaluate against the most recent BinDiff 6 (released in March 2020), we exported

the needed input data using Ghidra [183] for each binary in every compilation environment,

and performed pairwise analyses. The primary binaries were the decision tree binaries, and

the rest of the binaries were the secondary binaries. Only the functions that our prototype

classified were used for comparative accuracy measurements. We measured accuracy via

a string comparison between matched function names, or with “Unknown” for secondary

94

functions that cannot be matched. The primary matched name was considered as ground

truth for matched functions. For secondary unmatched functions, the function name was

used as ground truth if it was present in the primary function list, while “Unknown” was used

otherwise. Unfortunately, BinDiff 6 only provides one function name for matched functions,

so no further analysis could be performed.

asm2vec [157] is another state-of-the-art static similarity framework that uses natural

language processing to infer a model of functions using known function disassembly as train-

ing input. Function similarity is performed by computing the cosine difference between two

numerical vectors derived from the trained model, where one vector represents a known func-

tion, and one vector represents the FUT. The pair that yields the highest cosine difference is

assigned equivalence. asm2vec will always return a similarity score (and a match), even when

presented with a function the model has not seen. This feature presents a challenge in fairly

evaluating IOVFI against asm2vec, because IOVFI is capable of declaring the untrained

function as “Unknown,” while asm2vec can only return a value between [−1, 1]

1
 .

To evaluate against asm2vec, we trained a separate model using the binary tree binaries,

and used each model, along with the binary’s functions, to identify functions in the test set.

The function names of the top 2 results were compared with the FUT name, and the FUT

name was used as the label if there was a match, or the top result label was used if there

was no match. We used the top 2 results to fairly compare against the average equivalence

class size that IOVFI differentiates (see § 4.4.3). Unfortunately, due to the long evaluation

time needed for asm2vec (see the discussion in § 4.4), we could not evaluate it using the full

training and test binaries. Instead, our asm2vec evaluation consists of the O0 and O3 clang

and gcc decision tree binaries, and true and logname as test binaries, again only using

the O0 and O3 versions. true and logname were chosen as representative of the small and

large binaries in our evaluation set. We report the average F-Score asm2vec achieves while

varying the compilation environment, along with the average true label cosine similarity,

and the average predicted label similarity. The high F-Score that asm2vec achieves when

the test and training binaries match compilation environments shows that, while imperfect,
1

 ↑ Technically, 0 could be construed as “Unknown”, but utilizing it would be challenging, as most functions
have some similarity with each other on the assembly level, and thus a 0 cosine similarity is rare.

95

this evaluation is reasonable given how asm2vec produces results. Due to the evaluation

concerns with asm2vec, our evaluation focuses on BinDiff 6 , as that system provides a more

fair apples-to-apples comparison, despite its lower accuracy relative to asm2vec.

4.4.2 Accuracy Amid Environment Changes

 Table 4.3 shows the geometric mean F-Score IOVFI achieved with decision trees from a

specific compilation environment, along with the percent increase over the geometric mean

F-Score achieved by BinDiff 6 with the same environment. Each row reports the accuracy

of all decision trees or primary applications from the specific compilation environment has

when used to identify functions in binaries generated with a specific compilation environment

(presented as the columns). The diagonal numbers (in bold) are, therefore, the accuracy

rates when the decision trees or primary applications and evaluation suite match in both

compiler and optimization level. They are unsurprisingly among the most accurate IOVFI

and BinDiff 6 achieved, and represent the data most reported by related work. BinDiff 6

achieved an overall .402 ± .111 accuracy and standard deviation, and a diagonal accuracy of

.642 ± .0387. Overall, we achieve a .779 ± .0777 accuracy rate, while the diagonal accuracy

is .893 ± .0331, an improvement of 39%.

The off-diagonal numbers represent situations where training binaries differ from the

evaluation binaries, and highlight the limitations of BinDiff and the strengths of IOVFI. As

a static analysis framework, BinDiff performs its analysis using various graph comparison

and hashing heuristics. While static analysis is significantly faster, those heuristics are based

on fragile properties, as instructions and control flows change with compilation environments.

Conversely, IOVFI relies on program state changes, which compilers guarantee will be stable

across compilation environments and, as we will demonstrate, even across architectures.

BinDiff 6 achieves an average off-diagonal F-Score of .380 ± .0726 while our prototype

achieves an off-diagonal .766 ± .0682 average F-Score, an improvement of 101%.

The generally high F-Scores across compilation environments indicate that our accuracy

largely comes from IOVFI’s ability to identify functions it has classified, and not from simply

assigning an unknown classification to functions it has not identified. These results show

96

that IOVFI is accurate as a semantic function identifier, as well as resilient to compilation

environments (RQ 1 and 2).

 Table 4.4 shows asm2vec accuracy and similarity scores. We achieve similar F-Score val-

ues when the compilation environments match those of the training binaries, however IOVFI

significantly outperforms asm2vec when the compilation environments differ. We attribute

our use of F-Score as the accuracy metric, and the tight restrictions on the predictions that

asm2vec produces for the difference between our results and the existing literature. Restrict-

ing the results to the two highest similarity functions, and incorporating both precision and

recall into the accuracy metric makes achieving high accuracy a strictly more difficult task.

The authors of asm2vec show that their system exhibits a inverse relation between precision

and recall, which our results confirm. Conversely, IOVFI achieves high precision and recall.

The middle and right values of Table 4.4 list the average similarity scores measured for

the true labels and for those that were picked as predictions respectively. In almost every

case, the label similarity score is higher than the actual similarity score, indicating that in-

correct functions are being measured as more similar than the correct function. Furthermore,

the similarity scores measured for true labels from different compilation environments are

significantly lower that those from matching compilation environments. For example, the

true similarity score when using an LLVM-O0 model to classify LLVM-O0 binaries (0.973) is

45% higher than the scores measured while classifying gcc-O0 binaries (0.537). As asm2vec

claims, the further from 1.0 two vectors are, the less related the corresponding functions

are, and, therefore, it was unexpected to measure such low (and even negative) average

similarity among different compilation environments. The low similarity scores for the off-

diagonal entries indicates that asm2vec is not well suited to analysis of binaries across varied

compilation environments.

Additionally, we question the scalability of systems like asm2vec as semantic identifiers

for large amounts of trained binaries. As noted earlier, our evaluation is only a subset of

the full BinDiff 6 evaluation because it could not complete in reasonable time. The main

cause of the long processing time lies in the fact that the function vectors that asm2vec

generate are independent entities that cannot be sorted in a meaningful way. Because of this

independence, every unknown function must be tested against every classified function in

97

order to provide sound results. Conversely, IOVFI’s ability to sort IOVecs into a binary tree

creates an O(nlog(n)) vs. O(n2) classification disparity that results in significantly reduced

binary classification time. We measured an average single vector pair comparison time to be

small, taking only 0.12±0.012 CPU seconds on average across 3, 223, 276 vector comparisons,

which is inline with the published literature. However, when all pairs of classified and

unclassified functions must be compared, the total aggregate time to classify an unknown

binary becomes large. IOVFI takes significantly longer to train, with asm2vec taking only

4 CPU minutes to train a model from one binary, versus hours for IOVFI. However, we

emphasize that the training only needs to be done once, and afterwards classification with

IOVFI is quick (see § 4.4.4).

Unfortunately, the two closest dynamic systems to IOVFI, BLEX [153] and IMF-SIM [154],

are not available publicly. The BLEX authors supplied us their code, but it required signif-

icant engineering to execute with currently distributed Python modules. We invested two

weeks of development and evaluation time. The accuracy we measured was much lower

than the reported values, but this could be attributed to the required engineering changes

or changes in the imported modules. The IMF-SIM authors remained unresponsive. We,

therefore, base our comparison with these dynamic works on the published numbers, and call

for open-sourcing of research prototypes. The BLEX authors report an average accuracy of

.50–.64 across three compilers (they added Intel’s icc compiler) and four optimization lev-

els, and the IMF-SIM authors report an average accuracy of .57–.66 across three compilers

and three optimization levels. Both systems attempt to build a classification vector from

code measurements, and their lowest accuracies come from labeling functions in binaries

from compilation environments different from their source models. IOVFI, in contrast, is

accurate regardless of compilation environment, as evidenced by the off-diagonal numbers in

 Table 4.3 . With a geometric mean accuracy of .766, our results show an average 25%–53%

increase in accuracy in differing compilation environments over these works. The inaccuracy

in BLEX and IMF-SIM arises from the fact that code measurements are not a true reflection

of function semantics, but are instead one way to express function semantics from a large and

diverse space of possible semantic expressions. The trained models they generate become

inaccurate when presented differently optimized code, because they only capture a small

98

portion of the possible semantic expression space. IOVFI achieves its accuracy by actually

measuring a function’s semantics through program state change, and does not approximate

function semantics through code measurements.

Despite its higher accuracy, IOVFI does have inaccuracy. We identify two major sources

of inaccuracy: an overly strict program state comparison, and kernel state dependence lead-

ing to low-quality IOVecs.

Strict State Comparison

In § 4.3.3 , we detailed our policy for comparing program states, which we use in lieu of

code measurements for determining semantic similarity. We opted for a strict policy where

both return values and allocated memory areas must match exactly in order for an IOVec to

be accepted. However, at lower optimization levels, we might capture dead stores that are

optimized out at higher optimization levels. For example, the c isprint function, which

returns a single byte, contains an additional movzx instruction in O0 not present in any later

optimization level. This instruction operates on the return register, which changes the higher

order bits, while higher optimization levels simply write to the lowest byte in the return

register without changing any further bit value. The write to the higher order bits is a dead

store, since any caller will only ever read the lowest byte of the return register. However, we

capture this behavior in an IOVec, and our strict return value comparison policy determines

the return values to be different, leading to a mislabel. This is not a fundamental flaw with

IOVFI, but an artifact of our program state matching policy. A different policy that more

precisely compares program state could better account for inconsequential program state

changes.

Kernel State Dependence

For simplicity, we designed IOVFI to assume nothing when generating IOVecs, and it

always executes functions in isolation. However, there are functions (e.g., close and munmap)

that depend on the results of previous functions in order for the input arguments to be

semantically correct. For instance, close requires that the input integer be a valid open

99

Table 4.5. Geometric mean count of classified functions (N), average num-
ber of functions per equivalence class (N) for all coreutils-8.32 generated
decision trees. The median equivalence class size is 1.00 for all decision trees.

O0 O1 O2 O3
LLVM gcc LLVM gcc LLVM gcc LLVM gcc

N 78 73 72 52 38 32 36 40
N 1.76 1.85 1.82 1.68 1.78 1.47 1.69 1.69

file descriptor (as obtained from open), and any input that is not a valid file descriptor is

semantically incorrect. Because we do not perform any initial setup to obtain semantically

correct input values, any IOVec generated for these functions only exercise the error checking

functionality, which is likely to be similar to many other functions. This has two negative

effects: unrelated functions get grouped into an equivalence class, and unrelated FUTs can be

assigned to this equivalence class simply because they share similar error handling behavior.

This is, again, not a fundamental flaw in IOVFI, but instead is a result of our focus on

user-space functions. We expect that our accuracy would improve significantly if we added

some common environmental activities (e.g., opening file descriptors or memory mapping

address spaces) to our IOVec design. We keep it as future work to incorporate application

specific environmental setup to IOVFI.

4.4.3 Equivalence Class Distributions

 Table 4.5 shows the geometric mean number of classified functions (N), and the average

number of functions per equivalence class (N). Ideally, N should be close to one, as most

functions provide unique and singular functionality, and thus should be assigned as the sole

member of an unique equivalence class. However, with the existence of wrapper functions,

it is likely N will be higher. It nevertheless should be low, because one could trivially get

high accuracy by grouping all functions into the same equivalence class. As Table 4.5 shows,

we achieve a low N across our decision trees, which indicates that our fuzzing strategy

is a generally sound technique for generating sufficiently distinctive IOVecs. Additionally,

the equivalence class size distributions in Figure 4.4 show that we are creating hundreds of

equivalence classes with one or two functions per equivalence class, which provides evidence

100

1 2 3 4 5 6 7 8 9 10+

0

200

400

509

129
48 24 17 1 10 4 0 8

Figure 4.4. Distribution of all equivalence class sizes across all decision trees
in the coreutils-8.32 evaluation.

that we satisfy RQ 4. We, therefore, claim that our accuracy comes from IOVFI’s ability to

distinguish function semantics, and that our prototype does not simply group all functions

into a few equivalence classes.

