
BLURtooth: Exploiting Cross-Transport Key Derivation in
Bluetooth Classic and Bluetooth Low Energy

Anonymous Author(s)

ABSTRACT
The Bluetooth standard specifies two different Bluetooth protocols:
Bluetooth BR/EDR or “classic” (BT) for high-throughput services
such as audio and voice, and Bluetooth Low Energy (BLE) for very
low-power services such as monitoring and localization. BT and
BLE use similar security mechanisms such as pairing but have
different security architectures and threat models. Since pairing the
same devices twice is considered “user-unfriendly”, Bluetooth v4.2
introduced Cross-Transport Key Derivation (CTKD). CTKD lets
two devices pair once, either over BT or BLE, and generate key
material to securely use both BT and BLE.

We present the first security analysis of CTKD and identify seven
novel cross-transport vulnerabilities in CTKD. Based on these vul-
nerabilities, we design and implement four novel cross-transport
attacks, enabling an attacker to impersonate devices, manipulate
traffic between two victims, and to establish malicious sessions. As
our attacks are standard-compliant, they are effective against any
device supporting CTKD regardless of the implementation details.
We name our attacks BLUR attacks, as they blur the security bound-
ary between BT and BLE.We experimentally demonstrate the BLUR
attacks on 13 devices from different providers using 10 unique Blue-
tooth chips, and discuss effective countermeasures for the BLUR
attacks. We have disclosed our findings and our countermeasures
to the Bluetooth SIG in May 2020.

1 INTRODUCTION
Bluetooth is a pervasive wireless technology used by billions of
devices including mobile phones, laptops, headphones, cars, speak-
ers, medical, and industrial appliances [13]. Bluetooth is specified
in an open standard that is maintained by the Bluetooth SIG and
we base our research on the current version of the standard, Blue-
tooth v5.2 [12]. The standard specifies two wireless stacks, Blue-
tooth Classic (BT) and Bluetooth Low Energy (BLE). BT and BLE
are different and incompatible wireless stacks. BT is best suited for
high-throughput use cases, such as streaming audio, voice calls,
and voice control, while BLE is best suited for very low-power use
cases such as localization and monitoring.

The standard defines separate security architectures and threat
models for BT [12, p. 947] and BLE [12, p. 1617]. While these archi-
tectures address different threat models, they do so using similar
security mechanisms, including pairing and secure session estab-
lishment. Pairing enables devices to establish a long term key, and
secure session establishment enables paired devices to establish a
secure session protected by a session key derived from the long
term key.

Two devices who support both BT and BLE have to pair two
times to use both transports securely. As pairing the same devices
twice is considered “user-unfriendly“, Bluetooth v4.2 introduced
Cross-Transport Key Derivation (CTKD). CTKD enables devices to

pair once, either over BT or BLE, and generate both BT and BLE
long term keys without having to pair a second time [12, p. 1401].
All the major Bluetooth software stacks (Apple, Linux, Android,
and Windows) and hardware providers (Cypress, Intel, Qualcomm,
Broadcom, Apple, Sony, and Bose) implement CTKD. For example,
Apple at WWDC 2019 presented CTKD as a core Bluetooth feature
that is enabled by default to improve BT and BLE usability [37].

CTKD is a rich attack target as it crosses the security boundary
between BT and BLE (i.e., when using CTKD, pairing over one
transport automatically provides security guarantees on both trans-
ports). Despite this fact, the security implications of CTKD are not
understood and CTKD remains an unexplored attack surface. For
example, the standard does not include CTKD in the BT and BLE
threat models and we are not aware of any public security analyses
of CTKD.

We present the first security analysis of CTKD (see Section 3),
uncovering seven novel vulnerabilities in CTKD. Those vulnera-
bilities enable novel cross-transport attacks, that are capable of
exploiting both transports just by targeting one of them. In par-
ticular, we design and implement four cross-transport attacks to
allow impersonation, interception, and manipulation of traffic be-
tween victims, as well as unintended device sessions. Our attacks
are standard-compliant and are thus effective against any device
which supports CTKD. Our attacks complement the state-of-the-
art such as [2–4, 10, 20, 21, 31, 34], as they are the first to exploit
CTKD and enable BT and BLE cross-transport exploitation (detailed
in Section 4). We call our attacks BLUR attacks, as they blur the
security boundary between BT and BLE.

We implement the BLUR attacks using a widely available Blue-
tooth development board connected to a laptop running Linux and
developing custom software based on open-source tools. Thismakes
reproducing the BLUR attacks affordable and easy. Our evaluation
(Section 5) demonstrates that all the tested devices are vulnerable.
We will release our tools to the public after the responsible disclo-
sure procedure is complete. We use our attack implementation to
evaluate 13 devices, with 10 unique Bluetooth chips, from most of
the major hardware and software vendors, e.g., Apple, Broadcom,
Cambridge Silicon Radio (CSR), Cypress, Google, Intel, Linux, Qual-
comm, and Windows and representing all Bluetooth versions that
support CTKD (i.e., 4.1, 4.2, 5.0, and 5.1).

We summarize our contributions as follows:

• We perform the first security analysis of CTKD, a feature
that enables to cross the security boundary between BT
and BLE. We identify seven novel and very serious vul-
nerabilities, which enable the first cross-transport attacks
between BT and BLE.

• We describe how to exploit the vulnerabilities in CTKD.We
design and implement man-in-the-middle, impersonation,
and unintended session attacks. We collectively call these
BLUR attacks, as they blur the security boundary between

1



Anonymous submission #9999 to ACM CCS 2020

BT and BLE. We present a low-cost implementation for
the BLUR attacks based on a Linux laptop and a Bluetooth
development board.

• We confirm that real-world BT and BLE devices are vul-
nerable to the BLUR attacks by evaluating our attack tools
on 13 unique devices. We provide mitigation strategies to
address the attacks directly in the Bluetooth standard. We
have disclosed our findings and mitigations to the Blue-
tooth SIG in May 2020.

2 BACKGROUND
Here, we compare BT and BLE, and we introduce CTKD.

2.1 A Comparison of BT and BLE
BT and BLE are two wireless technologies specified in the Blue-
tooth standard. Such technologies are incompatible (e.g., same 2.4
GHz band but different physical layers and link layers) and are de-
signed to complement each other. BT is used for high-throughput
and connection-oriented services, such as streaming audio and
voice. BLE is used for very low-power and low-throughput services
such as localization and monitoring. Typically, high-end Bluetooth
devices provide both stacks in single radio chip.

BT and BLE have similar security mechanisms but different
security architectures and threat models. Both stacks provide a
pairing mechanism (SSP) to let two devices establish a long term
key. BLE allows negotiating the entropy of the long term key while
BT does not. Both stacks provide a secure session establishment
mechanism to derive a session key from the long term key and
protect the communication. BT allows negotiating the entropy of
the session key while BLE inherits the entropy of the session key
from the entropy of the long term key.

