
Paper changes for CCS21 compared to SEC21
In this document, we summarize our changes concerning the last Major Revision
that we got from USENIX Security that after the discussion ended up with
a Reject and Resubmit decision. The USENIX Security reviewers asked for a
complete re-write of several sections of the paper and that is what we did. In
the following subsection we describe our modifications in detail. For reference,
we are also attaching the last reviews and a paper diff.

Description of CTKD in non-adversarial settings (Sections
2, 3)
We rewrote Section 2 and 3 to clarify what information about CTKD is present in
the Bluetooth standard and other public information (see 3.1) and what we had
to experimentally reverse-engineer (see 3.2). Doing so, we are also clarifying our
contribution to the analysis of CTKD. Leveraging what we reverse-engineered,
we now provide dedicated descriptions with related Figures of how CTKD works
for BT and BLE, and we emphasize their differences.

Section 3 now expresses our contribution related to CTKD, provides an intro-
duction to the BLUR attacks, enables a reader to tinker with CTKD and come
up with their own attacks, and also serve as future documentation for CTKD
which was so far lacking (even in the Bluetooth standard). Finally, as requested,
we thought again about the attack root causes, we reduced them from five to
four and we moved them in the discussion section (Section 7).

Presentation of the BLUR attacks (Section 4)
We worked on Section 4 to simplify the presentation of our attacks. In particular,
we introduce the attacks by first presenting a high-level attack strategy in 4.3
that explains the attacker’s tricks. Then, we improve the technical description
of each presented attack both in text and visually by coloring in red the fields
modified by the attacker. Overall Section 4 should be self-contained and use the
right level of abstraction to let the reader appreciate attacks and their novelty.
For example, we want to make clear that is not only yet another attack abusing
“Just Works”.

Re-implementation of CTKD’s derivation function (Section
5)
We worked on Section 5 to clarify our re-implementation of the CTKD key
derivation function. In 5.3 we clarify that what we are not re-implementing
the whole CTKD protocol but focus on its key derivation function and that
our implementation is not required to conduct the attack. Moreover, we also
rewrote 5.2 to better explain why we needed to build our attack device and

1

what its capabilities are compared to standard laptops, smartphones, and even
software-defined radios.

Attacks’ root causes and countermeasures (Section 7)
We improve our analysis of the BLUR attacks in Section 7. In 7.1 we re-wrote
our description of the presented cross-transport issues (CTI) and we clearly state
these CTIs represent the attacks’ root causes and that were extrapolated from
the BLUR attacks. We also address the reviewers’ concerns with the proposed
countermeasures by rewriting 7.2 such that it is clear which Countermeasure
is needed to fix which attack and/or cross-transport issue. We rewrote 7.3 to
better distill our lesson learned. Regaling why the presented issues are in the
standard, we cannot comment as we are not part of the Bluetooth SIG.

Attacks’ comparison with related work (Section 8)
We were asked to place the BLUR attacks in the context of prior related work.
To address this comment, we added Table 3 which compares the BLUR attacks
with state-of-the-art attacks on BT or BLE. With the help of Table 3 we want
to clearly communicate what is the role of the BLUR attacks withing other
standard-compliant and implementation-specific examples. It should be now
clear that the BLUR attacks reach unprecedented goals such as persistence, and
effectiveness regardless of the victim’s state and targeted transport.

2

BLURtooth: Exploiting Cross-Transport Key Derivation in
Bluetooth Classic and Bluetooth Low Energy

Anonymous Author(s)

ABSTRACT
The Bluetooth standard specifies two incompatible wireless trans-
ports: Bluetooth Classic (BT) for high-throughput services and
Bluetooth Low Energy (BLE)for very low-power services. Despite
the similarity in name and use of similar security mechanisms,
BT and BLE

:
.
:::
The

:::
two

::::::::
transports

:
have different security architec-

tures and threat models . In particular, pairing enables two devices
to establish a long term key to secure the communication. Two
devices

::
and

::::::
provide

::::::::
dedicated

:::::
pairing

:::::::
protocols

::
to

:::::::
establish

:::::::
long-term

::::
keys.

::::::::::
Traditionally,

::::
two

:::::
devices

::::::
would have to pair over BT and

BLE to use both transports securely. Since pairing the same devices
twice is considered “user-unfriendly”

::::::
securely.

:::
But

:::
in

::::
2014, Blue-

tooth v4.2 introducedCross-Transport KeyDerivation (CTKD)
:::::::
addressed

:::
this

:::::::
usability

::::
issue

::
by

:::::::::
introducing

::::::::::::
Cross-Transport

:::
Key

::::::::
Derivation

::::::
(CTKD)

::
for

:::
BT

:::
and

::::
BLE. CTKD allows two devices to pair once,

either over BT or BLE, and generate both BT and BLE long term
keys . Despite CTKD allowing traversal of

::::::::
establishing

:::
BT

:::
and

:::
BLE

:::::
pairing

::::
keys

::::
just

::
by

::::::
pairing

::::
over

:::
one

::::::::
transport.

::::::
Despite

:::
the

:::
fact

:::
that

:::::
CTKD

::::::
crosses the security boundary between BT and BLE, the

security implications of CTKDhave not yet been investigated
:::::::
Bluetooth

::::::
standard

::::
does

:::
not

::::::
include

:::::
CTKD

::
in

::
its

:::::
threat

:::::
model

:::
and

::::
does

:::
not

::::::
provide

:
a
:::::::
complete

:::::::::
description

::
of

:
it.

We present the first
::
To

::::::
address

:::::
these

:::::
issues,

:::
we

::::::
present

:
a
:::
full

::::::::::::
characterization

::
of

:::::
CTKD

:::::::
obtained

:::
via

:::::::::::::::
reverse-engineering

:::
and

:
a

security analysis of CTKDand identify .
:::::
Based

::
on

::::
our

::::::
findings

::
we

::::::::
introduce

:::
four

:::::::::::::::
standard-compliant

::::::
attacks

::
on

:::::
CTKD

:::::::
breaking

::
the

::::::::
strongest

::
BT

:::
and

::::
BLE

::::::
security

::::::
modes.

:::
Our

:::::
attacks

:::
are

:::
the

:::
first

:::::::
examples

::
of cross-transport issues at the Bluetooth specification

level. These issues enable, for the first time, exploitation of both
:::::
attacks

:::
for

::::::::
Bluetooth,

:
as
::::
they

:::::
enable

:::::::
breaking BT and BLE by attacking

either transport. Based on the identified issues, we demonstrate
four novel cross-transport attacks resulting in deviceimpersonation,
trafficmanipulation, and malicious session establishment

::::::
targeting

:::
just

:::
one

::
of

::
the

::::
two.

::
In

::::::
contrast

::
to

::::
prior

:::::::::::::::
standard-compliant

:::::
attacks,

:::
our

:::::
attacks

:::
do

:::
not

::::::
require

:::
the

:::::::
attacker

::
to

::
be

::::::
present

:::::
when

:::
the

:::::
victims

:::
are

:::::
paring

::
or

::::::::::
establishing

:::::
secure

:::::::
sessions,

:::
and

::::
their

::::
effect

:
is
::::::::
persistent.