There are equivalence classes containing a large (10+) number of functions. These are

cases where our fuzzing strategy was unable to trigger deep functionality, yet the classified

functions share a common failure mode (e.g., return −1 for invalid input), or very similar

functionality. For example, there is a 12 function sized equivalence class in the realpath

clang-O1 decision tree that contains 8 functions strcaseeq[0-7] that perform the same

action with increasingly fewer input arguments. Improvements in related fuzzing work,

especially works that improve deep code coverage [175], [179], will directly translate to an

improvement of IOVec generation, and a reduction of the size of these equivalence classes.

4.4.4 Training and Labeling Time

IOVFI is scalable in both training time and storage requirements. On average, IOVFI

takes 24.3 CPU hours to generate a decision tree, which includes generating IOVecs and the

coalescing phase described in § 4.3 . As stated before, however, this analysis only needs to be

done one time. Once the decision tree is generated, semantic analysis is very quick, taking,

on average, only 13.0 CPU minutes to classify a binary in the evaluation set. Additionally,

101

all operations in both of IOVFI’s phases represent completely independent work loads, and

as such are embarrassingly parallel. Therefore, execution time varies with the available

hardware. Furthermore, the generated decision tree size is very small, with an geometric

mean size of 855.9 KB. So, while IOVecs have no upper bound in their spatial size as they

record the memory state of relevant inputs and their sub-members, in practice they are small.

BLEX reports 1, 368 CPU hours for training, and 30 CPU minutes to classify a binary

in coreutils. IMF-SIM takes 1, 027 CPU hours for training, and 31 CPU minutes to

classify a coreutils binary. Due to significant hardware differences between our respective

experimental setups, and the lack of available source code for the related work, we cannot

make any fair quantitative comparison. However, we believe that we are faster at semantic

queries as we organize past analysis in a tree structure; BLEX and IMF-SIM, like asm2vec,

must compare the feature vector they record with every past feature vector. Neither works

report spatial size of their feature vectors, however BLEX and IMF-SIM restrict the number

of instructions executed, which caps the size of their respective feature vectors.

4.5 Case Studies

We provide four case studies that demonstrate the effectiveness of our approach.

4.5.1 Accuracy Against Obfuscated Code

Malware authors will often employ code obfuscation to impede binary analysis [184],

[185]. Code obfuscation attempts to hide semantic meaning through code transformations,

such as adding unrelated control-flow or instruction substitution, while still preserving the

intended function semantics. Code-based semantic analysis can be stymied when attempting

to identify purposefully obfuscated code, because the resulting code is far from “normal,”

and thus hard to correlate with models derived from unobfuscated binaries. IOVFI, however,

relies on semantic (rather than code) measurements guaranteed to be preserved by code

obfuscators. Therefore, IOVFI should largely be unaffected by code obfuscation.

To test this hypothesis, we compiled our coreutils suite (du, dir, ls, ptx, sort, true,

logname, whoami, uname, and dirname) using the LLVM-Obfuscator [186] at O2, enabling

102

Table 4.6. Obfuscated code accuracy comparison when bogus control-flow
(bcf), control-flow flattening (fla), or instruction substitution (sub) is enabled
for coreutils-8.32.

IOVFI IMF-SIM % Difference
bcf 0.787 0.385 105
fla 0.772 0.576 34.1gc

c

sub 0.752 0.664 13.2
bcf 0.806 0.513 57.1
fla 0.795 0.649 22.5

LL
VM

sub 0.813 0.779 4.30

separately the bogus control-flow (bcf), control-flow flattening (fla), and instruction substitu-

tion (sub) obfuscations. Following the experimental methodology of the IMF-SIM authors,

we used the O0 decision trees to measure semantic function identification accuracy in each

of the three respective obfuscated binaries, using the same accuracy measurement metric

described in § 4.4.1 .

The results are listed in Table 4.6 . We match or exceed the results achieved by IMF-SIM,

with an average increase in accuracy of 39.3%. Our accuracy against obfuscated binaries,

which closely matches our accuracy against unobfuscated binaries, provides evidence that

IOVFI is unaffected by existing obfuscation techniques. Any inaccuracy when identifying

functions in obfuscated binaries comes from the same sources as analyzing normal binaries,

as discussed in § 4.4.2 . Furthermore, these results also give evidence that RQ 2 is answered,

as not only are the binaries purposefully obfuscated, but are also compiled using a much

older version of LLVM than our evaluation version.

4.5.2 AArch64 Evaluation

Function semantics are mainly determined by the high level source code, and remain

largely constant across architectures. How the input state is established, and how the result-

ing program state is determined post-execution will change with architecture, but semantics

do not. Therefore, an IOVec generated for one architecture is usable for another architecture,

as long as there is a suitable IOVec translation between the two. In our implementation, we

created a translation from x64 IOVecs to AArch64 IOVecs.

103

Table 4.7. F-Scores for identifying functions in coreutils-gcc-O3 AArch64
binaries using decision trees generated from x64 wc (1), realpath (2), and
uniq (3).

O0 O1 O2 O3
LLVM gcc LLVM gcc LLVM gcc LLVM gcc

1 .835 .805 .789 .840 .797 .803 .795 .860
2 .820 .803 .766 .794 .740 .761 .737 .842
3 .880 .866 .833 .791 .799 .849 .796 .877

Table 4.8. F-Scores identifying functions in libz (A), libpng (B), and
libxml2 (C) using a clang-O0 decision tree. We did not evaluate against
the clang-O0 binary.

O0 O1 O2 O3
LLVM gcc LLVM gcc LLVM gcc LLVM gcc

A - .871 .717 .850 .759 .746 .765 .772
B - .781 .633 .695 .629 .642 .629 .639
C - .794 .699 .802 .701 .722 .700 .733

We evaluated IOVFI’s cross-architecture accuracy by compiling the du and dirname (the

largest and smallest binaries in our evaluation suite) on a Raspberry Pi 3 Model B Rev 1.2

running Ubuntu 20.04 using the ARM gcc-9.3.0 compiler at O3 optimization. We then used

the unmodified decision trees generated for the evaluation described in § 4.4.1 to identify

functions in the ARM binaries. The results are presented in Table 4.7 , with each column

listing the accuracy achieved using the x64 decision tree generated with the enumerated

compilation environment.

We achieve a mean F-Score of .811 across all the evaluated binaries, similar to our native

geometric mean of .779. As our accuracy is largely unaffected by architecture, we strengthen

our claim that IOVFI captures function semantics, and provide evidence that we answer RQ

3. Additionally, we also provide further evidence that we answer Research Question 1, as

the gcc version used for this evaluation differs from the version used to generate the decision

trees.

104

Table 4.9. Decision tree (N), average equivalence class sizes (N), and CPU
hours needed to generate the decision tree (T).

libz libpng libxml2
N 126 390 2080
N 2.47 2.48 2.44
T 17.0 25.4 158

4.5.3 Large Shared Libraries

Here, we demonstrate the scalability of IOVFI to larger, more complex binaries.

We chose zlib, libpng, and libxml2 as a set of shared libraries that are ubiquitous

and among the largest distributed with Ubuntu. We compiled each library using gcc 7.5.0

and clang 6.0.0 at O0–O3 optimization levels, generated a decision tree for the clang-O0

binary, and identified functions in the remaining binaries. Due to the larger size of the

binaries involved, we allowed the fuzzing campaign to execute for 10 hours, and provided as

much time as needed for coalescing. In order to handle the significant increase in functions,

we used a machine with 45GB memory to generate the decision tree for libxml2 (running

Debian 9.3 on an Intel Xeon 3106). The machine listed in § 4.4.1 was used for all other

evaluation tasks. The 50% increase in memory to process at least a 10x increase function

count is a reasonable cost, and does not detract from our scalability claim.

 Table 4.8 and Table 4.9 list the accuracy measured (using the same accuracy metric at in

 § 4.4.1), along with the number of functions classified (N), average number of functions per

equivalence class (N), and CPU time required to generate the decision tree (T). Our proto-

type achieves similar F-Scores as in our coreutils evaluation, while showing only a linear

growth in T , demonstrating the accuracy and scalability of our approach (RQ 1). However,

the number of functions per equivalence class is higher than our coreutils evaluation. This

is a consequence of our simplistic coverage-guided fuzzer, as well as increased genuine similar

functionality. For example, there are functions in zlib (e.g., gzoffset and gzoffset64)

which only differ in the bit count of their input arguments, but otherwise perform the same

action. There are also a large group of functions which first perform a sanity check on the

input. The fuzzer did not create inputs to pass these checks, and the functions are grouped

105

into an equivalence class. Although inferring valid input is an ongoing research topic [174],

[175], [179], both of these problems can be mitigated with a longer fuzzing campaign, a more

sophisticated fuzzer, or through symbolic execution.

4.5.4 Semantic Differences and Versioning

Semantic function identification is required for binary patching if the compilation envi-

ronment that created the binary is unknown. A binary might contain only a subset of the

functions available in the source code, and identifying the full set of functions allows an

engineer to generate a patch for any vulnerable function. IOVFI, since it is unaffected by

compilation environment, is well suited to identify and locate functions within a binary for

patch generation.

To demonstrate IOVFI’s utility in binary patching, we analyzed the latest 8 versions of

the zlib compression library, spanning 1.2.7 to 1.2.11, as well as 6 versions of libpng

identified in the LibRARIAN [147] Android app dataset. We kept the default compilation

environment (gcc O3) constant across all versions, generated decision trees for each resulting

shared library, and then used each tree to identify functions in every other version. As in

the coreutils evaluation, if the FUT name appeared in the assigned equivalence class, then

we considered the two versions of the FUT to be semantically equivalent, and otherwise, the

semantics differed. Additionally, we manually verified a subset of mismatched functions for

code changes resulting in semantic differences.

The differences in function semantics as a proportion of classified functions is listed in

 Figure 4.5 , along with the number of additions and removals to source files between each

pairwise version as reported by git. While some versions show sharp differences in semantics,

(e.g., zlib v1.2.9+ is significantly different from earlier versions), subtle semantic differ-

ences are also distinguished. As IOVFI does not rely on any information, besides function

location within a binary, and the majority of functions within both shared libraries are not

exported, we claim that IOVFI can uniquely identify exported and non-exported functions.

Key benefits of IOVFI are low analysis time to construct the dataset and very low match-

ing time to query a function. The full semantic difference analysis of all 56 zlib version

106

1.6
.7

1.6
.8

1.6
.10

1.6
.17

1.6
.24

1.6
.37

1.
6.

37

1.
6.

24

1.
6.

17

1.
6.

10

1.
6.

8

1.
6.

7

(0
, 0

)

(0
, 0

)
(5

61
4,

 2
63

9)

(0
, 0

)
(1

04
77

, 4
15

3)
(1

57
43

, 6
43

4)

(0
, 0

)
(3

14
3,

 2
19

3)
(1

32
38

, 5
96

4)
(1

83
95

, 8
10

7)

(0
, 0

)
(3

42
7,

 1
35

0)
(6

27
8,

 3
25

1)
(1

63
26

, 6
97

5)
(2

14
34

, 9
06

9)

(0
, 0

)
(4

83
, 2

89
)

(3
86

3,
 1

59
2)

(6
67

2,
 3

45
1)

(1
66

60
, 7

11
5)

(2
17

67
, 9

20
8)

lib
pn

g

1.2
.7

1.2
.7.

1

1.2
.7.

2

1.2
.7.

3

1.2
.8

1.2
.9

1.2
.10

1.2
.11

1.
2.

11

1.
2.

10

1.
2.

9

1.
2.

8

1.
2.

7.
3

1.
2.

7.
2

1.
2.

7.
1

1.
2.

7

(0
, 0

)

(0
, 0

)
(2

5,
 3

1)

(0
, 0

)
(5

0,
 4

4)
(7

2,
 6

0)

(0
, 0

)
(1

64
4,

 1
00

7)
(1

65
7,

 1
01

4)
(1

66
3,

 1
01

4)

(0
, 0

)
(9

7,
 2

5)
(1

72
9,

 1
02

0)
(1

74
2,

 1
02

7)
(1

74
8,

 1
02

7)

(0
, 0

)
(9

, 9
)

(9
7,

 2
5)

(1
72

9,
 1

02
0)

(1
74

2,
 1

02
7)

(1
74

8,
 1

02
7)

(0
, 0

)
(1

7,
 1

6)
(1

7,
 1

6)
(1

05
, 3

2)
(1

73
5,

 1
02

5)
(1

74
8,

 1
03

2)
(1

75
4,

 1
03

2)

(0
, 0

)
(3

58
, 2

18
)

(3
60

, 2
19

)
(3

60
, 2

19
)

(4
45

, 2
32

)
(2

04
1,

 1
19

1)
(2

05
0,

 1
19

4)
(2

05
6,

 1
19

4)

lib
z

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Pe
rc

en
t d

iff
er

en
ce

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Pe
rc

en
t d

iff
er

en
ce

F
ig

ur
e

4.
5.