Both stacks support a “Secure Connections” mode that uses FIPS
compliant security primitives such as AES-CCM for authenticated
encryption, ECDH on P-256 for key agreement, mutual authentica-
tion procedures for the long term key, and AES-CMAC for keyed
hashing. BT and BLE have similar association mechanisms that can
be used to protect the pairing phase against man-in-the-middle at-
tacks. Two examples of associations are Just Works that provides no
protection and Numeric Comparison where the user has to confirm
to see the same numeric code on the pairing devices.

BT and BLE define master and slave roles, however they use
them differently. For BT, the master is the connection initiator and
the slave is the connection responder, and either the master or the
slave can request a role switch. For BLE master and slave roles are
fixed and switching roles is not supported. The master acts as a
server (known as the BLE central) and the slave acts as a client
(known as the BLE peripheral). High-end BLE devices, such as
laptops and smartphones, implement both master and slave modes
and are typically used as the master, while low-end devices, such as
fitness trackers and smartwatches, implement only the slave mode.

All the presented differences are a consequence of using similar
mechanisms on different security architectures and the result is
that BT and BLE have different threat models. For example, attacking
BLE pairing would allow reducing the entropy of the long term key
and the related session keys while attacking BT pairing would not
allow reducing the entropy of the long term key.

CTKD

BT

BLE

Slave

CTKD

Master

BT

BLE

Figure 1: CTKD overview. After pairing and exchange a pair-
ing key over BT CTKD is used to derive another pairing key
for use with BLE. It is also possible to do the initial pairing
over BLE, and use CTKD to generate the BT pairing key.

2.2 Cross-Transport Key Derivation (CTKD)
Two devices that support BT and BLE have to pair over BT and over
BLE to use both transports securely and this is not user-friendly.
The Bluetooth standard addressed this issue in Bluetooth 4.2 by
introducing CTKD. As shown in Figure 1, CTKD enables two devices
to pair once, either over BT or BLE, and then securely use both [12,
p. 280]. For example, a user can pair a headset and a laptop over
BLE, without putting the headset in BT discoverable mode, and
then securely connect the headset and the laptop over BT (without
having to pair over BT).

The Bluetooth standard specifies the same CTKD function for
BT and BLE. This function takes as inputs a 16-byte key and two
4-byte strings and derives a 16-byte key. For BT, the CTKD function
derives a BLE long term key (KBLE) from a BT long term key (KBT)
and the strings "tmp2" and "brle". In case of BLE, the CTKD function
derives KBT from KBLE and the strings "tmp1" and "lebr". Note that
those are the actual keys defined by the standard and the keys used
in all implementations we analyzed. As the standard defines all the
4-byte strings, CTKD derives the same output key when reusing the
same input key. CTKD internally uses a sequence of AES-CMAC,
see Section 5.3 for more details.

CTKD is widely supported and used by vendors such as Ap-
ple [37], Google [5], Cypress [15], Linux [14], Qualcomm [30], and
Intel [22]. CTKD is used in combination with Secure Connections,
that is a security mode that was introduced to enhance the security
primitives of BT and BLE without affecting their security mech-
anisms. For example, Secure Connections introduced AES-CCM
authenticated-encryption for BT, and ECDH pairing for BLE.

3 SECURITY ANALYSIS OF CTKD
As introduced in Section 2.2 and depicted in Figure 1, CTKD im-
proves the usability of Bluetooth by allowing two devices to pair
once, either over BT or BLE, and compute the keying material for
both transports without requiring a second pairing. CTKD is an in-
teresting attack target as it crosses the security boundary between
BT and BLE, and is used in combination with Secure Connections
(the most secure mode for Bluetooth). Despite that, the Bluetooth
standard does not provide a security evaluation of CTKD and does
not include it in the BT and BLE threat models [12, p. 1401].

We present the first security analysis of CTKD based on the in-
formation available in the Bluetooth standard and our experiments.
In total, we present seven novel cross-transport vulnerabilities that

2



Anonymous submission #9999 to ACM CCS 2020

we isolate in CTKD as a result of our analysis. The uncovered vul-
nerabilities enable to exploit BT and BLE just by targeting one of
them. Then we explain how such vulnerabilities can be used to
violate fundamental security guarantees promised by the Bluetooth
standard. In Section 4 we explain how to exploit the identified
vulnerabilities.

3.1 Identified Vulnerabilities in CTKD
Cross-Transport Pairing. CTKD requires that a device is pairable

over BT and BLE, and continues to be pairable over at least one
transport over time. This does not happen with conventional BT
and BLE pairing where a device enters pairing mode, pairs, and
then exits pairing mode. This issue enables an attacker to pair
with a victim device in situations where the victim devices should
not be pairable. For example, an attacker can pair with a pair of
headphones over BLE even if the headphones are already paired
with a legitimate device and are running a secure session over BT.

Cross-Transport Key Overwrite. CTKD enables an attacker to
(over)write a long term key for one transport by pairing on the
other one. This issue enables an attacker to maliciously overwrite
long term keys on BT and BLE by controlling either BT pairing or
BLE pairing. For example, an invalid curve attack [10] on BT would
enable the attacker to compute BT and BLE long term keys. The
same holds for other types of attacks such as key reinstallations.

Cross-Transport Authentication. CTKD enables to authenticate
a device on one transport and then extend the claim to the other
transport. For example, an attacker who impersonates a device on
one transport can extend the effect of the impersonation attack to
the other transport and even take over an existing session between
the impersonated device and another victim device. As a result of
a takeover, the impersonated device cannot connect back to the
victim as she does not own the new long term key established by
the attacker and the victim.

Cross-Transport Association. CTKD enables to use an association
mechanism on one transport that is weaker than the one used
for the other transport. For example, an attacker can pair on one
transport using Just Works to avoid user interaction and disable
protection against a man-in-the-middle, even if the other transport
expects to pair using an association mechanism that requires user
interaction and protection against a man-in-the-middle.

Cross-Transport Roles. Both BT and BLE include the notion of
master and slave roles, yet they define such roles differently. For
BLE, one device is always the master (also known as the central)
and the other is always the slave (also known as the peripheral).
For BT instead, the master and the slave roles can be changed
on demand. In both cases, the master sends pairing requests and
the slave sends pairing responses. This issue enables the attacker
to target a victim with unexpected but valid pairing requests or
responses. For example, a BLE master victim might only expect
pairing responses from a legitimate BLE slave but can be targeted
with BT pairing request from a malicious BT master.

Cross-Transport Secure Connections. CTKD enables to attack de-
vices that do not support Secure Connections on both transports.
In our experiments, we find that we can pair over BLE using CTKD

with headphones that only support BLE Secure Connections. This
issue considerably increases the number of vulnerable devices, as
an attacker is not limited to target only devices which support BLE
and BT Secure Connections at the same time.

Cross-Transport Unintended Sessions. In some CTKD use cases,
one transport is expected to be used only for pairing. For example,
Bluetooth speakers and headsets enable to pair over BLEwith CTKD
and then expect to only use BT, leaving the BLE transport open to
attacks. This issue enables an attacker to establish stealthymalicious
sessions with the victim on the transport that is expected to be used
only for pairing without affecting existing sessions. If the left-open
transport is BLE, then the attacker can run multiple unintended
sessions with the victim as BLE support parallel connections.