:::
We

::::::
describe

::::
how

::
the

::::::
attacks

:::
can

::
be

:::
used

::
to

::::::::::
impersonate

:::
and

:::
take

::::
over

:::
any

::::::
device,

::::::::::::::
man-in-the-middle

:::::
secure

:::::::
sessions,

:::
and

::::::
establish

:::::::::
unintended

:::::::
sessions

::
as

::
an

::::::::::
anonymous

:::::
device. We refer

to them as BLUR attacks
:::
our

::::::
attacks

::
as

::::
BLUR

::::::
attacks, as they blur

the security boundary between BT and BLE. The BLUR attacks are
standard-compliant and therefore apply to all devices supporting
CTKD, regardless of implementation.We successfully demonstrate
::
We

::::::
provide

::
a

::::::
low-cost

::::::::::::
implementation

::
of the BLUR attacks

:::
and

::
we

:::::::::
successfully

::::::
evaluate

:::::
them on 13 devices with 10 unique Bluetooth

chips , and discuss effective countermeasures
::::
from

::::::
popular

::::::
vendors

:::
such

:::
as

:::::::
Cypress,

::::
Dell,

::::::
Google,

::::::
Lenovo,

::::::::
Samsung,

::::
and

::::
Sony.

:::
We

:::::
discuss

:::
the

::::
root

:::::
causes

::
of

:::
the

:::::
BLUR

:::::
attacks

::::
and

::::::
present

::::::
effective

:::::::::::::
countermeasures

:
to
:::
fix

::::
them. We disclosed our findings and coun-

termeasures to the Bluetooth SIG in May 2020.
:::
2020

::::
and

::::::
received

::::::::::::
CVE-2020-15802.

:

1 INTRODUCTION
Bluetooth is a pervasive wireless technology used by billions of de-
vices including mobile phones, laptops, headphones, cars, speakers,
medical, and industrial appliances [?]. Bluetooth is specified in an
open standard maintained by the Bluetooth special interest group
(SIG). The latest version of the standard

:
,
:::
and

::
its

:::::
latest

:::::
version

:
is

5.2 [?]. The standard specifies two different, incompatible wireless
transports,

::::::::
transports:

:
Bluetooth Classic (BT) and Bluetooth Low

Energy (BLE). BT is best suited for
:::::::::::::::
connection-oriented

:::
and

:
high-

throughput use cases, such as streaming audio and voice calls, while
BLE is best suited for very low-power .

:::::
While

:::
BLE

::
is
::::::::
optimized

::
for

:::::::::::
connection-less

::::
and

::::::::::::
very-low-power use cases such as localization

and monitoring
:::::
digital

::::::::::::
contact-tracing.

As BT and BLE were introduced at different points in time to
address different use cases, the standardmaintains separate security
architectures and threatmodels

:::
The

::::::::
Bluetooth

::::::
standard

::::::
defines

::::::
different

::::::
security

::::::::::
architectures

:::
and

:::::
threat

::::::
models

:
for BT [? , p. 947] and

BLE [? , p. 1617].While these security architectures address different
threat models, they use similar security mechanisms, including
::::
Both

:::::::
transports

:::::::
provide pairing and secure session establishment

:::::::
protocols. Pairing enables devices to establish a

:::
the

::::::::::
establishment

:
of
:
shared long term key

:::
keys, and secure session establishment

enables
:::::
allows paired devices to establish a secure communication

channel by negotiating a session key that is
:::::
create

:
a
:::::
secure

::::::
channel

::::::
through

:
a
::::::
(fresh)

:::::
session

:::
key

:
derived from the pairing long term

key.
Devices that support both BT and BLE

:::::::::
Traditionally,

::::
two

:::::
devices

:::::
would have to pair twice to use both transports securely.

::::
over

::
BT

:::
and

:::
BLE

::
to

:::::::
securely

:::
use

::::
both.

:::::::
However,

::::::
pairing

:::
the

::::
same

::::::
devices

:::
two

::::
times

::
is
::::::::
considered

:::::::::::::
user-unfriendly.

::
To

::::::
address

:::
this

:::::::
usability

::::
issue, Bluetooth v4.2 (released in 2014) introduced Cross-Transport
KeyDerivation (CTKD) tomitigate the “user-unfriendly” requirement
to pair the same devices twice. After pairing on one transport,
CTKD allows the creation of a second long term key for the other
transport

::
for

::
BT

:::
and

::::
BLE

::
in

::::
2014.

:::::
CTKD

:::::
enables

::
to

:::
pair

::::
two

:::::
devices

::::
once,

:::::
either

::
on

::
BT

::
or
::::
BLE,

:::
and

::::::::
negotiate

::
BT

:::
and

::::
BLE

:::::
pairing

::::
keys

::::::
without

:::::
having

::
to

:::
pair

::
a

:::::
second

::::
time [? , p. 1401]. For example, two

devices can pair over BT, generate the BT long term
:::
BLE

:::::::
declaring

:::::
CTKD

::::::
support,

:::::
agree

::
on

::
a
:::
BLE

::::::
pairing

:
key, and then run CTKD

to derive the BLE long term key (without having to pair over BLE
)
::::
derive

:
a
:::
BT

::::::
pairing

:::
key

::::::
without

::::
using

:::
BT.

:::::::::::
Alternatively,

:::
they

:::
can

::
use

::::::
CTKD

::::
from

:::
BT

::
to

:::::
derive

:::
BT

:::
and

::::
BLE

::::::
pairing

::::
keys. All ma-

jor Bluetooth software stacks (
::::
(e.g., Apple, Linux, Android, and

Windows) and hardware providers (
:::
e.g., Cypress, Intel, Qualcomm,

Broadcom, Apple, Sony, and Bose) implement CTKD.
::::::
support

:::::
CTKD.

1

Anonymous submission #9999 to ACM CCS 2021

:::::::
Actually, Apple presented CTKD as a core “always on” Bluetooth
:::
and

::::::::
always-on feature to improve

:::::::::
Bluetooth’s usability [?].

We present the first security analysis of CTKD, uncovering
::::::::::
Security-wise,

:::::
CTKD

:::
has

:::
not

::::::
received

:::
any

:::::::
attention

::::
from

:::
the

::::::
research

::::::::
community

:::
and

::
is

::::
only

::::::
partially

:::::::::
documented

::
in

:::
the

:::::::
Bluetooth

:::::::
standard.

::
In

:::::::
particular,

::::::
CTKD

:
is
:::
not

::::
part

::
of

::
the

::::::::
Bluetooth

:::::
threat

:::::
model

:::
and

::
the

:::::::
standard

::::
does

::::
not

::::::
provide

::
a

:::::::
complete

:::::::::
description

::
of

::
it.
:::
On

::
the

:::::
other

::::
hand,

:::::
CTKD

::
is

:
a
::::
very

::::::::
interesting,

::::::::::::
yet-unexplored,

:::::
attack

::::::
surface,

::
as

:
it
::
is

:
a
:
standard-compliant security issues. Those issues

are the first examples of cross-transport vulnerabilities for Bluetooth
::::::
feature,

:
is
::::
used

:::::::
together

::::
with

:::
the

::::
most

::::::
secure

:::::
modes

::
of

:::
BT

:::
and

:::
BLE

::::
(i.e.,

:::::
Secure

:::::::::::
Connections),

::
is

::::::
crossing

:::
the

:::::::
security

:::::::
boundary

::::::
between

:::
BT

:::
and

::::
BLE,

:::
and

::
is

:::::::::
transparent

:
to
:::
the

:::::::
end-user.