Se
m

an
tic

ch
an

ge
s

m
ea

su
re

d
by

fu
nc

tio
n

m
ism

at
ch

es
be

tw
ee

n
IO

Ve
cs

ge
ne

ra
te

d
fo

r
a

pa
rt

ic
ul

ar
ve

rs
io

n
(r

ow
s)

an
d

ot
he

rv
er

sio
ns

(c
ol

um
ns

).
La

be
ls

in
di

ca
te

th
e

nu
m

be
ro

fl
in

e
ad

di
tio

ns
an

d
re

m
ov

al
si

n
so

ur
ce

fil
es

be
tw

ee
n

ve
rs

io
ns

.

107

pairs took only 82 CPU minutes, while the 30 libpng comparisons only took 54 CPU min-

utes. Other approaches must compare each unknown function with every generated function

model, creating an O(log(n)) vs. O(n) search performance disparity between IOVFI and

the current state-of-the-art.

 Figure 4.5 shows that binary versions often have measurable semantic differences from

each other, and thus those differences can serve as an identifying fingerprint for a particular

version. When analyzing the exported functions of a shared library of an unknown version

using decision trees generated from known library versions, the decision tree that produces

the highest accuracy is likely to be the closest version to the unknown binary. LibRAR-

IAN [147] performs this task statically (at a lost off precision), but IOVFI has the additional

benefit of identifying non-exported symbols.

To test IOVFI as a shared library version identifier, we obtained the versions of libpng

distributed for the past 5 years of Ubuntu releases, and analyzed each version with the

libpng decision trees generated for the semantic difference evaluation. The decision tree

with the highest accuracy was chosen as the candidate version, and we declared a suc-

cessful match if that version is the closest to the actual version. The library versions in-

clude 1.6.37-3build3, 1.6.37-3, 1.6.37-2, 1.6.37-1, 1.6.36-6, 1.6.34-2, 1.6.34-1,

and 1.6.25-1. In all but the 1.6.25-1 trial, IOVFI determined the correct version. For the

unsuccessful trial, IOVFI selected the 1.6.37 decision tree, instead of the correct 1.6.24

decision tree.

4.6 Discussion

Here we provide discussion on the limitations of IOVFI, and on when a function is

designated as unknown.

Limitations

We have identified a few sets of functions that IOVFI is unlikely to classify or identify

correctly. These functions are highly dependent upon the system environment and execution

context while generating IOVecs, as well as during the identification phase. Functions like

108

getcwd or getuid, which return the current working directory and the user ID respectively,

depend on the filesystem, current user, and kernel state. As these factors differ between runs

or are non-deterministic, they violate our fundamental assumption—semantically similar

functions change their program state in similar ways given a specific input program state.

To address this limitation, IOVFI could model the system state in addition to the process

state.

Another set of functions IOVFI struggles with depend on an initial seed being set before-

hand. Examples of these functions include rand and time. As we execute functions without

any knowledge about their behavior, we cannot provide the seed beforehand as it is difficult

to distinguish a seed value from other global variables. Even if we determine a location

of the seed, knowledge of proper API usage (e.g., calling srand before rand) is needed to

correctly use these functions. Discerning correct API usage is an active research area [187],

and improvements in this area will directly translate to improvements in IOVFI.

Soundness of IOVFI

When semantic equivalence is determined between two functions, that equivalence is only

extended as far as the IOVecs tested along the decision tree path. It is possible that IOVFI

establishes an incorrect semantic equivalence between a previously analyzed function f, and

a new unseen function g, if 1) g accepts all of f’s IOVecs, plus additional IOVecs; and 2)

any additionally accepted IOVec is not along the path to f in the decision tree. This means

that IOVFI is not a sound technique. However, as our equivalence class distributions results

show, in practice IOVFI is accurate for most functions, even when functions are similar,

as with strcpy and strncpy. In real world code, most functions have little overlapping

functionality, which makes IOVFI a practical tool for semantic identification. We leave it

as future work to incorporate code coverage into the semantic similarity analysis, which

could produce more accurate classifications through the enforcement of a coverage policy as

a condition for semantic equivalence.

109

System Calls

Currently, IOVFI only records which system calls are made during the execution of

a FUT, and no further information is captured, and no further modeling is performed.

This design choice is purposefully incomplete to avoid expensive operating system state

replication. Most functions make no system calls; less than 3% of functions in libxml2 call

read, write, open, close, or their FILE* equivalents, for example. Of the functions that do

make a system call, we assumed that they ignore the exact state of the operating system,

and rely solely on the result of the system call. Our high accuracy justifies this assumption,

and while state modeling could improve coverage, we believe that only marginal gains would

result.

Unknown Functions

If a function is encountered that accepts no known DCIS, IOVFI will mark this function

as unknown. When a function is marked as unknown, it can mean one of two things depend-

ing on the number of accepted IOVecs. If the unknown function never accepts an IOVec,

then it implements wholly unknown functionality, and should be a main focus for analysts.

Otherwise, if the function accepts some IOVecs, then it shares some functionality with the

functions whose DCIS includes the accepted IOVecs. The utility analysts might gain from

this information varies with the number of IOVecs accepted. Many IOVecs rejected with

a few IOVec acceptances is likely a common failure mode present in many functions, e.g.,

returning −1 on invalid input. If many IOVecs in a DCIS are accepted, then the unknown

function is likely similar to the corresponding function, indicating, e.g., a different version.

4.7 Future Work

IOVFI utilizes a mutational fuzzer to generate a function’s DCIS. By incorporating

more sophisticated fuzzing and binary instrumentation techniques [188], [189], it is possible

to generate a DCIS that provides close to 100% edge or code coverage of a function. Later,

if that function is identified in a new binary, then any deviation in code coverage when given

110

the full coverage DCIS would indicate the presence or lack of functionality in the FUT.

This could be helpful in exploit generation, or code version identification [142].

A challenging aspect of reverse engineering is the detection of cryptographic functions in a

binary. They are difficult to identify, because they are often implemented using architecture-

specific assembly for optimization purposes, make extensive use of randomness, and rely

heavily on correct state and input. These are situations for which IOVFI is particularly

well-suited, and it would be worthwhile to investigate how far we can advance automated

analysis on this most difficult class of functions. IOVecs, as an extension of the captured

state, could record the random values returned by RNGs. In the coalescing and identification

phases, calls to RNGs could be intercepted, and the recorded random value could be returned.

4.8 Related Work

Similarity analysis is an active area of research [18]–[20], [24], [157], [190]–[196]. Jiang

et al. [151] first proposed using randomized testing in function similarity analysis, drawing

inspiration from polynomial identity testing. Their EqMiner system, which requires source

code, finds syntactically different yet semantically similar code fragments in large (100+

MLOC) code bases. A direct comparison between IOVFI and EqMiner is unfortunately

challenging. Besides requiring source, which IOVFI does not use, the correctness metrics

and similarity assertions used between the two systems are different. For example, EqMiner

will declare two functions similar if they add two integers, irrespective of whether the inte-

gers are part of a struct or raw data types. IOVFI will mark the two functions as different,

because of the different semantic uses in the whole binary. EqMiner defines similarity or-

thogonally to the data format while IOVFI uses IOVecs as the fundamental distinguishing

factor. Both answers are correct for their respective use cases, but are incompatible when

trying to evaluate one system over the other.

Current state-of-the-art binary analysis tools all rely on code measurements. BLEX [153]

extracts feature vectors of function code, such as values read and written to the stack and

heap, by guaranteeing that every instruction is executed. The authors also implemented a

search engine with their system similar to IOVFI. Wang, et al. [154] perform code similarity

111

analysis using a system called IMF-SIM. IMF-SIM uses an in-memory fuzzer to measure

the same metrics as BLEX, instead of forcing execution to start at unexecuted instructions.

As stated in our evaluation, these works still struggle with differing compilation environ-

ments, while IOVFI has consistently high accuracy irrespective of compilation environment.

Both works focus on measuring code properties, which change with different compilation

environments. IOVFI, in contrast, uses IOVecs, which are independent of code, and encodes

differing semantics in a binary decision tree.

Pewny, et al. [22] compute a signature of a bug, and search for that signature in other

(possibly different ISA) binaries. The signature involves computing inputs and corresponding

outputs to basic blocks in functions’ CFGs through dynamic instrumentation similar to

IOVFI. While the authors admit that semantic function identification is not their expected

use case, their system can be used as such by supplying a function as the “bug.” This

work relies on the structure of the CFGs of both the application’s functions and the code

being searched for, which can significantly change with software version or obfuscation.

IOVFI is resilient to such differences as long as the function’s semantics remain the same.

Unfortunately, we were also unable to obtain source code or detailed results for comparison.

DyCLINK [196] use dynamic analysis to compute a dependency graph between instruc-

tions executed during developer supplied unit tests. Code similarity is determined by com-

puting an isomorphism between sub graphs, using edit distance between PageRank [197]

vectors. DyCLINK targets Java applications so we cannot compare our prototype against

it. DyCLINK considers methods as similar if they share any sufficiently similar behavior

for a given input, an event much more prevalent in C binaries than Java binaries. Many

dissimilar C functions behave similarly when handling errors (i.e., returning −1 on invalid

input), while Java often favors raising different exceptions based on the error condition. We,

therefore, believe that the common error handling technique in C would significantly affect

DyCLINK’s precision. IOVFI is able to distinguish between functions with similar func-

tionality, because the decision tree, which encodes semantic similarity, is generated using

differences in behavior.

Due to the diverse toolchains and architectures used and its closed source nature, binary

analysis is particularly well suited to firmware. David et al. [195], created a static analysis

112

tool to find CVEs in firmwares, and discovered hundreds of vulnerabilities. Feng et al. [194],

took inspiration from image search research to find bugs in Internet of Things devices by

converting CFGs into numerical vectors for similarity analysis.

Neural network approaches Recently, neural networks have been used in binary analysis.

Zuo et al. [17], trained a neural network to determine cross-architecture semantics of basic

blocks. Liu et al. [23], employ a deep neural network to extract features from functions

and the binary call graph. These features are then used to create a distance metric for

determining binary similarity. Xu et al. [198] use a neural network to compute the embedding

of a function’s CFG to accelerate similarity computation. These approaches show promise

in improving computer security by utilizing research from other research areas. However,

it is unclear if their techniques remain accurate in the presence of different compilation

environments.

113

5. SUMMARY

Software systems today are written as monoliths, meaning that instructions have full access

to all addressable memory in the system. As a result of this monolithic design, hundreds

of high severity CVEs get issued every year for the most crucial pieces of software. Com-

partmentalization is a well known security principle that is not applied in the majority of

computer systems, but can limit the damage a bug in a system can cause. While implement-

ing compartmentalization in a monolithic system is challenging, the security gains are large,

especially in high privilege environments like kernels and hypervisors.

To address the lack of compartmentalization, this dissertation proposes the following

systems: 1) HAKC for enforcing an arbitrary compartmentalization policy; 2) FlexC for

discovering a compartmentalization policy based on type and call information, which can

be gathered dynamically or statically; and 3) IOVFI for semantic function identification,

which allows for exploring different compartmentalization strategies based on code similarity.

These systems use external program state to achieve their goals of compartmentalization and

semantic identification, and significantly advances the state-of-the-art in their respective

areas.

HAKC makes use of memory tagging and pointer authentication to associate data owner-

ship information with pointers, and enforces a compartmentalization policy by ensuring that

all accessed data must be allowable as defined by the policy. HAKC automatically inserts the

necessary checks and data ownership transfer operations in the generated code at compile

time, negating the use of an extra layer of trust, such as a hypervisor. We compartmen-

talized the ipv6.ko and nf tables.ko Linux kernel modules, and the overhead generated

by HAKC is small (as little as 1.6%). In real-world browsing experiments, we measured no

noticeable difference in user experience when other network effects are accounted for.