3.2 Security Expectations Violated by CTKD
CTKD enables crossing the security boundary between BT and BLE
and opens new opportunities for cross-transport attacks. We now
list three security expectations that we found to be violated as a
consequence of the vulnerabilities introduced by CTKD.

Security Boundary. The Bluetooth standard should guarantee
that an attacker cannot attack one transport by exploiting weak-
nesses on the other transport. The BT (or BLE) security architecture
was not designed to protect BLE (or BT, respectively). CTKD en-
ables this capability as the attacker can attack BT from BLE and
BLE from BT.

Pairing Intents. The Bluetooth standard should guarantee that a
user controls when a device is pairable (or not) and pairs only with
devices that she knows about. CTKD violates this expectation as a
device is required to be pairable on BT and BLE at the same time and
continues to be pairable at least of one of them to support CTKD
pairing. CTKD improves the user experience but hides important
details about the interplay between BT and BLE and the attacker
can take advantage of those.

Key Updates. The Bluetooth standard should guarantee that once
two devices are paired their long term keys cannot be changed or at
least cannot change without user consent. CTKD not only enables
overwriting those keys but also enables reinstalling keys that are
weaker than the overwritten ones, which is explicitly forbidden by
the standard [12, p. 1401]. For example, the attacker can impersonate
a device that supports Numeric Comparison on both transports but
while pairing pretending not to support Numeric Comparison.

4 BLUR ATTACKS ON CTKD
Wenow design and implement four cross-transport attacks based on
our security analysis of CTKD (presented in Section 3). Our BLUR
attacks are the first attacks blurring the security boundary between
BT and BLE. The BLUR attacks are standard-compliant and enable
impersonation, interception, and manipulation of traffic between
victims, as well as unintended sessions with a victim device.

4.1 System Model
Our system model considers two victims, Alice and Bob, who want
to securely communicate over BT and BLE. Alice and Bob support
Cross-Transport Key Derivation (CTKD) and while pairing and

3



Anonymous submission #9999 to ACM CCS 2020

DeviceDevice
BT

BT

BLE

Device BLE
BT

BLE

CTKD

Attacker as 

Figure 2: BLUR impersonation attacks. Charlie imperson-
ates a device and triggers the CTKD functionality in order
to overwrite an existing pairing key. This enables Charlie to
impersonatemaster and slave devices and take over existing
secure BT sessions.

establishing secure sessions, they propose the strongest security
mechanisms that they support (e.g., SSP, Secure Connections, or
Numeric Comparison association). This setup is supposed to protect
Alice and Bob against impersonation, eavesdropping, and man-in-
the-middle attacks on BT and BLE. Without loss of generality, we
assume that Alice is the master for BT and BLE and Bob is the slave.

Regarding the notation, we indicate a BT long term key with
KBT, a BT session key with SKBT, a BLE long term key with KBLE,
and a BLE session key with SKBLE. We indicate a Bluetooth address
with ADD. Furthermore, we indicate a public key with PK, a private
key with SK, a nonce with N, and a message authentication code
with MAC.

4.2 Attacker Model and Goals
Our attacker model includes Charlie, a remote attacker in Bluetooth
range with the victims. The attacker’s knowledge is limited to what
Alice and Bob advertise over the air, e.g., full or partial Bluetooth
addresses, Bluetooth names, authentication requirements, IO capa-
bilities, and device classes. The attacker does not know any long
term key and session key shared between Alice and Bob and does
not observe Alice and Bob when they pair or establish a secure
session. Regarding the attacker’s capabilities, the attacker can scan
and discover BT and BLE devices, jam the Bluetooth spectrum, pair
over BT and BLE using CTKD, and dissect and craft unencrypted
Bluetooth packets.

The attacker has four goals. The first goal is to impersonate Alice
(to Bob) and take over Alice’s secure session. The second goal is to
impersonate Bob (to Alice) and take over Bob’s secure session. Master
and slave impersonations are two different goals as they require
different attack strategies. The third goal is to establish a man-in-
the-middle position in a secure session between Alice and Bob. The
third goal requires combining and synchronizing the impersonation
attacks on Alice and Bob. The fourth goal is to pair and establish
unintended sessions with Alice or Bob as an arbitrary device, without
breaking their bond and secure sessions.

Charlie as Alice (master)

C

Bob (slave)

B

BLE Pairing Request:
Just Works, ADDA, PKC , NC

BLE Pairing Response:
ADDB , PKB, NB

KBLE = kdf(PKB, NC ,
NB, ADDA, ADDB)
KBT = ctkd(KBLE)

KBLE = kdf(PKC , NC ,
NB, ADDA, ADDB)
KBT = ctkd(KBLE)

Figure 3: Master impersonation attack and takeover. Char-
lie (master) sends a BLE pairing request to Bob (slave) as Al-
ice and proposes to use "Just Works". The pairing request
includes Alice’s Bluetooth address and Charlie’s public key
and nonce. Bob sends a BLE paring response including his
address, public key, and a nonce. Both compute KBLE using
theBLEpairing key derivation function (kdf) and deriveKBT
from KBLE using CTKD’s key derivation function (ctkd). As a
result, Charlie forces Bob to overwrite the BT and BLE pair-
ing keys that he established with Alice with his keys.

4.3 Impersonation Attacks and Takeover
The BLUR impersonation attacks include master and slave imper-
sonations and in the remaining of this section, we describe both
in detail. For both attacks, we assume that Alice and Bob securely
paired over BT in absence of Charlie. Those attacks take advan-
tage of seven cross-transport vulnerabilities that we introduce in
Section 3.1 related to pairing, key overwrite, authentication, asso-
ciation, and roles. Section 5.2 presents the implementation of the
impersonation attacks.

Figure 2 presents a high-level description of our BLUR imper-
sonation attacks. A laptop and a pair of headphones are paired
over BT and run a secure session over BT. Charlie impersonates
the headphones and triggers pairing over BLE and CTKD with the
laptop. The laptop and the attacker negotiate KBLE (the BLE pairing
key) and use CTKD to derive KBT (the BT pairing key). As a result,
the laptop overwrites the BT key previously established with the
headphones with the BT key established with Charlie. Charlie now
effectively takes over the headphone’s pairing, and the headphones
cannot connect back to the laptop. This attack leverages the fact
that the Security Boundary, Pairing Intent, and Key Update security
expectations can be violated by CTKD (see Section 3.2).