::
In

::
our

:::::
work,

::
we

::::::
provide

:
a
:::::::
complete

:::::::::
description

::
of

:::::
CTKD

::::::
obtained

::
by

::::::
merging

:::
the

:::::::
scattered

:::
and

:::::::::
incomplete

:::::::::
information

::::
about

:::::
CTKD

::::
from

::
the

::::::::
Bluetooth

:::::::
standard,

:::
and

:::
the

::::
result

::
of

:::::::::::::::
reverse-engineering

:::::::::
experiments

::::::::
conducted

::::
with

:::::
actual

::::::
devices. Based on our findings,

we demonstrate four cross-transport attacks, enabling device impersonation,
traffic interception, and trafficmanipulation, as well as unintended
device sessions

:::::::::
description,

::
we

::::::::
performed

::
a
::::::
security

::::::::
evaluation

::
of

:::::
CTKD

:::
and

::
we

::::::
present

::::
four

:::::
novel

:::
and

:::::::::::::::
standard-compliant

:::::
attacks

::
on

:::::
CTKD.Our attacks enable BT and BLE cross-transport exploitation

, are standard-compliant and likely affect all devices supporting
CTKD. We name our attacks BLUR attacks, as by exploiting CTKD
they blur the security boundary between

::
are

:::
the

:::
first

:::::::
examples

::
of

:::::::::::
cross-transport

:::::::::
exploitation

:::
for

::::::::
Bluetooth,

::
as

::::
they

:::::
exploit

:::
BT

:::
and

:::
BLE

::::
only

::
by

:::::::
targeting

:::
one

::::::::
transport.

:::
The

:::::
attacks

:::
are

::::
very

:::::::
effective

:
as
::::
they

:::
can

:::::
defeat

::
all

:
BT and BLE

.
::::::
security

:::::::::
mechanisms

::::::::
including

:::::
Secure

:::::
Simple

::::::
Pairing

::::
(SSP),

:::::
Secure

:::::::::
Connections

::::
(SC),

:::
and

:::::
strong

::::::::::
associations. In contrast to previously

published attackson BT and BLE
::::
prior

:::::::::::::::
standard-compliant

:::::
attacks [?

? ? ? ? ? ? ? ? ? ?], our attacks do not require the attacker to
be present during pairing or

:::
and

:
secure session establishment .

Therefore, our attacks have lower requirements for the attacker
while still breaking

::
and

::::
they

:::::
result

::
in

:
a
::::::::
persistent

:::::::::
compromise

::
of

::
the

:::::::
victims.

::::
Using

:::
our

::::::
attacks

:::
we

:::
can

:::::
reach

::::::
several

:::::::::
high-impact

:::::
goals.

::
In

:::::::
particular,

::::
they

:::::
enable

::
to

:::::::::
impersonate

:::
and

::::
take

:::
over

:::::
secure

:::::::
sessions

::::
from

:::
any

::
BT

::
or

::::
BLE

:::::
device,

::::::::::::::
man-in-the-middle

:::
BT

:::
and

:::
BLE

:::::
secure

::::::
sessions,

::::
and

:::::::
establish

:::::::::
unintended

:::
BT

:::
and

::::
BLE

:::::::
sessions

::::
with

:
a

:::::
victim

:::::
device

::::
while

:::::::::
remaining

:::::::::
anonymous

:::
and

::::::
without

:::::::
breaking

::::::
existing

::::::
security

:::::
bonds.

:::
We

::::
name

:::
our

::::::
attacks

::::
BLUR

:::::
attacks

:
,
::
as

:::
they

:::
blur

:::
the

::::::
security

:::::::
boundary

:::::::
between BT and BLEsecurity guarantees.

We implement the BLUR attacks using a widely available
::
We

::::::
provide

:
a
:::::::
low-cost

::::::::::::
implementation

::
of

::
the

:::::
BLUR

:::::
attack

:::::
based

::
on

:
a

::::
Linux

:::::
laptop

::::
and

:
a
:
Bluetooth development boardconnected to a

laptop running Linux and developing custom software based on
open-source tools. This makes reproducing

:
.
:::
We

:::::
show

:::
that

:
the

BLUR attacks simple and affordable. Our evaluation demonstrates
that all tested devicesare vulnerable. We will release our tools to
the public after the responsible disclosure process completes. We
use our attack implementation to evaluate

::
are

:
a
:::
real

:::
and

:::::::::::::::
standard-compliant

::::
threat

:::
by

:::::::::
successfully

:::::::::
conducting

::::
them

::
on

:
a
::::::
diverse

::
set

::
of
:::::::
devices.

::
In

:::::::
particular,

:::
we

:::
use

::
our

::::::::::::
implementation

::
to

::::::
exploit 13 devices, with

:::::
unique

::::::
devices

::::::::
employing

:
10 unique Bluetooth chips , from the

::::
from major hardware and software vendors , e.g.,

:::
(i.e., Broadcom,

Cambridge Silicon Radio(CSR), Cypress, Google, Intel, Linux, Qual-
comm, and Windowsand representing all Bluetooth versions that
support

:
)
::::::::::
implementing

:::
the

::::
most

::::::
common

::::::::
Bluetooth

::::::
versions

:::::::::
supporting

CTKD (i.e.,
:::::::
Bluetooth

:::::::
versions

:::
4.1,

:
4.2, 5.0, and 5.1)and even a

device supporting Bluetooth version 4.1 to which CTKD has been
backported. .

:

::
To

::::::::
concretely

::::::
address

:::
the

:::::::
presented

::::::
attacks

:::
we

::::
infer

::::
their

:::
root

:::::
causes

::
by

:::::
listing

::::
four

:::::::::::
cross-transport

:::::
issues

::::
with

:::
the

:::::::::
specification

:
of
::::::
CTKD.

:::::
Then,

:::
we

::::::
address

:::::
those

:::::
issues

:::
and

:::
the

::::::
related

:::::
BLUR

:::::
attacks

:::
by

::::::::
proposing

:::
four

:::::::
effective

:::::::::::::
countermeasures

::::
that

:::
can

::
be

::::::::::
implemented

::
at

:::
the

:::::::::::::
operating-system

::::
level

:::
(i.e.,

:::
in

::
the

::::::::
Bluetooth

::::
Host)

::::
with

:::
low

:::::
effort. We summarize our contributions as follows:

• We perform the
::::::::::::::
reverse-engineered

:::::
CTKD

:::
and

::::::::
performed

::
its first security analysisof CTKD(Section 3), and show that
it enables crossing the security boundary between BT and
BLE. We identify novel and very serious issues, enabling
.
:::::
Based

::
on

::::
that,

::
we

:::::
design

::::
four

:::::::::::::::
standard-compliant

:::::
attacks

::
on

:::::
CTKD.

:::
The

::::::
attacks

::::
break

::
all

:::
BT

:::
and

:::
BLE

::::::
security

::::::::::
mechanisms

:::::::
including

::::
SSP,

::
SC,

::::
and

:::::
strong

:::::::::
association,

::
do

:::
not

::::::
require

::
the

:::::::
attacker

:
to
::
be

::::::
present

:::::
while

::
the

::::::
victims

::
are

::::::
pairing

:::
and

:::::::::
establishing

:::::
secure

:::::::
sessions,

:::
and

::::
their

:::::
effect

:
is
::::::::
persistent.

:::::::
Moreover,

:::
our

::::::
attacks

::
are

:::
the

:::
first

:::::::
examples

::
of cross-transport

attacks between
::
for

::::::::
Bluetooth

::
as

::::
they

:::::
exploit

:
BT and BLE

::
by

:::::::
targeting

:::::
either

::
of

::
the

::::
two.