FlexC computes a Call-and-Type Graph for the whole kernel, and computes edge weights

based on the static and dynamic information provided as input. The CTG is then used to

derive a compartmentalization that suits the user’s security or performance requirements.

We evaluate the compartmentalizations based on performance overhead using the Linux

Testing Project. Additionally, we evaluate the security gains by measuring the privilege

114

reduction achieved relative to the unmodified kernel, as well as a CVE study that measures

whether an attack could be mitigated by a compartmentalization.

Finally, we propose IOVFI as a binary analysis framework that can be used for further

exploration of compartmentalization strategies, in addition to the many other uses a semantic

function identifier provides. IOVFI uses program state modifications, encoded as IOVecs, as

the unique function fingerprint, as opposed to models computed from code properties. Unlike

code property models, IOVecs can be sorted for quick query of unknown functions, and, using

a small translation layer, can be used to identify functions in different architectures. IOVFI is

significantly more accurate than the state-of-the-art static and dynamic semantic identifiers,

especially when compilation environments of training and test binaries differ.

115

REFERENCES

[1] A. Carleton, J. Robert, M. Klein, and E. Harper, Software engineering as a strategic
advantage: A national roadmap for the future, Carnegie Mellon University’s Software Engi-
neering Institute Blog, Nov. 2021. [Online]. [Online]. Available: http://insights.sei.cmu.edu/
blog/software-engineering-as-a-strategic-advantage-a-national-roadmap-for-the-future/ .

[2] C. Herley and P. C. Van Oorschot, “Sok: Science, security and the elusive goal of security
as a scientific pursuit,” in 2017 IEEE symposium on security and privacy (SP), IEEE, 2017,
pp. 99–120.

[3] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in 2013
IEEE Symposium on Security and Privacy, 2013, pp. 48–62. doi: 10.1109/SP.2013.13 .

[4] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Everything you want to know about
pointer-based checking,” in 1st Summit on Advances in Programming Languages (SNAPL
2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[5] K. Cook, “Kernel address space layout randomization,” Linux Security Summit, 2013.

[6] C. Cowan, C. Pu, D. Maier, et al., “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks.,” in USENIX security symposium, San Antonio, TX,
vol. 98, 1998, pp. 63–78.

[7] Google. “Oss-fuzz.” (2018), [Online]. Available: https://github.com/google/oss-fuzz .

[8] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete control-flow integrity for
commodity operating system kernels,” 2014. doi: 10.1109/SP.2014.26 .

[9] J. H. Saltzer, “Protection and the control of information sharing in multics,” Commu-
nications of the ACM, 1974.

[10] R. M. Needham, “Protection systems and protection implementations,” in AFIPS ’72
(Fall, part I), 1972.

[11] Z. Durumeric, F. Li, J. Kasten, et al., “The matter of heartbleed,” in Proceedings of
the 2014 Conference on Internet Measurement Conference, ser. IMC ’14, Vancouver, BC,
Canada: Association for Computing Machinery, 2014, pp. 475–488, isbn: 9781450332132.
doi: 10 .1145/2663716 .2663755 . [Online]. Available: https ://doi .org/10 .1145/2663716 .
2663755 .

[12] N. Roessler, L. Atayde, I. Palmer, et al., “µScope: A methodology for analyzing least-
privilege compartmentalization in large software artifacts,” in 24nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2021), USENIX Association, 2021.

116

http://insights.sei.cmu.edu/blog/software-engineering-as-a-strategic-advantage-a-national-roadmap-for-the-future/
http://insights.sei.cmu.edu/blog/software-engineering-as-a-strategic-advantage-a-national-roadmap-for-the-future/
https://doi.org/10.1109/SP.2013.13
https://github.com/google/oss-fuzz
https://doi.org/10.1109/SP.2014.26
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755

[13] U. Bhatt, A. Xiang, S. Sharma, et al., “Explainable machine learning in deployment,” in
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, ser. FAT*
’20, Barcelona, Spain: Association for Computing Machinery, 2020, pp. 648–657, isbn: 9781450369367.
doi: 10 .1145/3351095 .3375624 . [Online]. Available: https ://doi .org/10 .1145/3351095 .
3375624 .

[14] X. Meng and B. P. Miller, “Binary code is not easy,” in Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis, ACM, 2016, pp. 24–35.

[15] R. Johnson and A. Stavrou, “Forced-path execution for android applications on x86
platforms,” in 2013 IEEE Seventh International Conference on Software Security and Reli-
ability Companion, IEEE, 2013, pp. 188–197.

[16] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-executing binary
programs for security applications,” in 23rd {USENIX} Security Symposium ({USENIX}
Security 14), 2014, pp. 829–844.

[17] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural machine translation
inspired binary code similarity comparison beyond function pairs,” in Proceedings of the 2019
Network and Distributed Systems Security Symposium (NDSS), 2019.

[18] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan, “Bingo:
Cross-architecture cross-os binary search,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser. FSE 2016, Seattle,
WA, USA: ACM, 2016, pp. 678–689, isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.2950350 .
[Online]. Available: http://doi.acm.org/10.1145/2950290.2950350 .

[19] U. Karg é n and N. Shahmehri, “Towards robust instruction-level trace alignment of
binary code,” in Proceedings of the 32Nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ser. ASE 2017, Urbana-Champaign, IL, USA: IEEE Press,
2017, pp. 342–352, isbn: 978-1-5386-2684-9. [Online]. Available: http://dl.acm.org/citation.
cfm?id=3155562.3155608 .

[20] Y. David, N. Partush, and E. Yahav, “Similarity of binaries through re-optimization,”
in ACM SIGPLAN Notices, ACM, vol. 52, 2017, pp. 79–94.

[21] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,” in Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’16, Santa Barbara, CA, USA: ACM, 2016, pp. 266–280, isbn: 978-1-4503-4261-2.
doi: 10.1145/2908080.2908126 . [Online]. Available: http://doi.acm.org/10.1145/2908080.
2908126 .

117

https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1145/2950290.2950350
http://doi.acm.org/10.1145/2950290.2950350
http://dl.acm.org/citation.cfm?id=3155562.3155608
http://dl.acm.org/citation.cfm?id=3155562.3155608
https://doi.org/10.1145/2908080.2908126
http://doi.acm.org/10.1145/2908080.2908126
http://doi.acm.org/10.1145/2908080.2908126

[22] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-architecture bug
search in binary executables,” in 2015 IEEE Symposium on Security and Privacy, IEEE,
2015, pp. 709–724.

[23] B. Liu, W. Huo, C. Zhang, et al., “ α diff: Cross-version binary code similarity detection
with dnn,” in Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ser. ASE 2018, Montpellier, France: ACM, 2018, pp. 667–678, isbn:
978-1-4503-5937-5. doi: 10.1145/3238147.3238199 . [Online]. Available: http://doi.acm.org/
10.1145/3238147.3238199 .

[24] J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: Trace-based semantic binary diffing via
system call sliced segment equivalence checking,” in 26th USENIX Security Symposium (
USENIX Security 17), Vancouver, BC: USENIX Association, 2017, pp. 253–270, isbn: 978-
1-931971-40-9. [Online]. Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/ming .

[25] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function detection in bina-
ries,” in 2017 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2017,
pp. 177–189.

[26] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,” in Proceedings of
the 30th International Conference on Software Engineering, ser. ICSE ’08, Leipzig, Germany:
ACM, 2008, pp. 321–330, isbn: 978-1-60558-079-1. doi: 10.1145/1368088.1368132 . [Online].
Available: http://doi.acm.org/10.1145/1368088.1368132 .

[27] R. Qiao and R. Sekar, “Function interface analysis: A principled approach for function
recognition in cots binaries,” in Dependable Systems and Networks (DSN), 2017 47th Annual
IEEE/IFIP International Conference on, IEEE, 2017, pp. 201–212.

[28] T. Reps, “Undecidability of context-sensitive data-dependence analysis,” ACM Trans.
Program. Lang. Syst., vol. 22, no. 1, pp. 162–186, Jan. 2000, issn: 0164-0925. doi: 10.1145/
345099.345137 . [Online]. Available: https://doi.org/10.1145/345099.345137 .

[29] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces.
North Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2018, isbn:
198508659X.

[30] H. Okhravi, “A cybersecurity moonshot,” IEEE Security & Privacy, vol. 19, no. 3, pp. 8–
16, 2021. doi: 10.1109/MSEC.2021.3059438 .

[31] NIST. “Cve-2016-4997 detail.” (2021), [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2016-4997 .

118

https://doi.org/10.1145/3238147.3238199
http://doi.acm.org/10.1145/3238147.3238199
http://doi.acm.org/10.1145/3238147.3238199
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://doi.org/10.1145/1368088.1368132
http://doi.acm.org/10.1145/1368088.1368132
https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/345099.345137
https://doi.org/10.1109/MSEC.2021.3059438
https://nvd.nist.gov/vuln/detail/CVE-2016-4997
https://nvd.nist.gov/vuln/detail/CVE-2016-4997

[32] “The kernel address sanitizer (kasan),” 2021. [Online]. Available: https://www.kernel.
org/doc/html/latest/dev-tools/kasan.html?highlight=kasan .

[33] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow integrity for
kernel software,” in 2016 IEEE European Symposium on Security and Privacy (EuroS P),
2016, pp. 179–194. doi: 10.1109/EuroSP.2016.24 .

[34] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “Aces: Automatic com-
partments for embedded systems,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 65–82.

[35] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “Minimal kernel: An operating system
architecture for TEE to resist board level physical attacks,” in 22nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2019), Chaoyang District, Beijing:
USENIX Association, Sep. 2019, pp. 105–120, isbn: 978-1-939133-07-6. [Online]. Available:

 https://www.usenix.org/conference/raid2019/presentation/zhao .

[36] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Polychronakis, “Xmp:
Selective memory protection for kernel and user space,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 563–577. doi: 10.1109/SP40000.2020.00041 .

[37] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou, “Secpod: A framework for virtualization-
based security systems,” in 2015 USENIX Annual Technical Conference (USENIX ATC 15),
Santa Clara, CA: USENIX Association, Jul. 2015, pp. 347–360, isbn: 978-1-931971-225. [On-
line]. Available: https://www.usenix.org/conference/atc15/technical-session/presentation/
wang-xiaoguang .

[38] L. Shi, Y. Wu, Y. Xia, et al., “Deconstructing xen.,” in NDSS, 2017.

[39] D. Williams, R. Koller, M. Lucina, and N. Prakash, “Unikernels as processes,” in Pro-
ceedings of the ACM Symposium on Cloud Computing, ser. SoCC ’18, Carlsbad, CA, USA:
Association for Computing Machinery, 2018, pp. 199–211, isbn: 9781450360111. doi: 10.
1145/3267809.3267845 . [Online]. Available: https://doi.org/10.1145/3267809.3267845 .

[40] G. Klein, K. Elphinstone, G. Heiser, et al., “Sel4: Formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
ser. SOSP ’09, Big Sky, Montana, USA: Association for Computing Machinery, 2009, pp. 207–
220, isbn: 9781605587523. doi: 10.1145/1629575.1629596 . [Online]. Available: https://doi.
org/10.1145/1629575.1629596 .

[41] D. Hildebrand, “An architectural overview of qnx,” in Proceedings of the Workshop on
Micro-Kernels and Other Kernel Architectures, USA: USENIX Association, 1992, pp. 113–
126, isbn: 1880446421.

119

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html?highlight=kasan
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html?highlight=kasan
https://doi.org/10.1109/EuroSP.2016.24
https://www.usenix.org/conference/raid2019/presentation/zhao
https://doi.org/10.1109/SP40000.2020.00041
https://www.usenix.org/conference/atc15/technical-session/presentation/wang-xiaoguang
https://www.usenix.org/conference/atc15/technical-session/presentation/wang-xiaoguang
https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596

[42] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in the blur of
moving-target techniques,” Security Privacy, IEEE, vol. 12, no. 2, pp. 16–26, Mar. 2014,
issn: 1540-7993. doi: 10.1109/MSP.2013.137 .

[43] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and D. Gruss, “Kaslr: Break it,
fix it, repeat,” in Proceedings of the 15th ACM Asia Conference on Computer and Communi-
cations Security, ser. ASIA CCS ’20, Taipei, Taiwan: Association for Computing Machinery,
2020, pp. 481–493, isbn: 9781450367509. doi: 10.1145/3320269.3384747 . [Online]. Available:

 https://doi.org/10.1145/3320269.3384747 .