Master impersonation. Charlie impersonates Alice (master) and
takes over her BT secure session with Bob as in Figure 3. Charlie
sends a BLE pairing request using Alice’s Bluetooth address (ADD𝐴)
and requests to use "Just Works" to avoid user interaction. The BLE
pairing request is legal because Charlie impersonates a BLE master.
Bob sends a BLE pairing response believing that he is talking to
Alice. Charlie and Bob use the exchanged nonces and public keys to

4



Anonymous submission #9999 to ACM CCS 2020

Alice (master)

A

Charlie as Bob (slave)

C

BT Pairing Request:
Just Works, ADDB , PKC , NC

BT Pairing Response:
ADDA, PKA, NA

KBT = kdf2(PKA, NC ,
NA, ADDA, ADDB)
KBLE = ctkd(KBT)

KBT = kdf2(PKC , NC ,
NA, ADDA, ADDB)
KBLE = ctkd(KBT)

Figure 4: Slave impersonation attack and takeover. Charlie
(slave) sends a BT pairing request to Alice (master) as Bob
and proposes to use "Just Works". The pairing request in-
cludes Bob’s Bluetooth address and Charlie’s public key and
nonce. Alice sends a BT paring response including her ad-
dress, public key, and a nonce. Both compute KBT using the
BT pairing key derivation function (kdf2) and derive KBLE
from KBT using CTKD’s key derivation function (ctkd). As
a result, Charlie forces Alice to overwrite the BT and BLE
pairing keys that she established with Bob with his keys.

compute KBLE (kdf) and derive KBT from KBLE using CTKD’s key
derivation functions (ctkd). As a result of the master impersonation
attack, Charlie forces Bob to overwrite the BT and BLE pairing keys
that he established with Alice with his keys and takes over Alice.
Alice cannot re-establish secure sessions with Bob as she no longer
possesses the correct paring keys.

Slave impersonation. Charlie impersonates Bob (slave) and takes
over his BT secure session with Alice as in Figure 4. Charlie sends
a BT pairing request using Bob’s Bluetooth address (ADD𝐵 ) and
requests to use "Just Works" to avoid user interaction. The BT
pairing request is legal because BT does not mandate that pairing
requests are only sent by a BT master. Alice sends a BT pairing
response believing that she is talking to Bob. Charlie and Alice
use the exchanged nonces and public keys to compute KBT (kdf2),
and derive KBLE from KBT using CTKD’s key derivation functions
(ctkd). As a result of the slave impersonation attack, Charlie forces

Device Device

Attacker

BLUR Impersonation BLU
R Im

perso
natio

n

Figure 5: BLUR man-in-the-middle attack. Charlie uses the
BLUR Impersonation attack against two devices that where
previously paired. The two devices do not detect a change
but Charlie now has access to all traffic.

Alice (master)

A

Charlie (MitM)

C

Bob (slave)

B

Alice and Bob share KBT (BT pairing key)

Impersonation attack as Alice over BLE

KBT overwrit-
ten via CTKD
with KBC

Impersonation attack as Bob over BT

KBT overwrit-
ten via CTKD
with KAC

NA NA

NB ,MACKBC
(NA, NB ,ADDA,ADDB)NB ,MACKAC

(NA, NB ,ADDA,ADDB)

MACKAC
(NA, NB ,ADDA,ADDB) MACKBC

(NA, NB ,ADDA,ADDB)

BT session between Alice and Bob with Charlie in the middle

Figure 6: MitM attack and takeover. Charlie impersonates
Alice as in Figure 3, impersonates Bob as in Figure 4, let the
victims mutually authenticate and then gets access to their
traffic.

Alice to overwrite the BT and BLE pairing keys that she established
with Bob with his keys and takes over Bob. Bob cannot re-establish
secure sessions with Alice as he no longer possess the correct paring
keys.

4.4 Man-in-the-Middle Attack and Takeover
Figure 5 presents the high-level description of our BLUR man-in-
the-middle attack. As in the previous section, a laptop and a pair
of headphones are paired over BT and they run a secure session
over BT. Charlie performs the master and slave impersonation
attacks described in Section 4.3, overwrites the BT pairing keys
of the laptop and the headphones with his keys, and positions
himself in the middle between the laptop and the headphones. As a
result, Charlie gets access to all traffic between the victims and can
inject valid traffic. This attack leverages that the Security Boundary,
Pairing Intent and Key Update security expectations can be violated
by CTKD (see Section 3.2).

Figure 6 shows the details of the MitM attack. Alice and Bob are
paired and share KBT. Firstly, Charlie impersonates Alice to Bob
over BLE as in Figure 3 and overwrites Bob’s BT key with a new
key (KBC) and Alice is disconnected from Bob. Secondly, Charlie
impersonates Bob to Alice over BT as in Figure 4 and overwrites
Alice’s BT key with a new key (KAC). Then, Alice and Bob exchange
two nonces (𝑁 −𝐴, 𝑁𝐵 ) to authenticate the BT pairing key. Charlie
mutually authenticates with Bob and Alice by using a message
authentication code (MAC) function keyed with the appropriate
key and input parameters (including the Bluetooth addresses of
Alice and Bob). Finally, Alice and Bob establish a secure BT session
with Charlie in the middle, and Charlie gets access to all traffic
exchanged by Alice and Bob and can modify and inject arbitrary
valid traffic between Alice and Bob.

5



Anonymous submission #9999 to ACM CCS 2020

Device Device

Attacker

BT

BT

BLE
CTKDCTKD

BLE

Always pairable 
over BLE

Figure 7: BLUR unintended session attack. In some CTKD
use cases a transport is only expected to be used for pairing
and is always enabled. For example, a pair of headphones
might be always pairable over BLE and expect to only use
BT to stream audio. This allows Charlie to initiate pairing
as an arbitrary device and establish both BT and BLE keys
at will.

4.5 Unintended Session Attack
Figure 7 presents a high-level description of the unintended session
attack. A laptop and a pair of headphones are paired over BT and
run a secure session over BT. Charlie triggers pairing over BLE and
CTKDwith the headphones as an arbitrary device. As a result, Char-
lie can establish a secure session over BLE with the headphones
without breaking the existing session between the laptop and the
headphones, and a secure session over BT when the laptop and the
headphones disconnect. Charlie can take advantage of the unin-
tended BT and BLE sessions in several ways. For example, to drop
exploits over-the-air such as BlueBorne [6], BLEEDINGBIT [7], or
SweynTooth [19], or enumerating and tampering with BT and BLE
services and characteristics (including the protected ones). This at-
tack leverages that the Security Boundary and Pairing Intent security
expectations can be violated by CTKD (see Section 3.2).

We note that the unintended session attack is different from
an impersonation attack as Charlie does not present himself as
a device that was previously trusted by the headphone but as a
new device to be trusted. The headphone has no way to recognize
Charlie as an attacker can use different identifiers over time such as
random Bluetooth names and addresses. However, the unintended
session attack technique is similar to the master impersonation
attack described in Section 4.3.

5 EVALUATION
To highlight and evaluate the potential of the BLUR attacks, we
implement them using open-source software and off-the-shelf hard-
ware. In particular, we describe our attack scenario, our attack
device, and how we implement the master impersonation, slave im-
personation, man-in-the-middle, and unintentional session BLUR
attacks. The design of the attacks is described in detail in Section 4.
We also present our implementation of the CTKD key derivation
function as specified in the Bluetooth standard that we used to val-
idate the keys generated during our attacks. We will open-source
our implementation. We test the impact of the BLUR attack on 13
devices that are all vulnerable to the BLUR attacks.

X1 7th gen WH-CH700N

Alice
(master)

Bob
(slave)X1 3rd gen

USB

CYW920819

Charlie (attacker)

BTSecure Session

Figure 8: BLUR Attack Scenario. Alice (master) is a
ThinkPad X1 7th gen, Bob (slave) is a pair of Sony WH-
CH700N headphones and Charlie (attacker) is a CYW920819
board connected via USB to a ThinkPad X1 3rd gen. Alice
and Bob have paired in absence of Charlie, and are running
a secure BT session.