• We propose four attacks to exploit the issues in CTKD
(Section 4). Our attacks allow impersonation , interception,
trafficmanipulation, and unintended sessions. In Section 5,
we

:::::
result

:
in
::::::::::::
impersonation

:::
and

:::
take

::::
over

::
of

::::::
devices,

::::
MitM

:::
their

::::::
secure

::::::
sessions,

:::
and

:::::::::::
establishment

:
of
:::::::::
unintended

::::::
sessions

::
as

::
an

:::::::::
anonymous

:::::
device.

:::
We

::::
name

:::
our

:::::
attacks

:::::
BLUR

::::::
attacks,

::
as

:::
they

::::
blur

::
the

:::::::
security

:::::::
boundary

:::::::
between

:::
BT

:::
and

::::
BLE.

•
::
We

:
present a low-cost implementation of the

:::::
BLUR attacks

based on a Linux laptop and a Bluetooth development
board.

• Weconfirm that real-world BT and BLE
::
We

:::
use

:::
our

::::::::::::
implementation

:
to
:::::::
confirm

:::
that

:::::
actual devices are vulnerable to the BLUR

attacks by evaluating our attacks on
:::::::::
successfully

:::::::
attacking

13 unique devices (Section 6
:::::::
different

::::::
devices

::::::::
employing

10
:::::
unique

::::::::
Bluetooth

:::::
chips

:::
and

:::::::
covering

:::
the

:::::::
majority

::
of

:::::::
Bluetooth

:::::::
versions

:::::::::
compatible

::::
with

:::::
CTKD

::::
(e.g.,

:::
4.1,

:::
4.2,

::
5.0,

::::
and

:::
5.1). We provide concrete

:::::
discuss

::::
four

:::::::
concrete

::::::
attacks’

:::
root

:::::
causes

::
in
:::
the

::::::::::
specification

::
of

:::::
CTKD

:::
and

:::
we

::::::
provide

:::
four

:::::::
practical countermeasures to fix the presented

issues.
::::
them.

:

• We disclosed our findings and countermeasures to the Blue-
tooth SIG in May 2020. The Bluetooth SIG acknowledged
our findings

::::
them and assigned CVE-2020-15802 to the

BLUR attacks. In September 2020, the Bluetooth SIG re-
leased a security note about our report at (without contact-
ing us)

:
at
:
https://www.bluetooth.com/learn-about-bluetooth/

bluetooth-technology/bluetooth-security/blurtooth/.

2 BACKGROUND
We now compare

::
the

::::
most

:::::::
relevant

::::::
features

::
of

:
BT and BLE, and

introduce CTKD.
:
.
::
To

:::::::
provide

:::::
precise

::::::::
technical

:::::::::
descriptions

:::
we

2

https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/

Anonymous submission #9999 to ACM CCS 2021

:::::
follow

:::
the

:::::::
Bluetooth

:::::::
standard

:
’s

::::::::::
master/slave

:::::::::
terminology

::::::
instead

:
of
:::::
more

::
apt

:::::
terms

:::
like

::::::::::::
leader/follower.

:

2.1 A Comparison of BT and BLE
BT and BLE are two wireless transports specified in the Bluetooth
standard. These transports are incompatible (i.e., while they use
the same 2.4 GHz band the physical

::::::
e.g.,they

:::
use

:::::::
different

::::::
physical

::::
layers

:
and link layersare different) and are designed to complement

each other. BT is used for high-throughput and connection-oriented
services, such as streaming audio and voice. BLE is used for very
low-power and low-throughput services such as localization and
monitoring. Typically, high-end

:::::::
High-end devices, such as laptops,

smartphones,
:::::::
headsets, and tablets, provide

::::
both BT and BLE(in a

single radio chip), while low end devices such as mice, keyboards
and wearables provide either BT or BLE.

BT and BLE have similar security mechanisms but different secu-
rity architectures and threat models. Both

:
In

::::::::
particular,

::::
both trans-

ports provide a pairing mechanism, named Secure Simple Pairing
(SSP), to let two devices establish a

:::::
shared long term key.

:::
BLE

:::
SSP

:
is

::::::::
performed

:::
over

:::
the

:::::::
Security

:::::::
Manager

::::::
Protocol

:::::
(SMP)

:::::::::
[? , p. 1666]

,
:::::
while

:::
BT

:::
SSP

::::
uses

::
the

::::
Link

:::::::
Manager

:::::::
Protocol

:::::
(LMP)

::::::::
[? , p. 568]

.
:
During pairing, BLE allows negotiating the entropy of the long
term key while BT does not. Both transports

:::::::::
Additionally,

:::
BT

:::
and

:::
BLE provide a secure session establishment mechanism to derive a
session key from the long term keyand protect the communication

::::::
establish

:
a
:::::
secure

::::::::::::
communication

::::::
channel

::::
using

::
a
:::::
session

:::
key

::::::
derived

::::
from

::
the

::::::::
long-term

::::::
pairing

:::
key. During session establishment, BT al-

lows negotiating the entropy of the session key while BLE
:::
the

:::
BLE

:::::
session

:::
key

:
inherits the entropy of the session keyfrom the entropy

of the long term key
:::::::
associated

::::
long

::::
term

:::
key.

::
BT

:::
and

::::
BLE

:::
use

:::
the

::::
same

::::::
notion

::
of

::::::
pairable

::::
and

:::::::::
discoverable

:::::
states.

:
If
::
a
:::::
device

::
is

::::::
pairable

::::
then

::
it
:::
will

::::::
accept

::::::
pairing

::::::
requests

::::
from

::::
other

::::::
devices.

::
If
::
it
::
is

:::::::::
discoverable

::
it
:::
will

::::::
reveal

::
its

::::::
identity

::::
when

:::::
other

:::::
devices

::::
scan

:::
for

:::::
nearby

:::::::
devices.

:::::::
Contrary

::
to

::::::
popular

::::
belief

:::
[?],

::
a

:::::
device

:::
can

:::::
answer

::
to

:
a
::::::
pairing

::::::
request

::::
even

:
if
::
it

:
is
:::
not

:::::::::
discoverable.

:::
For

:::::::
example,

::
if
:::
the

::::
user

:::::
knows

:::
the

::::
MAC

::::::
address

::
of

::
her

::::
pair

::
of

:::::::::
headphones

:::
she

:::
can

:::::::
complete

:::
BT

::
or

:::
BLE

::::::
pairing

::::
from

::
her

:::::
laptop

:::::::
without

:::::
putting

:::
the

:::::::::
headphones

:::
into

::::::::::
discoverable

:::::
mode.

BT and BLE support
::::::
provide a “Secure Connections” mode that

uses FIPS compliant security primitives such as AES-CCM for au-
thenticated encryption, Elliptic-CurveDiffie-Hellman (ECDH) over
P-256 for key agreement, mutual authentication procedures for the
long term key, and AES-CMAC for keyed hashing. BT and BLE
have similar association procedures that can be used to protect the
pairing phase against

:
.
::::::::::
Furthermore,

:::
they

::::::
provide

::::::
similar

::::
ways

::
to

:::::
protect

::::::
against

:
man-in-the-middle attacks

:::::
(MitM)

::::::
attacks

:::::
during

::
the

::::::
pairing

::::
phase

::::::
defined

::
in

:::
the

::::::
standard

::
as

:::::::::
association

::::::::
procedures.