[44] L. ARM. “Pointer authentication on armv8.3.” (2017), [Online]. Available: https : //
www.qualcomm.com/media/documents/files/whitepaper-pointer-%20authentication-on-
armv8-3.pdf .

[45] R. Avanzi, “The qarma block cipher family. almost mds matrices over rings with zero
divisors, nearly symmetric even-mansour constructions with non-involutory central rounds,
and search heuristics for low-latency s-boxes,” IACR Transactions on Symmetric Cryptology,
vol. 2017, no. 1, pp. 4–44, Mar. 2017. doi: 10.13154/tosc.v2017.i1.4-44 . [Online]. Available:

 https://tosc.iacr.org/index.php/ToSC/article/view/583 .

[46] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and N. Asokan, “Pac it
up: Towards pointer integrity using arm pointer authentication,” in Proceedings of the 28th
USENIX Conference on Security Symposium, ser. SEC’19, Santa Clara, CA, USA: USENIX
Association, 2019, pp. 177–194, isbn: 9781939133069.

[47] R. M. farkhani, M. Ahmadi, and L. Lu, “Ptauth: Temporal memory safety via robust
points-to authentication,” in 30th USENIX Security Symposium (USENIX Security 21), Van-
couver, B.C.: USENIX Association, Aug. 2021. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/mirzazade .

[48] H. Liljestrand, Z. Gauhar, T. Nyman, J.-E. Ekberg, and N. Asokan, “Protecting the
stack with paced canaries,” in Proceedings of the 4th Workshop on System Software for
Trusted Execution, ser. SysTEX ’19, Huntsville, Ontario, Canada: Association for Computing
Machinery, 2019, isbn: 9781450368889. doi: 10.1145/3342559.3365336 . [Online]. Available:

 https://doi.org/10.1145/3342559.3365336 .

[49] R. Denis-Courmont, H. Liljestrand, C. Chinea, and J. .-. Ekberg, “Camouflage: Hardware-
assisted cfi for the arm linux kernel,” in 2020 57th ACM/IEEE Design Automation Confer-
ence (DAC), 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218535 .

[50] L. ARM. “Armv8.5-a memory tagging extension.” (2019), [Online]. Available: https://
developer.arm.com/-/media/Arm%20Developer%20Community/PDF/%20Arm Memory
Tagging Extension Whitepaper.pdf .

120

https://doi.org/10.1109/MSP.2013.137
https://doi.org/10.1145/3320269.3384747
https://doi.org/10.1145/3320269.3384747
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-%20authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-%20authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-%20authentication-on-armv8-3.pdf
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://tosc.iacr.org/index.php/ToSC/article/view/583
https://www.usenix.org/conference/usenixsecurity21/presentation/mirzazade
https://www.usenix.org/conference/usenixsecurity21/presentation/mirzazade
https://doi.org/10.1145/3342559.3365336
https://doi.org/10.1145/3342559.3365336
https://doi.org/10.1109/DAC18072.2020.9218535
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/%20Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/%20Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/%20Arm_Memory_Tagging_Extension_Whitepaper.pdf

[51] C. Spensky, A. Machiry, N. Redini, et al., “Conware: Automated modeling of hardware
peripherals,” in Proceedings of the 2021 ACM Asia Conference on Computer and Communi-
cations Security. New York, NY, USA: Association for Computing Machinery, 2021, pp. 95–
109, isbn: 9781450382878.

[52] C. Spensky, A. Machiry, N. Burow, et al., “Glitching demystified: Analyzing control-
flow-based glitching attacks and defenses,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2021, pp. 400–412. doi: 10.1109/
DSN48987.2021.00051 .

[53] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: Exploiting speculative execution,”
in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 1–19. doi: 10.1109/SP.
2019.00002 .

[54] M. Lipp, M. Schwarz, D. Gruss, et al., “Meltdown: Reading kernel memory from user
space,” in 27th USENIX Security Symposium (USENIX Security 18), 2018.

[55] Y. Kim, R. Daly, J. Kim, et al., “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), 2014, pp. 361–372. doi: 10.1109/ISCA.2014.
6853210 .

[56] J. M. McCune, A. Perrig, A. Seshadri, and L. van Doorn, “Turtles all the way down:
Research challenges in user-based attestation,” in 2nd USENIX Workshop on Hot Topics
in Security (HotSec 07), Boston, MA: USENIX Association, Aug. 2007. [Online]. Available:

 https://www.usenix.org/conference/hotsec-07/turtles-all-way-down-research-challenges-
user-based-attestation .

[57] B. Yee, D. Sehr, G. Dardyk, et al., “Native client: A sandbox for portable, untrusted
x86 native code,” in 2009 30th IEEE Symposium on Security and Privacy, 2009, pp. 79–93.
doi: 10.1109/SP.2009.25 .

[58] D. Schrammel, S. Weiser, S. Steinegger, et al., “Donky: Domain keys – efficient in-process
isolation for risc-v and x86,” in 29th USENIX Security Symposium (USENIX Security 20),
USENIX Association, Aug. 2020, pp. 1677–1694, isbn: 978-1-939133-17-5. [Online]. Available:

 https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel .

[59] M. Hedayati, S. Gravani, E. Johnson, et al., “Hodor: Intra-process isolation for high-
throughput data plane libraries,” in 2019 USENIX Annual Technical Conference (USENIX
ATC 19), Renton, WA: USENIX Association, Jul. 2019, pp. 489–504, isbn: 978-1-939133-
03-8. [Online]. Available: https://www.usenix.org/conference/atc19/presentation/hedayati-
hodor .

121

https://doi.org/10.1109/DSN48987.2021.00051
https://doi.org/10.1109/DSN48987.2021.00051
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://www.usenix.org/conference/hotsec-07/turtles-all-way-down-research-challenges-user-based-attestation
https://www.usenix.org/conference/hotsec-07/turtles-all-way-down-research-challenges-user-based-attestation
https://doi.org/10.1109/SP.2009.25
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor

[60] V. Narayanan, A. Balasubramanian, C. Jacobsen, et al., “Lxds: Towards isolation of
kernel subsystems,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19),
Renton, WA: USENIX Association, Jul. 2019, pp. 269–284, isbn: 978-1-939133-03-8. [Online].
Available: https://www.usenix.org/conference/atc19/presentation/narayanan .

[61] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the virtual library operating
system: What if all the software layers in a virtual appliance were compiled within the same
safe, high-level language framework?” Queue, vol. 11, no. 11, pp. 30–44, Dec. 2013, issn:
1542-7730. doi: 10.1145/2557963.2566628 . [Online]. Available: https://doi.org/10.1145/
2557963.2566628 .

[62] A. Madhavapeddy, R. Mortier, C. Rotsos, et al., “Unikernels: Library operating systems
for the cloud,” in Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS ’13, Houston,
Texas, USA: Association for Computing Machinery, 2013, pp. 461–472, isbn: 9781450318709.
doi: 10 .1145/2451116 .2451167 . [Online]. Available: https ://doi .org/10 .1145/2451116 .
2451167 .

[63] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analy-
sis & transformation,” in Proceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization, ser. CGO ’04, Palo Alto,
California: IEEE Computer Society, 2004, isbn: 0-7695-2102-9. [Online]. Available: http :
//dl.acm.org/citation.cfm?id=977395.977673 .

[64] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell, “Tetris is hard, even to ap-
proximate,” in Proceedings of the 9th Annual International Conference on Computing and
Combinatorics, ser. COCOON’03, Big Sky, MT, USA: Springer-Verlag, 2003, pp. 351–363,
isbn: 3540405348.

[65] NIST. “Cve-2017-9074 detail.” (2021), [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2017-9074 .

[66] NIST. “Cve-2019-14815 detail.” (2021), [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2019-14815 .

[67] J. A. Kroll, G. Stewart, and A. W. Appel, “Portable software fault isolation,” in 2014
IEEE 27th Computer Security Foundations Symposium, 2014, pp. 18–32. doi: 10.1109/CSF.
2014.10 .

[68] Google. “Syzkaller.” (2016), [Online]. Available: https://github.com/google/syzkaller .

122

https://www.usenix.org/conference/atc19/presentation/narayanan
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://nvd.nist.gov/vuln/detail/CVE-2017-9074
https://nvd.nist.gov/vuln/detail/CVE-2017-9074
https://nvd.nist.gov/vuln/detail/CVE-2019-14815
https://nvd.nist.gov/vuln/detail/CVE-2019-14815
https://doi.org/10.1109/CSF.2014.10
https://doi.org/10.1109/CSF.2014.10
https://github.com/google/syzkaller

[69] J. Gu, X. Wu, W. Li, et al., “Harmonizing performance and isolation in microkernels
with efficient intra-kernel isolation and communication,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20), USENIX Association, Jul. 2020, pp. 401–417, isbn: 978-1-
939133-14-4. [Online]. Available: https://www.usenix.org/conference/atc20/presentation/
gu .

[70] V. Narayanan, Y. Huang, G. Tan, T. Jaeger, and A. Burtsev, “Lightweight kernel isola-
tion with virtualization and vm functions,” in Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE ’20, Lausanne, Switzer-
land: Association for Computing Machinery, 2020, pp. 157–171, isbn: 9781450375542. doi:

 10.1145/3381052.3381328 . [Online]. Available: https://doi.org/10.1145/3381052.3381328 .

[71] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve, “Nested kernel:
An operating system architecture for intra-kernel privilege separation,” in Proceedings of the
Twentieth International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’15, Istanbul, Turkey: Association for Computing Ma-
chinery, 2015, pp. 191–206, isbn: 9781450328357. doi: 10.1145/2694344.2694386 . [Online].
Available: https://doi.org/10.1145/2694344.2694386 .

[72] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer, “Enforcing least privilege memory
views for multithreaded applications,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16, Vienna, Austria: Association for
Computing Machinery, 2016, pp. 393–405, isbn: 9781450341394. doi: 10 .1145/2976749 .
2978327 . [Online]. Available: https://doi.org/10.1145/2976749.2978327 .

[73] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, B. Bhattacharjee, and P.
Druschel, “Light-weight contexts: An OS abstraction for safety and performance,” in 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savan-
nah, GA: USENIX Association, Nov. 2016, pp. 49–64, isbn: 978-1-931971-33-1. [Online].
Available: https://www.usenix .org/conference/osdi16/technical- sessions/presentation/
litton .

[74] S. Liu, D. Zeng, Y. Huang, et al., “Program-mandering: Quantitative privilege separa-
tion,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’19, London, United Kingdom: Association for Computing Machin-
ery, 2019, pp. 1023–1040, isbn: 9781450367479. doi: 10.1145/3319535.3354218 . [Online].
Available: https://doi.org/10.1145/3319535.3354218 .

[75] S. Narayan, C. Disselkoen, T. Garfinkel, et al., “Retrofitting fine grain isolation in the
firefox renderer,” in 29th USENIX Security Symposium (USENIX Security 20), USENIX
Association, Aug. 2020, pp. 699–716, isbn: 978-1-939133-17-5. [Online]. Available: https :
//www.usenix.org/conference/usenixsecurity20/presentation/narayan .

123

https://www.usenix.org/conference/atc20/presentation/gu
https://www.usenix.org/conference/atc20/presentation/gu
https://doi.org/10.1145/3381052.3381328
https://doi.org/10.1145/3381052.3381328
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://doi.org/10.1145/3319535.3354218
https://doi.org/10.1145/3319535.3354218
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

[76] T. GARFINKEL, S. NARAYAN, C. DISSELKOEN, H. SHACHAM, and D. STEFAN,
“The road to less trusted code,” USENIX PATRONS, p. 15, 2020.

[77] A. Ghosn, M. Kogias, M. Payer, J. R. Larus, and E. Bugnion, “Enclosure: Language-
based restriction of untrusted libraries,” in Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems, ser. AS-
PLOS 2021, Virtual, USA: Association for Computing Machinery, 2021, pp. 255–267, isbn:
9781450383172. doi: 10.1145/3445814.3446728 . [Online]. Available: https://doi .org/10.
1145/3445814.3446728 .

[78] M. Bauer and C. Rossow, “Cali: Compiler-assisted library isolation,” in Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Security, ser. ASIA CCS
’21, Virtual Event, Hong Kong: Association for Computing Machinery, 2021, pp. 550–564,
isbn: 9781450382878. doi: 10.1145/3433210.3453111 . [Online]. Available: https://doi.org/
10.1145/3433210.3453111 .