5.1 Attack Scenario and Attack Device
Figure 8 describes our attack scenario. Alice (master) is represented
by a ThinkPad X1 (7th gen) laptop, Bob (slave) is represented by
a pair of Sony WH-CH700N headphones and Charlie (attacker) is
represented by a CYW920819 Bluetooth development board [16]
connected via USB to a ThinkPad X1 (3rd gen) laptop. Alice and
Bob have securely paired in absence of Charlie, and are running a
secure BT session. The evaluation results are obtained by using the
same attack scenario targeting several master and slave devices.

Table 1 presents the relevant Bluetooth features supported by
Alice, Bob, and Charlie. We note that Bob is capable of using CTKD
over BLE even if he does not support Secure Connections over
BT. This confirms the "cross-transport Secure Connections" vul-
nerability that we discuss in Section 3.1. In Table 1, we append an
asterisk (*) to the attacker’s features that we can modify with our
implementation.

Our attack device consists of a Linux laptop (Bluetooth host)
connected to a CYW920819 development board (Bluetooth con-
troller). We implement our attack device by developing custom
code and tools both for Linux and the board. Regarding the host,
we modify and recompile the Linux kernel and BlueZ according to
our needs. For example, by changing the kernel we enable parsing
of diagnostic messages from the controller, and by changing BlueZ
we can develop custom user-space management commands for BT
and BLE.

Regarding the controller, we use the board’s proprietary patching
mechanism to modify the Bluetooth firmware according to our
needs. For example, by writing the firmware’s RAM we can change
the attack device’s features, including the features containing an
asterisk (*) in Table 1. This process required significant engineering
effort as we had to dump the Bluetooth firmware from the board,
reverse-engineer the relevant functions and data structures, and
write and test our ARM assembly patches.

Our attack devicemakes use of several free and open-source tools
to automate the configuration and management of BT, BLE, and
the BLUR attacks. Table 2 presents the list of such tools with a brief
description of their usage. Overall, our usage of low-cost hardware
and open-source software should enable other researchers to easily
reproduce the BLUR attacks.

6



Anonymous submission #9999 to ACM CCS 2020

Alice Bob Charlie
(master) (slave) (attacker)

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716*
Version 5.1 4.1 5.0*
Name x7 WH-CH700N x1*
ADD Redacted Redacted Redacted*
Class 0x1c010c 0x0 0x0*
BT SC True Only Controller True*
BT AuthReq 0x03 0x02 0x03*
BLE SC True True True*
BLE AuthReq 0x2d 0x09 0x2d*
CTKD True True True*
h7 True False True*
Role Master Slave Master*
IO Display No IO Display*
Association Numeric Just Works Numeric*
Pairable True True True*

Table 1: Relevant Bluetooth features for Alice, Bob, and
Charlie. Alice and Bob support CTKD even if Bob’s Host
does not support BT SC (BT Secure Connections). We redact
the devices’ Bluetooth addresses for privacy reasons. We ap-
pend an asterisk (*) to the attacker’s features that we can
modify with our implementation.

5.2 Implementation of the BLUR Attacks
The BLUR attacks, presented in Section 4, include master imperson-
ation, slave impersonation, man-in-the-middle, and unintentional
session attacks. In the next paragraphs, we describe how we im-
plemented them using our attack device in the attack scenario
presented in Section 5.1.

Laptop (master) impersonation attack. To impersonate the laptop
we configure our attack device to clone the laptop Bluetooth fea-
tures, including Bluetooth address, Bluetooth name, device class,
BT and BLE Secure Connections support, and advertised services.
We accomplish this task by patching the attack device’s Bluetooth
firmware and configuring the attack laptop accordingly. Once the
attack device looks like the impersonated laptop, we ask the head-
phones to pair over BLE using "Just Works" and CTKD.

The malicious BLE pairing request is sent using btmgmt’s text-
based user interface (TUI). The headphones accept to pair over BLE,
update the BLE long term key, run CTKD for BT, update the BT
long term key, and establish a secure BLE session with the attack
device. Then, the headphones terminate the BT session with the
impersonated laptop and establish a secure BT session with the
attack device. The impersonated laptop cannot connect back with

Software/Tool Usage

ghidra RE the devboard firmware [35]
internalblue Patch devboard firmware [27]
wireshark Monitor HCI, LMP, and SMP
hciconfig Configure HCI interfaces
hcitool Scan, connect and enumerate BLE devices
bleah Scan, connect and enumerate BLE devices
scapy Craft and decode packets [11]
pybt Custom BLE pairing [32]
linux414 Modify BLE pairing capabilities
bluez Modify Linux userspace configuration
pybluez Test BT and BLE using the BlueZ API
scapy Configure HCI, manage BT and BLE sockets
bluetoothctl Manage, pair and connect devices
btmgmt Manage, pair and connect devices

Table 2: Open-source software and tools used to implement
the BLUR attacks.

the headphones as it does not possess the new BT and BLE long
term keys.

Headphones (slave) impersonation attack. To impersonate the
headphones we configure our attack device to clone the headphones
Bluetooth features using the same technique adopted for the laptop
impersonation. Once the attack device looks like the impersonated
headphones we ask the laptop to pair over BT using "Just Works"
and CTKD. The malicious BT pairing request is sent using btmgmt’s
TUI. The laptop accepts to pair over BT, updates the BT long term
key, and runs CTKD for BLE. Then, we establish a secure BT session
with the headphones.

Man-in-the-middle attack. By using our BLUR implementation
with two development boards connected to the same attack laptop
we can impersonate the laptop and the headphones at the same
time, and man-in-the-middle them. In particular, we run the laptop
(master) impersonation attack first, and then the headphone (slave)
impersonation attack. As a result, the attack device positions itself
in the middle between the victims.

Unintended session attack. To perform the unintended session
attacks we configure the attack device to impersonate an arbitrary
device with arbitrary services over BT and BLE. Then we send a
malicious pairing request to the headphones over BLE and one to
the laptop over BT. Both pairing requests declare support for CTKD
and "Just Works". The attack device establishes new BT and BLE
keys bothwith the headphones and the laptop and starts unintended
sessions with both over BT and BLE.

5.3 CTKD KDF Implementation
The Bluetooth standard does not provide a reference implementa-
tion for the key derivation function used by CTKD, and provides
limited documentation about its design [12, p. 1401]. We decided to
implement it in Python 3 using the PyCA cryptographic module [8]

7



Anonymous submission #9999 to ACM CCS 2020

Figure 9: CTKDkey derivation function for BT (top) andBLE
(bottom). BT andBLEuse a chain of twoAES-CMACwith dif-
ferent keys and 4-byte constant strings. BT uses KBT, "tmp2"
and "brle" and derives KBLE. BLE uses KBLE, "tmp1" and "lebr"
and derives KBT. In the first AES-CMAC, If both devices sup-
port the h7 algorithm, the long term key is used as key and
the string as input, otherwise the string (padded with 12 ze-
ros) is used as key and the long term key as input. In the sec-
ond AES-CMAC, the 16-byte output of the first AES-CMAC
is used as key and the string as input. The 16-byte output of
the second AES-CMAC is the derived long term key.

and we successfully tested our implementation against the test
vectors in the standard. We used our implementation to validate
the BT and BLE keys derived using CTKD while performing our
attacks and the code will be open-sourced. We now describe the
CTKD key derivation function implementation details.