Two examples of associations are “Just Works ”
:::
Just

:::::
Works that pro-

vides no protection and “Numeric Comparison ”
::::
MitM

::::::::
protection

:::
and

::::::
Numeric

::::::::::
Comparison that provides protection againstman-in-the-middle

attacks a
:::::
MitM

:
by requiring user interaction

:::::
during

:::::
pairing

:
(e.g.,

the user has to manually confirm that she sees the same numeric
code on the pairing devices).

::::
Both BT and BLE define

:::
use

:
a
:::::::::
master-slave

:::::::
medium

:::::
access

::::::
protocol

::
but

:::::
define

:::
the

:
master and slave roles in different ways

::::::::
differently.

For BT, the master is the connection initiator, the slave is the
connection responder, and roles can be switched . Both master
or slave can request a role switch almost anytime

:::::::::
dynamically

::
by

:::
any

::::
party

:
after a radio link between the two is established. For

BLE,
::
the

:
master and slave roles are fixed and switching roles is

not supported. The master
:::::
cannot

::
be

::::::::
switched.

:::
The

::::
BLE

:::::
master

::::::
(defined

::
as

::::::
central)

:
acts as the connection initiator (BLE central)

and the slave as
::
and

:
the

:::
BLE

::::
slave

::::::
(defined

:::
as

::::::::
peripheral)

::
as
:::
the

connection responder(BLE peripheral). High-end BLE devices, such
as laptops and smartphones, implement both master and

:::::
support

:::
both

::::
BLE

:::::
master

:::
and

::::
BLE slave modes and are typically used as the

master
:::
BLE

::::::
masters, while low-end devices, such as fitness trackers

or smartwatches, typically implement only the
::
and

:::::::::::
smartwatches,

::::::
support

:::
only

:::
the

::::
BLE slave mode.

3 SECURITY ANALYSIS OF CTKD

::
In

:::
this

:::::
section,

:::
we

::::::
present

::
our

:::::::
security

::::::
analysis

::
of

:::::
CTKD.

::
In

::::::::
particular,

:
in
::::::
Section

:::
3.1

:::
we

:::::::
describe

::::
what

::
is

::::::
publicly

::::::
known

:::::
about

:::::
CTKD,

:::
and

::
in

::::::
Section

::
3.2

:::
we

:::::::::
complement

::
it
::
by

::::::::::::::::
reverse-engineering

:::
how

:::::
CTKD

:::::
works

::
in

::::::
practice

::
for

:::
BT

:::
and

::::
BLE.

3.1 Public Information about CTKD
Two devices that support BT and BLE have to pair

:::::
Before

::
the

::::::::::
introduction

:
of
::::::
CTKD,

::
a

:::
user

::::
had

::
to

:::
pair

:::
the

:::::
same

:::
two

::::::
devices

:
over BT and

over BLE
:::
BLE

:::
(i.e.,

::::
two

:::::
times)

:
to use both transports securely.

Pairing the same two devices twice is considered “
::
The

::::::::
Bluetooth

:::
SIG

::::::::
considered

:::
this

::::::::
procedure user-unfriendly ” and the Bluetoothstandard

version
:::
and

:::::::
improved

:::::::::
Bluetooth’s

:::::::
usability

::
by

:::::::::
introducing

:::::
CTKD

::
for

::::::::
Bluetooth 4.2(released in 2014) introduces CTKDto address this

issue. As shown in Figure ??, CTKD enables two devicesto pair
once,

::
in

::::
2014.

:::
By

::::
using

::::::
CTKD,

:::
two

::::::
devices,

::::
pair

:::
only

:::
one

::::
time

:
ei-

ther over BT or BLE, and then
:::
can securely use both [? , p. 280].

For example, a user can pair a headset
:::
pair

:
of
:::::::
headsets and a laptop

:::
can

:::
pair over BLE, without putting the headset in BT discoverable

mode, and then securely connect the headset and the laptop over
BT (without having to pair over BT). It is also possible to do the
initial pairing over BT , and use

:::
run

:::::
CTKD

:::
to

:::::
derive

:
a
::::::
second

:::::
pairing

:::
key

:::
for

::
BT

:::::::
(without

::
the

::::
user

:::::
having

::
to

:::
put

::
the

:::::::
headsets

:::
into

::
BT

::::::
pairing

:::::
mode).

:::::::::::
Alternatively,

:::
the

:::::
devices

:::
can

::::
pair

:::
over

:::
BT

:::
and

:::
run CTKD to generate the BLE pairing key.

::
In

::::
both

:::::::
scenarios,

::::
after

:::::
pairing

::::
once

:::
the

:::::::
headsets

:::
and

:::
the

:::::
laptop

:::
can

::::
start

:::::
secure

::::::
sessions

:::
over

:::
BT

:::::
and/or

::::
BLE.

Before explainingCTKD, it is important to review the differences
between pairable (bondable) and discoverable states for BT andBLE

:::
The

:::::::
Bluetooth

:::::::
standard

:::::::
specifies

:::
that

:::::
CTKD

:::::
should

::
be

::::
used

:::
only

::::
when

:
a
:::::
device

:::::::
supports

:::::
Secure

::::::::::
Connections

::::
mode

:::
for

:::
that

::::::
specific

:::::::
transport

:::::::::
[? , p. 1401].

:::::
Secure

::::::::::
Connections

::
is

:
a
::::::
security

:::::
mode

:::
that

:::
was

:::::::::
introduced

::::
both

::
for

:::
BT

::::
and

:::
BLE

:::
to

::::::
enhance

:::::
their

::::::
security

:::::::
primitives

:::::::
without

::::::
affecting

::::
their

::::::
security

::::::::::
mechanisms.

::
In

::::::::
particular,

:::::
Secure

:::::::::
Connections

::::::::
mandates

::
the

:::::
usage

::
of

:::::::::::
FIPS-compliant

::::::::
algorithms

:::
such

::
as
:::::::::
AES-CCM,

:::::::::::::
HMAC-SHA-256,

:::
and

:::
the

:::::
ECDH

:::
on

:::
the

::::
P-256

::::
curve

::::::::
[? , p. 269]

:
.
::
As

::
a
::::::::::
consequence,

:::
an

::::::
attacker

::::
who

::::
can

::::
break

:::::
CTKD

:::
can

::::
break

:::
BT

:::
and

::::
BLE’s

:::::::
strongest

:::::::
security

::::
mode. If a device

is pairable then it will accept pairing requests from other devices.
If if it is discoverable it will reveal its identity when other devices
scan for nearby devices. Contrary to popular belief, a device is not

3

Anonymous submission #9999 to ACM CCS 2021

required to be both discoverable and pairable for pairing but it only
needs to be pairable. The device that initiates pairing only needs to
know the identity (MAC address) of the pairable target device. For
example, when pairing a laptopwith headphones over BT, typically
only the headphones are discoverable and pairablewhile the laptop
is only pairable. Hence, it is possible to pair with a device even if
it is not discoverable [?].

CTKD overview. CTKD is used by two devices who paired and
share a long term key over BLE to derive a long term key for BT.
CTKD can also be used to derive BLE pairing keys after two devices
paired over BT.

The Bluetooth standard specifies the same CTKD function to
derive

:::
also

:::::::
describes

::::
how

:::::
CTKD

::::::
derives

::::::
pairing

::::
keys

::
for

:::
BT

:::
and

:::
BLE

:::::::::
[? , p. 1658].