[79] A. Kurmus and R. Zippel, “A tale of two kernels: Towards ending kernel hardening wars
with split kernel,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’14, Scottsdale, Arizona, USA: Association for Comput-
ing Machinery, 2014, pp. 1366–1377, isbn: 9781450329576. doi: 10.1145/2660267.2660331 .
[Online]. Available: https://doi.org/10.1145/2660267.2660331 .

[80] D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel: An operating system ar-
chitecture for application-level resource management,” in Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’95, Copper Mountain, Colorado,
USA: Association for Computing Machinery, 1995, pp. 251–266, isbn: 0897917154. doi:

 10.1145/224056.224076 . [Online]. Available: https://doi.org/10.1145/224056.224076 .

[81] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt, “Rethinking
the library os from the top down,” in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS
XVI, Newport Beach, California, USA: Association for Computing Machinery, 2011, pp. 291–
304, isbn: 9781450302661. doi: 10.1145/1950365.1950399 . [Online]. Available: https://doi.
org/10.1145/1950365.1950399 .

[82] V. A. Sartakov, L. Vilanova, and P. Pietzuch, “Cubicleos: A library os with software
componentisation for practical isolation,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS 2021, Virtual, USA: Association for Computing Machinery, 2021, pp. 546–558,
isbn: 9781450383172. doi: 10.1145/3445814.3446731 . [Online]. Available: https://doi.org/
10.1145/3445814.3446731 .

124

https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/3433210.3453111
https://doi.org/10.1145/3433210.3453111
https://doi.org/10.1145/3433210.3453111
https://doi.org/10.1145/2660267.2660331
https://doi.org/10.1145/2660267.2660331
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/1950365.1950399
https://doi.org/10.1145/1950365.1950399
https://doi.org/10.1145/1950365.1950399
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1145/3445814.3446731

[83] A. Kivity, D. Laor, G. Costa, et al., “Osv—optimizing the operating system for virtual
machines,” in 2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadelphia,
PA: USENIX Association, Jun. 2014, pp. 61–72, isbn: 978-1-931971-10-2. [Online]. Available:

 https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity .

[84] H. Lefeuvre, V.-A. Bădoiu, Ş. Teodorescu, et al., “Flexos: Making os isolation flexible,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, ser. HotOS ’21, Ann Arbor,
Michigan: Association for Computing Machinery, 2021, pp. 79–87, isbn: 9781450384384. doi:

 10.1145/3458336.3465292 . [Online]. Available: https://doi.org/10.1145/3458336.3465292 .

[85] S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, et al., “Unikraft: Fast, specialized unikernels
the easy way,” in Proceedings of the Sixteenth European Conference on Computer Sys-
tems. New York, NY, USA: Association for Computing Machinery, 2021, pp. 376–394, isbn:
9781450383349. [Online]. Available: https://doi.org/10.1145/3447786.3456248 .

[86] A. Madhavapeddy, T. Leonard, M. Skjegstad, et al., “Jitsu: Just-in-time summoning of
unikernels,” in 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), Oakland, CA: USENIX Association, May 2015, pp. 559–573, isbn: 978-1-931971-
218. [Online]. Available: https://www.usenix.org/conference/nsdi15/technical- sessions/
presentation/madhavapeddy .

[87] M. Compastié, R. Badonnel, O. Festor, R. He, and M. Kassi-Lahlou, “Unikernel-based
approach for software-defined security in cloud infrastructures,” in NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, 2018, pp. 1–7. doi: 10.1109/
NOMS.2018.8406155 .

[88] V. Cozzolino, A. Y. Ding, and J. Ott, “Fades: Fine-grained edge offloading with uniker-
nels,” in Proceedings of the Workshop on Hot Topics in Container Networking and Networked
Systems, ser. HotConNet ’17, Los Angeles, CA, USA: Association for Computing Machinery,
2017, pp. 36–41, isbn: 9781450350587. doi: 10.1145/3094405.3094412 . [Online]. Available:

 https://doi.org/10.1145/3094405.3094412 .

[89] S. Lankes, J. Breitbart, and S. Pickartz, “Exploring rust for unikernel development,”
in Proceedings of the 10th Workshop on Programming Languages and Operating Systems,
ser. PLOS’19, Huntsville, ON, Canada: Association for Computing Machinery, 2019, pp. 8–
15, isbn: 9781450370172. doi: 10.1145/3365137.3365395 . [Online]. Available: https://doi.
org/10.1145/3365137.3365395 .

[90] M. Sung, P. Olivier, S. Lankes, and B. Ravindran, “Intra-unikernel isolation with in-
tel memory protection keys,” in Proceedings of the 16th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, ser. VEE ’20, Lausanne, Switzer-
land: Association for Computing Machinery, 2020, pp. 143–156, isbn: 9781450375542. doi:

 10.1145/3381052.3381326 . [Online]. Available: https://doi.org/10.1145/3381052.3381326 .

125

https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://doi.org/10.1145/3458336.3465292
https://doi.org/10.1145/3458336.3465292
https://doi.org/10.1145/3447786.3456248
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1109/NOMS.2018.8406155
https://doi.org/10.1109/NOMS.2018.8406155
https://doi.org/10.1145/3094405.3094412
https://doi.org/10.1145/3094405.3094412
https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1145/3381052.3381326

[91] K. Boos, N. Liyanage, R. Ijaz, and L. Zhong, “Theseus: An experiment in operating
system structure and state management,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), USENIX Association, Nov. 2020, pp. 1–19, isbn:
978-1-939133-19-9. [Online]. Available: https://www.usenix.org/conference/osdi20/present
ation/boos .

[92] V. Narayanan, T. Huang, D. Detweiler, et al., “Redleaf: Isolation and communication
in a safe operating system,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), USENIX Association, Nov. 2020, pp. 21–39, isbn: 978-1-
939133-19-9. [Online]. Available: https://www.usenix.org/conference/osdi20/presentation/
narayanan-vikram .

[93] H. Okhravi, N. Burow, R. Skowyra, et al., “One giant leap for computer security,”
Security Privacy, IEEE, 2020.

[94] E. Rivera, S. Mergendahl, H. Shrobe, H. Okhravi, and N. Burow, “Keeping Safe Rust
Safe with Galeed,” in Proceedings of IEEE Annual Computer Security Applications Confer-
ence (ACSAC’21), Dec. 2021.

[95] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel, and D.
Garg, “ERIM: Secure, efficient in-process isolation with protection keys (MPK),” in 28th
USENIX Security Symposium (USENIX Security 19), Santa Clara, CA: USENIX Associa-
tion, Aug. 2019, pp. 1221–1238, isbn: 978-1-939133-06-9. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner .

[96] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “Libmpk: Software abstraction for
intel memory protection keys (intel MPK),” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19), Renton, WA: USENIX Association, Jul. 2019, pp. 241–254, isbn: 978-
1-939133-03-8. [Online]. Available: https://www.usenix.org/conference/atc19/presentation/
park-soyeon .

[97] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating function-as-
a-service workflows,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21),
USENIX Association, Jul. 2021, pp. 805–820, isbn: 978-1-939133-23-6. [Online]. Available:

 https://www.usenix.org/conference/atc21/presentation/kotni .

[98] R. J. Connor, T. McDaniel, J. M. Smith, and M. Schuchard, “PKU pitfalls: Attacks on
pku-based memory isolation systems,” in 29th USENIX Security Symposium (USENIX Secu-
rity 20), USENIX Association, Aug. 2020, pp. 1409–1426, isbn: 978-1-939133-17-5. [Online].
Available: https://www.usenix.org/conference/usenixsecurity20/presentation/connor .

[99] Intel. “Intel® software guard extensions.” (), [Online]. Available: https://software.intel.
com/content/www/us/en/develop/topics/software-guard-extensions.html .

126

https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

[100] C. Zhao, D. Saifuding, H. Tian, Y. Zhang, and C. Xing, “On the performance of intel
sgx,” in 2016 13th Web Information Systems and Applications Conference (WISA), 2016,
pp. 184–187. doi: 10.1109/WISA.2016.45 .

[101] L. Mogosanu, A. Rane, and N. Dautenhahn, “Microstache: A lightweight execution con-
text for in-process safe region isolation,” in Research in Attacks, Intrusions, and Defenses, M.
Bailey, T. Holz, M. Stamatogiannakis, and S. Ioannidis, Eds., Cham: Springer International
Publishing, 2018, pp. 359–379, isbn: 978-3-030-00470-5.

[102] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi, “IMIX: In-process memory
isolation extension,” in 27th USENIX Security Symposium (USENIX Security 18), Balti-
more, MD: USENIX Association, Aug. 2018, pp. 83–97, isbn: 978-1-939133-04-5. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/presentation/frassetto .

[103] C. Song, H. Moon, M. Alam, et al., “Hdfi: Hardware-assisted data-flow isolation,” in 2016
IEEE Symposium on Security and Privacy (SP), 2016, pp. 1–17. doi: 10.1109/SP.2016.9 .

[104] S. Xu, W. Huang, and D. Lie, “In-fat pointer: Hardware-assisted tagged-pointer spatial
memory safety defense with subobject granularity protection,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS 2021, Virtual, USA: Association for Computing Machinery,
2021, pp. 224–240, isbn: 9781450383172. doi: 10.1145/3445814.3446761 . [Online]. Available:

 https://doi.org/10.1145/3445814.3446761 .

[105] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hardbound: Architectural
support for spatial safety of the c programming language,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 2, pp. 103–114, Mar. 2008, issn: 0163-5980. doi: 10.1145/1353535.1346295 . [Online].
Available: https://doi-org.libproxy.mit.edu/10.1145/1353535.1346295 .

[106] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos, “No need to hide:
Protecting safe regions on commodity hardware,” in Proceedings of the Twelfth European
Conference on Computer Systems, ser. EuroSys ’17, Belgrade, Serbia: Association for Com-
puting Machinery, 2017, pp. 437–452, isbn: 9781450349383. doi: 10.1145/3064176.3064217 .
[Online]. Available: https://doi.org/10.1145/3064176.3064217 .

[107] N. Roessler and A. DeHon, “Protecting the stack with metadata policies and tagged
hardware,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 478–495. doi:

 10.1109/SP.2018.00066 .

[108] E. Witchel, J. Rhee, and K. Asanović, “Mondrix: Memory isolation for linux using mon-
driaan memory protection,” in Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, ser. SOSP ’05, Brighton, United Kingdom: Association for Computing
Machinery, 2005, pp. 31–44, isbn: 1595930795. doi: 10.1145/1095810.1095814 . [Online].
Available: https://doi.org/10.1145/1095810.1095814 .

127

https://doi.org/10.1109/WISA.2016.45
https://www.usenix.org/conference/usenixsecurity18/presentation/frassetto
https://doi.org/10.1109/SP.2016.9
https://doi.org/10.1145/3445814.3446761
https://doi.org/10.1145/3445814.3446761
https://doi.org/10.1145/1353535.1346295
https://doi-org.libproxy.mit.edu/10.1145/1353535.1346295
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1109/SP.2018.00066
https://doi.org/10.1145/1095810.1095814
https://doi.org/10.1145/1095810.1095814

[109] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,” in Proceedings
of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS X, San Jose, California: Association for Computing
Machinery, 2002, pp. 304–316, isbn: 1581135742. doi: 10.1145/605397.605429 . [Online].
Available: https://doi.org/10.1145/605397.605429 .

[110] J. Woodruff, R. N. Watson, D. Chisnall, et al., “The cheri capability model: Revisiting
risc in an age of risk,” in 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), IEEE, 2014, pp. 457–468.

[111] ARM. “Trustzone.” (), [Online]. Available: https://developer.arm.com/ip-products/
security-ip/trustzone .

[112] D. Chu, Y. Wang, L. Lei, Y. Li, J. Jing, and K. Sun, “Ocram-assisted sensitive data
protection on arm-based platform,” in Computer Security – ESORICS 2019, K. Sako, S.
Schneider, and P. Y. A. Ryan, Eds., Cham: Springer International Publishing, 2019, pp. 412–
438, isbn: 978-3-030-29962-0.

[113] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, “Rustee: Developing memory-safe arm
trustzone applications,” in Annual Computer Security Applications Conference, ser. AC-
SAC ’20, Austin, USA: Association for Computing Machinery, 2020, pp. 442–453, isbn:
9781450388580. doi: 10.1145/3427228.3427262 . [Online]. Available: https://doi-org.libproxy.
mit.edu/10.1145/3427228.3427262 .