As explained in Section 2.2, the Bluetooth standard specifies a
single CTKD function that is used with different parameters for
BT and BLE. Figure 9 shows the CTKD key derivation function
for BT (top) and BLE (bottom). Both use two AES-CMAC blocks
in sequence with different keys and 4-byte constant strings. AES-
CMAC is a message authentication code (MAC) based on the AES
block cipher [18]. In particular, BT uses KBT, "tmp2" and "brle" and
derives KBLE, while BLE uses KBLE, "tmp1" and "lebr" and derives
KBT.

In the first AES-CMAC, If both devices support the h7 algorithm,
the long term key is used as key and the string as input, otherwise,
the string (padded with 12 zeros) is used as key and the long term
key as input. In the second AES-CMAC, the 16-byte output of the
first AES-CMAC is used as key and the string as input. The 16-byte
output of the second AES-CMAC is the derived long term key.

5.4 Evaluation Setup
With our attack implementation (Section 5.2), we are capable of
conducting the four BLUR attacks. We used the attack device both
as the attacker and as one of the victims. For example, in a master
impersonation attack we pair the attack device with the slave victim
device, we disconnect them, we forget the victim device on the
attack device and we run the master impersonation attack from the

attack device. This setup is practical because allows us to quickly
test many slave victims. For the slave impersonation, we use the
same procedure and quickly test many master victims.

If a victim device is vulnerable to the master or slave imperson-
ation attack then is also vulnerable to the man in the middle attack,
as the latter requires a vulnerable master device and a vulnerable
slave device. Regarding the unintended session attack, we test such
attack by connecting the target victim to a third device and then
by trying to establish unintended sessions with the victim as an
arbitrary device over the transport that is not used by the legitimate
connection. For example, if the victim is a pair of headphones that
is connected with a laptop over BT then we run the unintended
session attacker over BLE.

5.5 Evaluation Results
We evaluated the BLUR attacks on 13 devices, and Table 3 shows
our evaluation results. The first six columns indicate the device
producer, device model, OS, chip manufacturer, chip model, and
supported Bluetooth version. The seventh column indicates the
attacker role. The last three columns contain a checkmark (✓) if a
device is vulnerable to the master Impersonation attack (MI), slave
impersonation attack (SI), man-in-the-middle attack (MitM), or
unintended session (US) attack. Themaster and slave impersonation
attacks are grouped in one column (MI/SI column). If the victim’s
role is slave then we test it against a master impersonation attack,
otherwise, we test it against a slave impersonation attack. As shown
by the last three columns, all the 13 devices (10 unique Bluetooth
chips) that we tested are vulnerable to the relevant BLUR attacks.

Our list of vulnerable devices is from a broad set of device produc-
ers (Samsung, Dell, Google, Lenovo, and Sony), operating system
producers (Android, Windows, Linux, and proprietary OSes), and
Bluetooth chip producers (Broadcom, CSR, Cypress, Intel, Qual-
comm, and Samsung). Our evaluation demonstrates that the BLUR
attacks are practical, standard-compliant, and affects all the Blue-
tooth versions that support CTKD (i.e., Bluetooth versions ≥ 4.1). As
the BLUR attacks are standard-compliant, potentially all standard-
compliant devices supporting CTKD are also vulnerable. Based
on our evaluation, we suggest the Bluetooth SIG to fix the vul-
nerabilities that we uncover in CTKD and we provide our set of
countermeasures for the Bluetooth standard in Section 6.2.

6 DISCUSSION
We now discuss the main lessons learned while analyzing CTKD,
our set of countermeasures to mitigate the BLUR attacks, and how
to guarantee the security expectations mentioned in Section 3.2.

6.1 Lesson Learned from CTKD
One key lesson that we learned while analyzing CTKD is that com-
bining protocols with different security architectures and threat
models, such as BT and BLE, might introduce standard-compliant
cross-transport vulnerabilities. Such vulnerabilities are very effec-
tive and difficult to isolate as they manifest at the security boundary
between the combined protocols.

In particular, separate security analyses of the combined tech-
nologies are insufficient to discover cross-transport vulnerabilities.
Such vulnerabilities require a security analysis that considers both

8



Anonymous submission #9999 to ACM CCS 2020

Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave ✓ ✓ ✓

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave ✓ ✓ ✓

Google Pixel 2 Android Qualcomm SDM835 5.0 Slave ✓ ✓ ✓

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave ✓ ✓ ✓

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave ✓ ✓ ✓

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave ✓ ✓ ✓

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave ✓ ✓ ✓

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S10 Android Broadcom Exynos 9820 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S10e Android Broadcom Exynos 9820 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S20 Android Broadcom Exynos 990 5.0 Slave ✓ ✓ ✓

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master ✓ ✓ ✓

Sony WH-CH700N Proprietary CSR 12942 4.1 Master ✓ ✓ ✓

Table 3: BLUR attacks evaluation results. The first six columns indicate the device producer, device model, OS, chip manufac-
turer, chip model, and supported Bluetooth version. The seventh column indicates the attacker role. The last three columns
contain a checkmark (✓) if a device is vulnerable to the master Impersonation attack (MI), slave impersonation attack (SI),
man-in-the-middle attack (MitM), or unintended session (US) attack. Themaster and slave impersonation attacks are grouped
in one column (MI/SI column). If the victim’s role is slave then we test it against a master impersonation attack, otherwise we
test it against slave impersonation attack. As shown by the last three columns, all the 13 devices (10 unique Bluetooth chips)
that we tested are vulnerable to the relevant BLUR attacks.

technologies and related threat models at the same time. Such an
analysis must take into account an attacker that is able to use and
mix features from both technologies, and exploit one technology
taking advantage of vulnerabilities in the other one.

6.2 Countermeasures
Mitigating the BLUR attacks requires changes at the Bluetooth
standard level. The different countermeasures have different trade-
offs regarding complexity and provided guarantees. All proposed
countermeasures can be implemented in the Bluetooth host (OS)
by storing extra metadata about a trusted Bluetooth device and by
using available HCI commands and events.

Disable CTKD key overwrite. CTKD allows to write and overwrite
BT and BLE long term keys (which violate the Security Boundary,
Pairing Intents, and Key Updates security expectation introduced
in Section 3.2). This issues can be exploited to take over legitimate
sessions from a victim device by impersonating the victim and
using CTKD to overwrite their long term key with the attacker long
term key. To fix this issue, a device should disallow key overwrites
with CTKD when a paired device wants to re-pair. This can be
accomplished during re-pairing by not running CTKD and continue
using the trusted long term key that was already established in a
previous pairing session.