:::::
CTKD

::::
uses

:::
the

::::
same

:::
key

::::::::
derivation

:::::::
function

::
for

BT and BLElong term keys. This
:
,
:::
and

:::
the

:
function takes as in-

puts a 128-bit (16-byte) key and two 4-byte strings and derives a
128-bit (16-byte) keyusing AES-CMAC (see Section 5.3 for CTKD’s
internals). CTKD for BT derives a BLE long term .

:::::
What

::::::
changes

::::::
between

:::
BT

:::
and

::::
BLE

::
are

:::
the

::::::
strings

::::
used

::
as

:::::
inputs.

:::::
When

:::::
CTKD

:
is
::::
used

::
to

:::::
derive

::
a
:::
BLE

::::::
pairing

:
key (KBLE) from a BT long term

:::::
pairing

:
key (KBT) and the strings "tmp2" and "brle", while CTKD

for BLE derives from and the strings "tmp1" and "lebr". As the
standard defines constant strings and no fresh nonces as inputs,
the CTKD function derives the same output key when reusing the
same input

:::
then

:::
the

::::
key

::
is

::::::
derived

::::
using

:::
the

::::::
“tmp2”

::::
and

::::
“brle”

:::::
strings.

:::
In

:::
the

::::
other

::::
case,

:::
the

::::::::
derivation

::
is
:::::::::
performed

::::
using

:::
the

:::::
“tmp1”

:::
and

:::::
“lebr”

::::::
strings.

:::
We

::::
note

:::
that

:::
the

:::::
CTKD

:::
key

::::::::
derivation

::::::
function

::
is

:::::::::
deterministic

:
,
::
as

::::
using

:::::
CTKD

::
on

:::
the

::::
same

::::
input

:::
key

:::
will

:::::
always

:::::::
generate

:::
the

::::
same

:::::
output

:
key.

CTKD is broadly supported by , e.g.,
::::::
Despite

::::
being

:::
an

::::::
optional

::::::
feature,

::::
from

:::
the

::::::
Internet

:::
and

::::
our

:::::::::
experiments

:::
we

:::
can

:::::::
conclude

:::
that

:::::
CTKD

:
is
::::::::
supported

::
by

::
all

:::::
major

:::::::
hardware

:::
and

:::::::
software

::::::
vendors

:::::::
including Apple [?], Google [?], Cypress [?], Linux [?], Qual-
comm [?], and Intel [?]. CTKD is combinedwith “Secure Connections
”, a security mode that was introduced to enhance the security
primitives of BT and BLEwithout affecting their securitymechanisms.
For example , “Secure Connections” introducesAES-CCMauthenticated-encryption
for BT , and ECDH pairing for BLE.

:::::::
Actually,

::::
Apple

::::::::
presented

:
it
::
as

:
a
:::
core

::::
and

::::::::
always-on

:::::::
Bluetooth

::::::
feature

:::::
during

:::::::
WWDC

::::
2019.

3.2 Reverse Engineered Details on CTKD

:::
The

::::::::
Bluetooth

:::::::
standard

::::
lacks

:
a
::::::
section

:::::
about

:::::
CTKD

:::::::::
negotiation

:::
and

::::
usage

:::
for

::
BT

:::
and

::::
BLE,

::
but

::::::
merely

::::::
provides

:::::::
scattered

::::::::::
information.

::::
Since

:::::::
knowing

:::
such

:::::::::
information

::
is

:::::::
essential

:
to
:::::::
perform

:::
our

::::::
security

::::::
analysis,

:::
we

:::::::::::::::
reverse-engineered

::
it.

::
In

:::
this

::::::
section

:::
we

::::::
provide

::
an

:::::::
high-level

::::::::
summary

::
of

::
the

:::::::::
information

::::
that

::
we

:::::::
extracted

::::
from

:::
our

:::::::::::::::
reverse-engineering

::::::
process.

:::
To

:::
ease

:::
our

:::::::::
description

:::
we

::::::
abstract

::
the

::::::::
protocols

:
at
::
a

::::::
message

::::
level,

:::::
where

::::
each

:::::::
message

::::::
captures

:::
one

::
or

::::
more

::::::
packets

::::
sent

::::
over

:::
the

:::
air.

::::::::::
Furthermore,

:::
we

::::
refer

::
to

:::
the

:::::::
Bluetooth

::::::
master

::
as

::::
Alice,

:::
and

:::
the

::::::::
Bluetooth

::::
slave

::
as

::::
Bob.

::::
CTKD

::::
from

:::
BLE.

:::::
Figure

:
1
:::::
shows

:::::
CTKD

:::::
during

::::
BLE

::::::
pairing.

::::
Alice

:::
and

:::
Bob

:::
are

:::::::
pairable

::::
BLE

:::
and

:::::::
discover

::::
each

:::::
other

::::
using

:::::
BLE’s

::::::::
advertising

:::
and

::::::::
scanning

::::::
features.

:::::
Then,

::::
Alice

::::
and

:::
Bob

:::::::
negotiate

::::::
specific

::::::::
capabilities

:::::
using

::::::
pairing

::::::
request

:::
and

:::::::
response

::::::::
messages.

:::
The

:::::::
messages

:::::
must

::::::
contain

:::::
Secure

::::::::::
Connections

::::
(SC)

:::
and

:::::
CTKD

::::::
support,

:::::::
together

::::
with

:::
an

::::::::
association

:::::::
method

::::::
(Assoc),

::
a
:::::
source

Alice (master)

A

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request:
Assoc, ADDA, SC, CTKD, PKA, NA

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

DK = PKB · SKA

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

DK = PKA · SKB

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

BLE Key Distribution: CSRKA, IRKA

BLE Key Distribution: CSRKB, IRKB

Figure 1:
:::::
CTKD

::::::
usage

:::::::
during

::::
BLE

::::::::
pairing.

:::::
Alice

::::
and

:::
Bob

::::::::
negotiate

:::
SC

::::
and

::::::
CTKD

:::::::
support

::::::
during

::::
BLE

::::::::
pairing.

:::::
Then,

::::
they

::::::::
compute

::::
the

::::
BLE

::::::
pairing

::::
key

::::
and

:::::
from

::::
that

:::
key,

:::::
they

::::::
derive

:::
the

:::
BT

:::::::
pairing

::::
key

:::
via

::::::
CTKD

::::::::
(without

:::::::::
exchanging

::::
any

::::::::
message

::::
over

::::
BT).

:::::::
Finally,

::::
they

::::::::
generate

:::
and

::::::::
exchange

:::::::::
additional

:::::
keys

:::
for

::::
BLE

::::::::
including

::::::::
signature

::::::
(CSRK)

:::
and

:::::::
identity

::::::::
resolving

:::::
(IRK)

::::
keys.

:::::
After

:::
the

:::::::
protocol

:
is
::::::::::
completed

:::::
Alice

:::
and

::::
Bob

::::
can

::::::::
establish

::::::
secure

:::::::
sessions

::::
both

:::
for

::
BT

::::
and

::::
BLE

:::::::
(without

::::::
having

::
to

::::
pair

::::
over

::::
BT).

:::
BLE

::::::
address

:::::
(ADD),

::
a

::::
public

:::
key

::::
(PK),

:::
and

::
a

::::
nonce

:::
(N).

:::::::::
Technically,

:::::
CTKD

::::::
support

:
is
:::::::
declared

::
by

:::::
setting

::
to

:::
one

:::
the

::::
Link

:::
Key

:::
bits

::
of

::
the

::::::
Initiator

:::
and

::::::::
Responder

::::
key

:::::::::
distribution

:::
SMP

:::::
fields

:::::::::
[? , p. 1680].