[114] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Sanctuary: Arming
trustzone with user-space enclaves,” in Network and Distributed Systems Security (NDSS)
Symposium, Feb. 2019. doi: 10.14722/ndss.2019.23448 .

[115] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-R. Sadeghi, “Timber-
v: Tag-isolated memory bringing fine-grained enclaves to risc-v,” in In Network and Dis-
tributed System Security Symposium (NDSS), 2019. doi: 10.14722/ndss.2019.23068 .

[116] C. H. Kim, T. Kim, H. Choi, et al., “Securing real-time microcontroller systems through
customized memory view switching,” in Network and Distributed Systems Security (NDSS)
Symposium, Feb. 2018, isbn: 1-1891562-49-5. doi: 10.14722/ndss.2018.23107 .

[117] L. Davi, M. Hanreich, D. Paul, et al., “Hafix: Hardware-assisted flow integrity exten-
sion,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1–
6. doi: 10.1145/2744769.2744847 .

[118] A. A. Clements, N. S. Almakhdhub, K. S. Saab, et al., “Protecting bare-metal embedded
systems with privilege overlays,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 289–303. doi: 10.1109/SP.2017.37 .

128

https://doi.org/10.1145/605397.605429
https://doi.org/10.1145/605397.605429
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1145/3427228.3427262
https://doi-org.libproxy.mit.edu/10.1145/3427228.3427262
https://doi-org.libproxy.mit.edu/10.1145/3427228.3427262
https://doi.org/10.14722/ndss.2019.23448
https://doi.org/10.14722/ndss.2019.23068
https://doi.org/10.14722/ndss.2018.23107
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1109/SP.2017.37

[119] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and N. Asokan, “Pacstack: An
authenticated call stack,” in 30th USENIX Security Symposium (USENIX Security 21),
USENIX Association, Aug. 2021. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/liljestrand .

[120] Clang. “Hardware-assisted addresssanitizer design documentation.” (), [Online]. Avail-
able: https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html .

[121] R. Nikolaev and G. Back, “Virtuos: An operating system with kernel virtualization,” in
Proceedings of the Twenty-Fourth ACMSymposium on Operating Systems Principles, ser. SOSP
’13, Farminton,Pennsylvania: Association forComputing Machinery, 2013, pp. 116–132, isbn:
9781450323888. doi: 10.1145/2517349.2522719 . [Online]. Available: https://doi.org/10.1145/
2517349.2522719 .

[122] K. Fraser, S. H, R. Neugebauer, I. Pratt, and M. Williamson, “Safe hardware access with
the xen virtual machine monitor,” in In Workshop on Operating System and Architectural
Support for the On-Demand IT Infrastructure, 2004.

[123] X. Xiong, D. Tian, and P. Liu, “Practical protection of kernel integrity for commodity
os from untrusted extensions,” in NDSS, 2011.

[124] T. D. Ngoc, B. Teabe, A. Tchana, G. Muller, and D. Hagimont, “Mitigating vulnerability
windows with hypervisor transplant,” in Proceedings of the Sixteenth European Conference
on Computer Systems. New York, NY, USA: Association for Computing Machinery, 2021,
pp. 162–177, isbn: 9781450383349. [Online]. Available: https://doi.org/10.1145/3447786.
3456235 .

[125] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui, “A secure and formally verified linux
kvm hypervisor,” 2021.

[126] K. Huang, Y. Huang, M. Payer, et al., “The taming of the stack: Isolating stack data from
memory errors,” in Proceedings of the Network and Distributed Systems Security Symposium,
2022, p. 17.

[127] G. Chen, H. Jin, D. Zou, et al., “Safestack: Automatically patching stack-based buffer
overflow vulnerabilities,” IEEE Transactions on Dependable and Secure Computing, vol. 10,
no. 6, pp. 368–379, 2013. doi: 10.1109/TDSC.2013.25 .

[128] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow stacks,” in 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 985–999. doi: 10.1109/SP.2019.00076 .

[129] N. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “Urai: Return address in-
tegrity for embedded systems,” in In Network and Distributed System Security Symposium
(NDSS), 2020. doi: 10.14722/ndss.2020.24016 .

129

https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1109/TDSC.2013.25
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.14722/ndss.2020.24016

[130] N. Roessler and A. DeHon, “Protecting the stack with metadata policies and tagged
hardware,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 478–495. doi:

 10.1109/SP.2018.00066 .

[131] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and N. Asokan, “{Pacstack}: An
authenticated call stack,” in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 357–374.

[132] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with multi-layer type
analysis,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, ser. CCS ’19, London, United Kingdom: Association for Computing
Machinery, 2019, pp. 1867–1881, isbn: 9781450367479. doi: 10.1145/3319535.3354244 . [On-
line]. Available: https://doi.org/10.1145/3319535.3354244 .

[133] S. Pfleeger and R. Cunningham, “Why measuring security is hard,” IEEE Security
Privacy, vol. 8, no. 4, pp. 46–54, 2010. doi: 10.1109/MSP.2010.60 .

[134] P. Biswas, N. Burow, and M. Payer, “Code specialization through dynamic feature ob-
servation,” in Proceedings of the Eleventh ACM Conference on Data and Application Security
and Privacy, ser. CODASPY ’21, Virtual Event, USA: Association for Computing Machinery,
2021, pp. 257–268, isbn: 9781450381437. doi: 10.1145/3422337.3447844 . [Online]. Available:

 https://doi.org/10.1145/3422337.3447844 .

[135] M. Zhang and R. Sekar, “Control flow integrity for {cots} binaries,” in 22nd USENIX
Security Symposium (USENIX Security 13), 2013, pp. 337–352.

[136] H. Kellerer, U. Pferschy, and D. Pisinger, “Multiple knapsack problems,” in Knapsack
Problems, Springer, 2004, pp. 285–316.

[137] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software and algorithm plagiarism
detection,” IEEE Trans. Softw. Eng., vol. 43, no. 12, pp. 1157–1177, Dec. 2017, issn: 0098-
5589. doi: 10.1109/TSE.2017.2655046 . [Online]. Available: https://doi.org/10.1109/TSE.
2017.2655046 .

[138] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting code clones in
binary executables,” in Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ser. ISSTA ’09, Chicago, IL, USA: ACM, 2009, pp. 117–128, isbn:
978-1-60558-338-9. doi: 10.1145/1572272.1572287 . [Online]. Available: http://doi.acm.org/
10.1145/1572272.1572287 .

[139] T. Rid and B. Buchanan, “Attributing cyber attacks,” Journal of Strategic Studies,
vol. 38, no. 1-2, pp. 4–37, 2015.

130

https://doi.org/10.1109/SP.2018.00066
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1109/MSP.2010.60
https://doi.org/10.1145/3422337.3447844
https://doi.org/10.1145/3422337.3447844
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1145/1572272.1572287
http://doi.acm.org/10.1145/1572272.1572287
http://doi.acm.org/10.1145/1572272.1572287

[140] J. Jang, M. Woo, and D. Brumley, “Towards automatic software lineage inference,” in
Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13), Wash-
ington, D.C.: USENIX, 2013, pp. 81–96, isbn: 978-1-931971-03-4. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/jang .

[141] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable, behavior-
based malware clustering.,” in NDSS, Citeseer, vol. 9, 2009, pp. 8–11.

[142] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-based exploit
generation is possible: Techniques and implications,” in Proceedings of the 2008 IEEE Sym-
posium on Security and Privacy, ser. SP ’08, Washington, DC, USA: IEEE Computer Society,
2008, pp. 143–157, isbn: 978-0-7695-3168-7. doi: 10.1109/SP.2008.17 . [Online]. Available:

 https://doi.org/10.1109/SP.2008.17 .

[143] R. Duan, A. Bijlani, Y. Ji, et al., “Automating patching of vulnerable open-source
software versions in application binaries,” in NDSS, 2019.

[144] D. Mantz, J. Classen, M. Schulz, and M. Hollick, “Internalblue-bluetooth binary patch-
ing and experimentation framework,” in Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services, 2019, pp. 79–90.

[145] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive android kernel live
patching,” in 26th {USENIX} Security Symposium ({USENIX} Security 17), 2017, pp. 1253–
1270.

[146] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting without control flow re-
covery,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020, London, UK: Association for Computing Ma-
chinery, 2020, pp. 151–163, isbn: 9781450376136. doi: 10.1145/3385412.3385972 . [Online].
Available: https://doi.org/10.1145/3385412.3385972 .

[147] S. Almanee, A. Unal, M. Payer, and J. Garcia, “Too quiet in the library: An empirical
study of security updates in android apps’ native code,” in 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE), Los Alamitos, CA, USA: IEEE Computer
Society, May 2021, pp. 1347–1359. doi: 10.1109/ICSE43902.2021.00122 . [Online]. Available:

 https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00122 .

[148] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic token-based code
clone detection system for large scale source code,” IEEE Trans. Softw. Eng., vol. 28, no. 7,
pp. 654–670, Jul. 2002, issn: 0098-5589. doi: 10.1109/TSE.2002.1019480 . [Online]. Available:

 https://doi.org/10.1109/TSE.2002.1019480 .

[149] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: A tool for finding copy-paste and
related bugs in operating system code..”

131

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/jang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/jang
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1109/ICSE43902.2021.00122
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00122
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480

[150] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-
based detection of code clones,” in Proceedings of the 29th International Conference on
Software Engineering, ser. ICSE ’07, Washington, DC, USA: IEEE Computer Society, 2007,
pp. 96–105, isbn: 0-7695-2828-7. doi: 10.1109/ICSE.2007.30 . [Online]. Available: https:
//doi.org/10.1109/ICSE.2007.30 .

[151] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code fragments via
random testing,” in Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ser. ISSTA ’09, Chicago, IL, USA: ACM, 2009, pp. 81–92, isbn: 978-
1-60558-338-9. doi: 10.1145/1572272.1572283 . [Online]. Available: http://doi.acm.org/10.
1145/1572272.1572283 .

[152] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “Sok:(state of) the art of war: Offensive
techniques in binary analysis,” in 2016 IEEE Symposium on Security and Privacy (SP),
IEEE, 2016, pp. 138–157.

[153] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution: Dynamic similar-
ity testing for program binaries and components,” in 23rd USENIX Security Symposium (
USENIX Security 14), San Diego, CA: USENIX Association, 2014, pp. 303–317, isbn: 978-
1-931971-15-7. [Online]. Available: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/egele .

[154] S. Wang and D. Wu, “In-memory fuzzing for binary code similarity analysis,” in Proceed-
ings of the 32Nd IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE 2017, Urbana-Champaign, IL, USA: IEEE Press, 2017, pp. 319–330, isbn: 978-1-
5386-2684-9. [Online]. Available: http://dl.acm.org/citation.cfm?id=3155562.3155606 .

[155] zynamics. “Bindiff.” (2020), [Online]. Available: https://www.zynamics.com/bindiff .
html .

[156] S. HexRays. “Interactive disassembler.” (2019), [Online]. Available: https://www.hex-
rays.com/index.shtml .

[157] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization,” in
2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 472–489. doi: 10.1109/SP.
2019.00003 .

[158] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code extractor for packed
executables,” in Proceedings of the 2007 ACM Workshop on Recurring Malcode, ser. WORM
’07, Alexandria, Virginia, USA: ACM, 2007, pp. 46–53, isbn: 978-1-59593-886-2. doi: 10.
1145/1314389.1314399 . [Online]. Available: http://doi.acm.org/10.1145/1314389.1314399 .

132

https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1145/1572272.1572283
http://doi.acm.org/10.1145/1572272.1572283
http://doi.acm.org/10.1145/1572272.1572283
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/egele
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/egele
http://dl.acm.org/citation.cfm?id=3155562.3155606
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
https://www.hex-rays.com/index.shtml
https://www.hex-rays.com/index.shtml
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1145/1314389.1314399
https://doi.org/10.1145/1314389.1314399
http://doi.acm.org/10.1145/1314389.1314399

[159] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyunpack: Automating
the hidden-code extraction of unpack-executing malware,” in Computer Security Applications
Conference, 2006. ACSAC’06. 22nd Annual, IEEE, 2006, pp. 289–300.

[160] radare. “Radare.” (2019), [Online]. Available: https://www.radare.org/r/ .

[161] musl libc. “Musl libc.” (2019), [Online]. Available: https://www.musl-libc.org/ .