Enforce strong association mechanisms. CTKD allows two devices
to use different association mechanisms on different transports

when pairing and re-pairing (which violates the Key Update security
expectation). The BLUR attack exploits this fact to re-pair with a
victim device using "Just Works" even if the victim does support
Numeric Comparison. To fix this issue, a device should keep track
of which BT and BLE keys are established using CTKD, record the
strongest association mechanism used while pairing and enforce it
for subsequent pairings.

Enforce Secure Connections. In our experiments, we can use CTKD
with theWH-CH700N headphones even if they only support Secure
Connections for BLE. This should not happen as CTKD should be
used only when Secure Connections is supported on both BT and
BLE. To fix this issue, a device should enforce that "Secure Connec-
tions" is supported on BT and BLE before running CTKD. If "Secure
Connections" is not supported then the device must raise an error
instead.

CTKD Notifications. CTKD is completely transparent to the end-
user and is specified in the standard as an optional feature. We
exploit those facts to improve the stealthiness of our attacks, vi-
olating the Pairing Intent security expectation. Given that CTKD
is a security-critical feature we believe that CTKD should not be
considered optional, and a device should notify the user every time
such a feature is in use. For example, the device should notify the
user when he is re-pairing with a trusted device and is using CTKD
to overwrite a long term key.

9



Anonymous submission #9999 to ACM CCS 2020

7 RELATEDWORK
Bluetooth standard compliant attacks are particularly dangerous as
all Bluetooth devices are affected, regardless of version numbers
or implementation details. Such standard-compliant attacks have
appeared since the first versions of Bluetooth [23, 26]. Standard-
compliant attacks on BT include attacks on legacy pairing [33],
SP [10, 20, 34] association [21], key negotiation [2], and authenti-
cation procedures [3, 25, 36]. Standard-compliant attacks on BLE
include attacks on legacy pairing [31], key negotiation [4], SSP [10],
and GATT [24] Compared to the mentioned attacks that target
either BT or BLE, the BLUR attacks are the first attacks targeting
the intersection between BT and BLE. In addition, the BLUR attacks
are also standard-compliant.

We have seen attacks targeting specific implementation flaws on
BT [6] and BLE [7, 19]. As our BLUR attacks target the specification
level, they are effective regardless of the implementation details.

Several surveys on BT and BLE security were published [17,
28, 29] but none of those surveys (and the Bluetooth standard) is
considering CTKD as a threat. We here demonstrate that CTKD is
a serious threat and must be included in the threat model.

Cross-transport attacks were exploited for proximity technolo-
gies using Bluetooth and Wi-FI. Two prominent examples are at-
tacks on Apple ZeroConf [9] and Google Nearby Connections [1].
Our BLUR attacks are the first cross-transport attacks for BT and
BLE.

8 CONCLUSION
In this work, we present novel and standard-compliant vulnerabili-
ties affecting Bluetooth CTKD and attacks taking advantage of such
vulnerabilities. CTKD is a feature enabling two devices to securely
use BT and BLE by just pairing over either and then deriving the
keying material for the other. CTKD is security-critical as it enables
to establish (and overwrite) BT and BLE long term keys, while using
the strongest Bluetooth security mode (e.g., Secure Connections).
Despite that, the Bluetooth standard does not provide a security
evaluation of CTKD and does not include it in the BT and BLE
threat models.

To address those issues we performed the first security analysis
of CTKD. Our analysis uncovered seven cross-transport vulnera-
bilities affecting mechanisms such as pairing, key derivation, au-
thentication, and association. Furthermore, we show how to exploit
such vulnerabilities to perform novel cross-transport attacks. We
name our attacks BLUR attacks, as they blur the security boundary
between BT and BLE. Our attacks enable exploiting BLE from BT
and BT from BLE in several ways. For example, an attacker can
perform cross-transport master and slave impersonation attacks
to take over existing sessions between the impersonated victim
and another victim, and combine them to mount a cross-transport
man-in-the-middle attack.

We provide and discuss a low-cost implementation of the BLUR
attacks using off-the-shelf hardware and open-source software. To
demonstrate that our attacks are practical, we use our implementa-
tion to successfully attack 13 devices from different hardware and
software manufacturers. Our devices range across all the Bluetooth
versions supporting CTKD (version greater or equal to 4.1). As the
BLUR attacks are standard-compliant, all devices supporting CTKD

become potentially vulnerable. We sketch a set of countermeasures
to address the BLUR attack directly in the Bluetooth standard. The
countermeasures generally require to keep additional state about
paired devices. We have disclosed our findings and our counter-
measures to the Bluetooth SIG in May 2020.

REFERENCES
[1] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2019. Nearby

Threats: Reversing, Analyzing, and Attacking Google’s “Nearby Connections” on
Android. In Proceedings of the Network and Distributed System Security Symposium
(NDSS).

[2] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2019. The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation of
Bluetooth BR/EDR. In Proceedings of the USENIX Security Symposium. USENIX.

[3] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. BIAS:
Bluetooth Impersonation AttackS. In 2020 IEEE Symposium on Security and
Privacy. IEEE.

[4] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. Key
Negotiation Downgrade Attacks on Bluetooth and Bluetooth Low Energy. Trans-
actions on Privacy and Security (TOPS) (2020). https://doi.org/10.1145/3394497

[5] AOSP. 2020. Fluoride Bluetooth stack. https://chromium.googlesource.com/
aosp/platform/system/bt/+/master/README.md, Accessed: 2020-01-27. (2020).

[6] Armis Inc. 2017. The Attack Vector BlueBorne Exposes Almost Every Connected
Device. https://armis.com/blueborne/, Accessed: 2018-01-26. (2017).

[7] Armis Inc. 2019. BLEEDINGBIT: The hidden Attack Surface within BLE chips.
https://armis.com/bleedingbit/, Accessed: 2019-07-24. (2019).

[8] Python Cryptographic Authority. 2019. Python cryptography. https://
cryptography.io/en/latest/, Accessed: 2019-02-04. (2019).

[9] Xiaolong Bai, Luyi Xing, Nan Zhang, XiaoFeng Wang, Xiaojing Liao, Tongxin
Li, and Shi-Min Hu. 2016. Staying secure and unprepared: Understanding and
mitigating the security risks of apple zeroconf. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 655–674.

[10] Eli Biham and Lior Neumann. 2018. Breaking the Bluetooth Pairing–Fixed
Coordinate Invalid Curve Attack. http://www.cs.technion.ac.il/~biham/BT/
bt-fixed-coordinate-invalid-curve-attack.pdf, Accessed: 2018-10-30. (2018).

[11] Philippe Biondi. 2018. Scapy: Packet crafting for Python2 and Python3. https://
scapy.net/, Accessed: 2018-01-26. (2018).

[12] Bluetooth SIG. 2019. Bluetooth Core Specification v5.2. https://www.bluetooth.
org/docman/handlers/downloaddoc.ashx?doc_id=478726, Accessed: 2020-01-27.
(2019).

[13] Bluetooth SIG. 2019. Bluetooth Markets. https://www.bluetooth.com/markets/,
Accessed: 2019-10-23. (2019).