::::
After

:::::::::
exchanging

::
the

::::::
pairing

::::::::
messages,

::::
Alice

:::
and

:::
Bob

:::::::
compute

:
a
:::::::::::
Diffie-Hellman

:::::
shared

:::::
secret

::::
(DH)

::::
using

::::
their

::::::
remote

:::::
public

:::
keys

:::
and

:::
local

::::::
private

::::
keys

:::
(PK).

::::
The

:::::
shared

::::
secret

::
is

::::
then

:::
used

::
to

:::::::
compute

::
the

::::
BLE

:::::
pairing

:::
key

:
(KBLE):::::

using
:
a
:::::::
dedicated

:::
BLE

::::::
pairing

:::
key

::::::::
derivation

::::::
function

:
(kdfLE:).:::::

Then,
::::
Alice

:::
and

::::
Bob

:::
use

::::::
CTKD’s

:::
key

::::::::
derivation

::::::
function

:::::
(ctkd)

::
to

:::::
derive

:::
the

:::
BT

::::::
pairing

:::
key

:
(KBT:) ::::

from
:::
the

:::
BLE

:::
key

:::
and

:::
the

::::
static

:::::
strings

::::::
“tmp1”

:::
and

:::::
“lebr”.

::::::
Finally,

:::
they

:::::::
establish

:
a
:::::
secure

::::::
session

::::
over

:::
BLE

::::
and

:::::::
exchange

::::::::
additional

::::
keys

::::
such

::
as

:::::
CSRK,

:::
and

:::
IRK.

:::::
Once

::
the

:::::::
protocol

:
is
:::::::::
concluded,

::::
Alice

:::
and

:::
Bob

:::
can

::::::
establish

::::::
secure

::::::
sessions

::::
over

::
BT

::::
and

:::
BLE

::::::
without

::::::
having

::
to

:::
pair

:::
over

:::
BT.

:

::::
CTKD

::::
from

:::
BT.

:::::
Figure

:
2
::::::
presents

:::::
CTKD

:::::::::
negotiation

::::::
during

::
BT

::::::
pairing.

::::
Alice

:::
and

:::
Bob

:::
are

::::::
pairable

:::
over

:::
BT

:::
and

::::::
discover

::::
each

::::
other

:::
BT’s

::::::
inquiry

:::::::::::
mechanisms.

:::::
Then,

::::
they

:::::::
exchange

::::::
pairing

::::::
request

:::
and

:::::::
response

:::::::
messages

:::
over

:::
BT

::
to

:::::::
negotiate

:::::
several

:::
BT

::::::::
capabilities

:::::::
(including

::::
SC),

:::
and

::
to

:::::::
exchange

::::
their

::
BT

::::::::
addresses,

::::
keys,

:::
and

::::::
nonces.

:::::
Unlike

:::::
CTKD

::
for

::::
BLE,

:::::
CTKD

::
is

::
not

::::::::
negotiated

:::
with

:::
the

:::
BT

:::::
pairing

:::::::
messages.

::::
But,

::::
Alice

:::
and

::::
Bob

:::::::
complete

:::
the

::
BT

::::::
pairing

::::::
process

::
by

::::::::
computing

:::
DH

:::
and

:::::
using

:
it
:::::::
together

::::
with

::::
their

:::
BT

:::::::
addresses

:::
and

4

Anonymous submission #9999 to ACM CCS 2021

Alice (master)

A

Bob (slave)

B

Devices pairable over BT

BT Pairing Request:
Assoc, ADDA, SC, PKA, NA

BT Pairing Response:
Assoc, ADDB , SC, PKB, NB

DK = PKB · SKA

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

DK = PKA · SKB

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

BT CTKD Request:
CTKD, CSRKA, IRKA

BT CTKD Response:
CTKD, CSRKB, IRKB

KBLE = ctkd(KBT,
“tmp2”, “brle”)

KBLE = ctkd(KBT,
“tmp2”, “brle”)

Figure 2:
:::::
CTKD

::::::
usage

::::::
during

:::
BT

:::::::
pairing.

:::::
Alice

::::
and

::::
Bob

:::::
during

:::
BT

::::::
pairing

::::::::
negotiate

:::
SC

:::::::
support.

:::::
Then,

::::
they

:::::::
compute

:::
the

:::
BT

:::::::
pairing

::::
key,

:::::
start

::
a

::::::
secure

::::::
session

:::::
over

:::
BT

::::
and

::::
send

:::
BT

::::::
CTKD

::::::::
messages

::::::::::
containing

::::::
CTKD

:::::::
support

::::
and

::::
other

:::::::
keying

:::::::
material

:::::::::
generated

:::
for

:::
BLE

:::::
such

::
as

::::::::
signature

::::::
(CSRK)

::::
and

:::::::
identity

:::::::::
resolving

::::::
(IRK)

:::::
keys.

::::::::
Notably,

:::
the

:::::
CTKD

:::::::
request

::::
and

::::::::
response

:::
are

::::::::
encoded

::
as

::::
BLE

:::::::
pairing

::::::
request

::::
and

::::::::
response

::::
and

::::::::
tunneled

:::::
over

::::
BT.

:::::::::
Afterward,

::::
Alice

::::
and

:::
Bob

:::::
derive

:::
the

::::
BLE

::::::
pairing

::::
key,

:::
via

:::::
CTKD

:::::::
(without

:::::::::
exchanging

::::
any

::::::::
message

::::
over

:::::
BLE).

:::::
After

::::
the

:::::::
protocol

::
is

::::::::
completed

:::::
Alice

::::
and

:::
Bob

::::
can

:::::::
establish

::::::
secure

:::::::
sessions

::::
both

::
for

:::
BT

::::
and

::::
BLE

:::::::
(without

::::::
having

::
to

::::
pair

::::
over

:::::
BLE).

:::::
nonces

::
to

:::::::
compute

::
the

:::
BT

:::::
pairing

:::
key

:
(KBT):::::::

through
::
the

:::
BT

:::::
pairing

:::
key

::::::::
derivation

::::::
function

:
(kdfBT:).:

::::
Then,

:::::
CTKD

:::::::::
negotiation

::::
takes

:::::
place,

::
as

::::
Alice

:::
and

:::
Bob

:::::::
establish

:
a
:::::
secure

:::
BT

::::::
session

:::
and

::::::::
exchange

:::
two

:::
BT

::::::::
messages

::::::::
containing

::
the

::::::
CTKD

:::
flag

:::
and

::::::::
additional

:::::::
security

:::::::
material

::::::
needed

:::
for

:::
BLE

:::
such

:::
as

:::::::
signature

::::
keys

::::::
(CSRK)

:::
and

::::::
identity

::::::::
resolving

::::
keys

:::::
(IRK).

::::
These

:::
two

::::::::
messages

::
are

:::::::
peculiar

:
as
::::
they

:::
are

:::::
formed

::
by

::::
BLE

:::::
pairing

::::::
packets

::::
(SMP

::::::
pairing

::::::
request

:::
and

:::::::
response)

::::
sent

::::
over

:::
BT.

::::
This

:
is

::
the

::::
first

::::::
example

::
of
::::
BLE

:::::::
tunneling

::::
over

:::
BT

:::
that

:::
we

:::::::
observed,

:::
and

::
the

::::::::
Bluetooth

:::::::
standard

::
so

:::
far

::::
lacks

:::
any

::::::
diagram

:::
or

::::::::
description

::
of

:::
this

:::::::
behavior.