[162] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis via hardware
virtualization extensions,” in Proceedings of the 15th ACM Conference on Computer and
Communications Security, ser. CCS ’08, Alexandria, Virginia, USA: ACM, 2008, pp. 51–62,
isbn: 978-1-59593-810-7. doi: 10.1145/1455770.1455779 . [Online]. Available: http://doi.
acm.org/10.1145/1455770.1455779 .

[163] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic execution
with veritesting,” in Proceedings of the 36th International Conference on Software Engineer-
ing, 2014, pp. 1083–1094.

[164] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs.,” in OSDI, vol. 8, 2008, pp. 209–224.

[165] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t interpret, com-
pile!” In 29th USENIX Security Symposium (USENIX Security 20), USENIX Association,
Aug. 2020, pp. 181–198, isbn: 978-1-939133-17-5. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity20/presentation/poeplau .

[166] M. Zalewski. “American fuzzy lop.” (2015), [Online]. Available: http://lcamtuf.coredu
mp.cx/afl/ .

[167] Google. “Honggfuzz.” (2018), [Online]. Available: https://github.com/google/honggfuz
z .

[168] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “Kafl: Hardware-
assisted feedback fuzzing for OS kernels,” in 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC: USENIX Association, 2017, pp. 167–182, isbn: 978-1-931971-
40-9. [Online]. Available: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/schumilo .

[169] W. Xu, H. Moon, S. Kashyap, P. Tseng, and T. Kim, “Fuzzing file systems via two-
dimensional input space exploration,” in 2019 2019 IEEE Symposium on Security and Pri-
vacy (SP), vol. 00, 2017, pp. 577–593. doi: 10.1109/SP.2019.00035 . [Online]. Available:

 doi.ieeecomputersociety.org/10.1109/SP.2019.00035 .

133

https://www.radare.org/r/
https://www.musl-libc.org/
https://doi.org/10.1145/1455770.1455779
http://doi.acm.org/10.1145/1455770.1455779
http://doi.acm.org/10.1145/1455770.1455779
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1109/SP.2019.00035
doi.ieeecomputersociety.org/10.1109/SP.2019.00035

[170] G. Grieco, M. n. Ceresa, and P. Buiras, “Quickfuzz: An automatic random fuzzer
for common file formats,” in Proceedings of the 9th International Symposium on Haskell,
ser. Haskell 2016, Nara, Japan: ACM, 2016, pp. 13–20, isbn: 978-1-4503-4434-0. doi: 10.
1145/2976002.2976017 . [Online]. Available: http://doi.acm.org/10.1145/2976002.2976017 .

[171] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox fuzzing,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’08, Tucson, AZ, USA: ACM, 2008, pp. 206–215, isbn: 978-1-
59593-860-2. doi: 10.1145/1375581.1375607 . [Online]. Available: http://doi.acm.org/10.
1145/1375581.1375607 .

[172] J. Corina, A. Machiry, C. Salls, et al., “Difuze: Interface aware fuzzing for kernel drivers,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17, Dallas, Texas, USA: ACM, 2017, pp. 2123–2138, isbn: 978-1-4503-
4946-8. doi: 10.1145/3133956.3134069 . [Online]. Available: http://doi.acm.org/10.1145/
3133956.3134069 .

[173] D. Song, F. Hetzelt, D. Das, et al., “Periscope: An effective probing and fuzzing frame-
work for the hardware-os boundary,” in 2019 Network and Distributed Systems Security
Symposium (NDSS), Internet Society, 2019, pp. 1–15.

[174] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program transformation,”
in 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 697–710.

[175] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” in 2018 IEEE
Symposium on Security and Privacy (SP), IEEE, 2018, pp. 711–725.

[176] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “Redqueen: Fuzzing
with input-to-state correspondence,” 2019. [Online]. Available: https://www.ndss-symposiu
m.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/ .

[177] LLVM. “Libfuzzer.” (2019), [Online]. Available: https://llvm.org/docs/LibFuzzer.html .

[178] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided stochastic pro-
gram mutation,” in Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA 2015,
Pittsburgh, PA, USA: ACM, 2015, pp. 386–399, isbn: 978-1-4503-3689-5. doi: 10 .1145/
2814270.2814319 . [Online]. Available: http://doi.acm.org/10.1145/2814270.2814319 .

[179] P. Chen, J. Liu, and H. Chen, “Matryoshka: Fuzzing deeply nested branches,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, ser. CCS ’19, London, United Kingdom: Association for Computing Machinery, 2019,
pp. 499–513, isbn: 9781450367479. doi: 10.1145/3319535.3363225 . [Online]. Available: https:
//doi.org/10.1145/3319535.3363225 .

134

https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1145/2976002.2976017
http://doi.acm.org/10.1145/2976002.2976017
https://doi.org/10.1145/1375581.1375607
http://doi.acm.org/10.1145/1375581.1375607
http://doi.acm.org/10.1145/1375581.1375607
https://doi.org/10.1145/3133956.3134069
http://doi.acm.org/10.1145/3133956.3134069
http://doi.acm.org/10.1145/3133956.3134069
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319
http://doi.acm.org/10.1145/2814270.2814319
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1145/3319535.3363225

[180] R. Milewicz, R. Vanka, J. Tuck, D. Quinlan, and P. Pirkelbauer, “Runtime checking
c programs,” in Proceedings of the 30th Annual ACM Symposium on Applied Computing,
ACM, 2015, pp. 2107–2114.

[181] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic binary
instrumentation,” SIGPLAN Not., vol. 42, no. 6, pp. 89–100, Jun. 2007, issn: 0362-1340. doi:

 10.1145/1273442.1250746 . [Online]. Available: https://doi.org/10.1145/1273442.1250746 .

[182] R. M. Stallman and G. DeveloperCommunity, Using The Gnu Compiler Collection: A
Gnu Manual For Gcc Version 4.3.3. Paramount, CA: CreateSpace, 2009, isbn: 144141276X,
9781441412768.

[183] N. S. Agency. “Ghidra.” (2019), [Online]. Available: https://www.nsa.gov/resources/
everyone/ghidra/ .

[184] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner, “Code obfusca-
tion against symbolic execution attacks,” in Proceedings of the 32nd Annual Conference on
Computer Security Applications, ACM, 2016, pp. 189–200.

[185] T. Blazytko, M. Contag, C. Aschermann, and T. Holz, “Syntia: Synthesizing the se-
mantics of obfuscated code,” in 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC: USENIX Association, Aug. 2017, pp. 643–659, isbn: 978-1-931971-
40-9. [Online]. Available: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/blazytko .

[186] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator- LLVM – software
protection for the masses,” in Proceedings of the IEEE/ACM 1st International Workshop
on Software Protection, SPRO’15 , Firenze, Italy, May 19th, 2015, B. Wyseur, Ed., IEEE,
2015, pp. 3–9. doi: 10.1109/SPRO.2015.10 .

[187] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural coding conven-
tions,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ACM, 2014, pp. 281–293.

[188] R. Wang, Y. Shoshitaishvili, A. Bianchi, et al., “Ramblr: Making reassembly great
again,” in Proceedings of the 24th Annual Symposium on Network and Distributed System
Security (NDSS’17), 2017.

[189] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida, “Stackarmor: Compre-
hensive protection from stack-based memory error vulnerabilities for binaries.,” in NDSS,
Citeseer, 2015.

135

https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://doi.org/10.1109/SPRO.2015.10

[190] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: A semantic learning based
vulnerability seeker for cross-platform binary,” in Proceedings of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engineering, ser. ASE 2018, Montpellier,
France: ACM, 2018, pp. 896–899, isbn: 978-1-4503-5937-5. doi: 10.1145/3238147.3240480 .
[Online]. Available: http://doi.acm.org/10.1145/3238147.3240480 .

[191] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “Discovre: Efficient cross-architecture
identification of bugs in binary code,” Feb. 2016. doi: 10.14722/ndss.2016.23185 .

[192] H. Liu, Z. Yang, C. Liu, Y. Jiang, W. Zhao, and J. Sun, “Eclone: Detect semantic clones
in ethereum via symbolic transaction sketch,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018, Lake Buena Vista, FL, USA: ACM, 2018,
pp. 900–903, isbn: 978-1-4503-5573-5. doi: 10.1145/3236024.3264596 . [Online]. Available:

 http://doi.acm.org/10.1145/3236024.3264596 .

[193] A. Saebjornsen, Detecting fine-grained similarity in binaries. University of California,
Davis, 2014.

[194] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable graph-based
bug search for firmware images,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16, Vienna, Austria: ACM, 2016, pp. 480–
491, isbn: 978-1-4503-4139-4. doi: 10 . 1145 / 2976749 . 2978370 . [Online]. Available: http :
//doi.acm.org/10.1145/2976749.2978370 .

[195] Y. David, N. Partush, and E. Yahav, “Firmup: Precise static detection of common
vulnerabilities in firmware,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems, ACM, 2018,
pp. 392–404.

[196] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and T. Jebara, “Code rela-
tives: Detecting similarly behaving software,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser. FSE 2016, Seattle,
WA, USA: ACM, 2016, pp. 702–714, isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.2950321 .
[Online]. Available: http://doi.acm.org/10.1145/2950290.2950321 .

[197] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bring-
ing order to the web.,” Stanford InfoLab, Technical Report 1999-66, Nov. 1999, Previous
number = SIDL-WP-1999-0120. [Online]. Available: http://ilpubs.stanford.edu:8090/422/ .

[198] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-based graph
embedding for cross-platform binary code similarity detection,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, ACM, 2017, pp. 363–
376.

136

https://doi.org/10.1145/3238147.3240480
http://doi.acm.org/10.1145/3238147.3240480
https://doi.org/10.14722/ndss.2016.23185
https://doi.org/10.1145/3236024.3264596
http://doi.acm.org/10.1145/3236024.3264596
https://doi.org/10.1145/2976749.2978370
http://doi.acm.org/10.1145/2976749.2978370
http://doi.acm.org/10.1145/2976749.2978370
https://doi.org/10.1145/2950290.2950321
http://doi.acm.org/10.1145/2950290.2950321
http://ilpubs.stanford.edu:8090/422/

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Problems with System Security and Semantic Identification
	Threat Model
	Hardware-Assisted Kernel Compartmentalization
	Flexible Compartments
	IOVec Function Identifier

	Thesis Statement and Dissertation Layout

	HARDWARE-ASSISTED KERNEL COMPARTMENTALIZATION
	Introduction
	Background and Motivation
	Hardware Primitives
	Kernel Vulnerability Analysis

	Threat Model and Assumptions
	HAKC Compartmentalization API and Enforcement
	Compartmentalization Policy API
	Compartmentalization Enforcement Mechanism
	Example Case Study

	Compartment Policy and Enforcement Mechanism Implementation
	Access Enforcement
	Developer Effort
	Policy Creation
	Optimizations

	Evaluation
	Instruction Analogs
	Single Compartment Performance Overhead
	Multiple Compartment System Overhead
	User Website Browsing
	Security Evaluation – CVE Case Studies

	Discussion and Threats to Validity
	Security Limitations
	Performance Limitations

	Related Work
	Isolation in Computer Systems
	Hardware Based Isolation
	Arm PAC and MTE Extensions
	Isolation with Hypervisors
	Memory Safety Mechanisms

	FLEXIBLE COMPARTMENTS
	Introduction
	Design
	Call-and-Type Graph
	Compartmentalization Policy Generation

	Implementation
	HAKC Instrumentation Changes
	CTG Partitioning
	Kernel Node
	Metrics for Policy Evaluation

	Evaluation
	Effects of CTG Refinements
	Compartmentalization Security Evaluation
	Initial Results
	Dynamic Information Effects

	Discussion
	Indirect Target Elimination
	Alternative CTG Partitions

	Summary

	IOVEC FUNCTION IDENTIFICATION
	Introduction
	Challenges and Assumptions
	Semantic Function Analysis
	Assumptions

	IOVFI Design
	IOVec Discovery
	Pointer Derivation
	Matching Program States

	Evaluation
	Accuracy Experimental Setup
	Accuracy Amid Environment Changes
	Equivalence Class Distributions
	Training and Labeling Time

	Case Studies
	Accuracy Against Obfuscated Code
	AArch64 Evaluation
	Large Shared Libraries
	Semantic Differences and Versioning

	Discussion
	Future Work
	Related Work

	SUMMARY
	REFERENCES
	INDEX