[14] BlueZ. 2014. Bluetooth 4.2 features going to the 3.19 kernel release. http://www.
bluez.org/bluetooth-4-2-features-going-to-the-3-19-kernel-release/, Accessed:
2020-01-27. (2014).

[15] Cypress. 2019. BLE and Bluetooth. https://www.cypress.com/products/
ble-bluetooth, Accessed: 2020-01-27. (2019).

[16] Cypress. 2019. CYW920819EVB-02 Evaluation Kit. https://www.cypress.com/
documentation/development-kitsboards/cyw920819evb-02-evaluation-kit, Ac-
cessed: 2019-11-16. (2019).

[17] John Dunning. 2010. Taming the blue beast: A survey of Bluetooth based threats.
IEEE Security & Privacy 8, 2 (2010), 20–27.

[18] Morris Dworkin. 2018. Recommendation for Block Cipher Modes of Opera-
tion: The CMAC Mode for Authentication. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-38B.pdf. (2018). Recommendations of the NIST.

[19] Garbelini, Matheus and Chattopadhyay, Sudipta and Wang, Chundong. 2020.
The Attack Vector BlueBorne Exposes Almost Every Connected Device. https://
asset-group.github.io/disclosures/sweyntooth/sweyntooth.pdf, Accessed: 2020-
04-08. (2020).

[20] Keijo Haataja and Pekka Toivanen. 2010. Two practical man-in-the-middle
attacks on Bluetooth secure simple pairing and countermeasures. Transactions
on Wireless Communications 9, 1 (2010), 384–392.

[21] Konstantin Hypponen and Keijo MJ Haataja. 2007. “Nino” man-in-the-middle
attack on bluetooth secure simple pairing. In Proceedings of the International
Conference in Central Asia on Internet. IEEE, 1–5.

[22] Intel. 2019. Intel Wireless Solutions. https://www.intel.com/content/www/us/
en/products/wireless.html, Accessed: 2020-01-27. (2019).

[23] Markus Jakobsson and Susanne Wetzel. 2001. Security weaknesses in Bluetooth.
In Proceedings of the Cryptographers’ Track at the RSA Conference. Springer,
176–191.

[24] Sławomir Jasek. 2016. Gattacking Bluetooth smart devices. Black Hat USA
Conference. (2016).

[25] Albert Levi, Erhan Çetintaş, Murat Aydos, Çetin Kaya Koç, and M Ufuk Çağlayan.
2004. Relay attacks on bluetooth authentication and solutions. In International
Symposium on Computer and Information Sciences. Springer, 278–288.

10

https://doi.org/10.1145/3394497
https://chromium.googlesource.com/aosp/platform/system/bt/+/master/README.md
https://chromium.googlesource.com/aosp/platform/system/bt/+/master/README.md
https://armis.com/blueborne/
https://armis.com/bleedingbit/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://scapy.net/
https://scapy.net/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.com/markets/
http://www.bluez.org/bluetooth-4-2-features-going-to-the-3-19-kernel-release/
http://www.bluez.org/bluetooth-4-2-features-going-to-the-3-19-kernel-release/
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/documentation/development-kitsboards/cyw920819evb-02-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920819evb-02-evaluation-kit
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38B.pdf
https://asset-group.github.io/disclosures/sweyntooth/sweyntooth.pdf
https://asset-group.github.io/disclosures/sweyntooth/sweyntooth.pdf
https://www.intel.com/content/www/us/en/products/wireless.html
https://www.intel.com/content/www/us/en/products/wireless.html


Anonymous submission #9999 to ACM CCS 2020

[26] Andrew Y Lindell. 2008. Attacks on the pairing protocol of Bluetooth v2.1. Black
Hat USA, Las Vegas, Nevada (2008).

[27] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. 2019. In-
ternalBlue - Bluetooth Binary Patching and Experimentation Framework. In
Proceedings of Conference on Mobile Systems, Applications and Services (MobiSys).
ACM.

[28] Nateq Be-Nazir Ibn Minar and Mohammed Tarique. 2012. Bluetooth security
threats and solutions: a survey. International Journal of Distributed and Parallel
Systems 3, 1 (2012), 127.

[29] John Padgette. 2017. Guide to bluetooth security. NIST Special Publication 800
(2017), 121.

[30] Qualcomm. 2019. Expand the potential of Bluetooth. https://www.qualcomm.
com/products/bluetooth, Accessed: 2020-01-27. (2019).

[31] Mike Ryan. 2013. Bluetooth: With Low Energy Comes Low Security. In Proceed-
ings of USENIX Workshop on Offensive Technologies (WOOT), Vol. 13. USENIX,
4–4.

[32] Mike Ryan. 2015. PyBT: Hackable Bluetooth stack in Python. https://github.
com/mikeryan/PyBT, Accessed: 2019-06-19. (2015).

[33] Yaniv Shaked and Avishai Wool. 2005. Cracking the Bluetooth PIN. In Proceedings
of the conference on Mobile systems, applications, and services (MobiSys). ACM,
39–50.

[34] Da-Zhi Sun, Yi Mu, and Willy Susilo. 2018. Man-in-the-middle attacks on Secure
Simple Pairing in Bluetooth standard V5. 0 and its countermeasure. Personal and
Ubiquitous Computing 22, 1 (2018), 55–67.

[35] National Security Agency USA. 2019. Ghidra: A software reverse engineering
(SRE) suite of tools developed by NSA’s Research Directorate in support of the
Cybersecurity mission. https://ghidra-sre.org/, Accessed: 2019-02-04. (2019).

[36] Ford-Long Wong, Frank Stajano, and Jolyon Clulow. 2005. Repairing the Blue-
tooth pairing protocol. In International Workshop on Security Protocols. Springer,
31–45.

[37] Apple WWDC. 2019. What’s New in Core Bluetooth. https://developer.apple.
com/videos/play/wwdc2019/901, Accessed: 2020-01-27. (2019).

11

https://www.qualcomm.com/products/bluetooth
https://www.qualcomm.com/products/bluetooth
https://github.com/mikeryan/PyBT
https://github.com/mikeryan/PyBT
https://ghidra-sre.org/
https://developer.apple.com/videos/play/wwdc2019/901
https://developer.apple.com/videos/play/wwdc2019/901

	Abstract
	1 Introduction
	2 Background
	2.1 A Comparison of BT and BLE
	2.2 Cross-Transport Key Derivation (CTKD)

	3 Security Analysis of CTKD
	3.1 Identified Vulnerabilities in CTKD
	3.2 Security Expectations Violated by CTKD

	4 BLUR Attacks on CTKD
	4.1 System Model
	4.2 Attacker Model and Goals
	4.3 Impersonation Attacks and Takeover
	4.4 Man-in-the-Middle Attack and Takeover
	4.5 Unintended Session Attack

	5 Evaluation
	5.1 Attack Scenario and Attack Device
	5.2 Implementation of the BLUR Attacks 
	5.3 CTKD KDF Implementation
	5.4 Evaluation Setup
	5.5 Evaluation Results

	6 Discussion
	6.1 Lesson Learned from CTKD
	6.2 Countermeasures

	7 Related Work
	8 Conclusion
	References