::::
Once

::::::
CTKD

::
is

::::::::
negotiated,

:::::
Alice

:::
and

:::
Bob

:::
use

::
it
::
to

:::::
derive

::
the

::::
BLE

::::::
pairing

:::
key

:
(KBLE)::::

from
:::
the

:::
BT

:::
key

:::
and

:::
the

::::
static

:::::
strings

::::::
“tmp2”

:::
and

:::::
“brle”.

:::::
After

:::
the

::::::
protocol

::
is
:::::::::
completed,

::::
Alice

:::
and

:::
Bob

:::
can

::::
start

:::
BT

:::
and

::::
BLE

:::::
secure

::::::
sessions

:::::::
without

:::::
having

::
to

:::
pair

::::
over

:::
BLE.

:

::::
CTKD

:::
life

::::
cycle.

::
By

::::::::
combining

::
all

:::
the

:::::::::
information

::::::
acquired

::::
from

:::::
public

::::::::
documents,

::::::::::::::::
reverse-engineering

:::::::::::::
implementations,

:::
and

:::
our

Figure 3:
:::::
CTKD

::::
life

::::
cycle

::::
has

:::::
three

:::::::
phases:

::::::::
Discovery

:::
(to

::::::::
exchange

::::::::
features),

:::::::::::
Initialization

:::
(to

::::
agree

:::
on

:
a
:::::::
pairing

:::
key

:::
and,

::::::::
through

::::::
CTKD,

::::::
create

::
a
:::::::
pairing

::::
key

:::
for

::::
the

:::::
other

:::::::::
transport),

:::
and

::::::::::::::
Communication

::
(to

::::::::
establish

:::::
secure

:::::::
sessions

::
on

:::
BT

::::::
and/or

::::
BLE).

:::::::::
experiments,

:::
we

:::::::
represent

:::
the

:::::
CTKD

:::
life

::::
cycle

:::
for

:::
BT

:::
and

:::
BLE

::
in

::::
three

:::::
phases:

::::::::
Discovery,

:::::::::::
Initialization,

:::
and

::::::::::::
Communication.

:::::
Figure

:
3

:::::
shows

::
the

:::
life

::::
cycle

::::::::
assuming

:::
that

::::
Alice

::
is

:
a
:::::
laptop

:::
and

::::
Bob

:
a
:::
pair

:
of
::::::::::
headphones.

::::::
During

::::::::
Discovery,

:::::
Alice

:::
and

:::
Bob

:::
are

:::::::
pairable

::
on

::
the

:::::::
relevant

:::::::
transport

:::
and

::::::
discover

::::
each

::::
other.

::::::
During

::::::::::
Initialization,

::::
Alice

:::
and

:::
Bob

::::::::
negotiate

::
SC

::::
and

:::::
CTKD,

:::
use

::::
one

:::::::
transport

:::::
(either

::
BT

::
or

::::
BLE)

:::
to

:::::::
establish

:
a
::::::
pairing

:::
key,

::::
and

::::
then

:::::
derive

:
a
::::::
pairing

:::
key

::
for

:::
the

:::::
other

:::::::
transport

::::
using

::::::
CTKD

::::::
without

:::::
having

::
to
::::
pair

:
a

:::::
second

::::
time.

::::::
Finally,

::::::
during

::::::::::::
Communication

:::
the

::::::
devices

:::
are

:::
free

:
to
:::::::
establish

:::
BT

:::
and

:::
BLE

::::::
secure

::::::
sessions

::::
using

::::
their

::::::
shared

:::::
pairing

::::
keys.

::::
Each

:::::
session

::::
uses

:
a
::::
fresh

:::::
session

:::
key

::::::
derived

::::
from

:::
the

:::::
pairing

:::
key

:::
and

::::::
session

::::::
nonces.

To analyse the security of CTKD we introduce our system and
attackermodels andwe describe howCTKD is used in a non adversarial
setting. We then introduce the security issues that we discovered
with CTKD. These security issues are then exploited by our attacks
in Section 4 and addressed with concrete fixes in Section 7.2

4 BLUR ATTACKS VIA CTKD

::
We

::::
now

::::::
present

:::
our

::::
threat

:::::
model

::::
and

::
the

:::::
design

::
of

::::
four

::::
novel

:::
and

::::::::::::::
standard-compliant

::::::
attacks

::
for

:::::::::
Bluetooth.

:::
Our

:::::
attacks

:::
are

:::
the

:::
first

::::::
samples

::
of

:::::::::::
cross-transport

::::::::
exploitation

:::
for

::::::::
Bluetooth,

:::
as

:::
they

:::
are

::::::
capable

::
of

::::::::
exploiting

::
BT

::::
and

:::
BLE

::::
just

::
by

:::::::
targeting

:::::
either

::
of
:::
the

:::
two.

::::
Our

:::::
attacks

:::
are

::::::
stealthy

::
as

:::::
CTKD

::
is
:::::::::
transparent

::
to

:::
the

::::
users,

:::
and

::
do

:::
not

:::::
require

::
a

:::::
strong

::::::
attacker

:::::
model

::
as

::
the

:::::::
attacker

:::
does

:::
not

:::
have

::
to
:::
be

::::::
present

::::
when

:::
the

::::::
victims

:::
are

::::::
pairing

::
or

:::::::::
establishing

:
a

:::::
secure

::::::
session.

::
As

:::
our

::::::
attacks

:::
are

::::::
blurring

:::
the

:::::::
security

:::::::
boundary

::::::
between

:::
BT

:::
and

::::
BLE,

::
we

:::::
name

::::
them

:::
the

::::
BLUR

::::::
attacks.

4.1 System Model
Our system model considers two victims, Alice and Bob, who
want to

:::
can

:
securely communicate over BT and BLE. Alice and

Bob support CTKDand during pairing and session establishment
select the strongest security mechanisms: Secure Simple Pairing
(SSP), “Secure Connections”, and “Numeric Comparison ”. Those
security procedures are expected to protect Alice and Bob against
impersonation,

:::
The

::::::
victims

::::::
support

:::::
CTKD,

:::
and

:::
are

:::::
using

::
the

::::
most

:::::
secure

::
BT

:::
and

::::
BLE

:::::
modes,

::::::
namely,

:::
SC

:::
and

:::::
strong

:::::::::
association

:::
(e.g.,

::::::
Numeric

::::::::::
Comparison

::
if

::::
both

::::
have

:::
the

:::::::
necessary

::::
IO).

::::
This

::::
setup

:::::
should

::::::
protect

:::
the

::::::
victims

::::::
against

:::::
device

::::::::::::
impersonation,

:::::
traffic

eavesdropping, and
::::
active

:
man-in-the-middle attacks on BT and

BLE [? , p. 269]. After completing pairing, Alice and Bob can run
secure sessions over BT and/or BLE. Without loss of generality,
we assume that Alice is the BT and BLE master and Bob is the

5

Anonymous submission #9999 to ACM CCS 2021

BT and BLE slave. Note that we follow the Bluetooth specification
of using the terms master/slave instead of more apt terms like
leader/follower.

::::
slave.

Regarding the notation, we indicate a BT pairing key with KBT,
a BT session key with SKBT, a BLE pairing key with KBLE, a BLE
session key with SKBLE. Moreover, we

::
We

:
indicate a Bluetooth

address with ADD, a public key with PK, a private key with SK,
a shared Diffie-Hellman secret with DK, a nonce with N, and a
message authentication code with MAC.

4.2 Attacker Model and Goals
Our attackermodel considers Charlie, a remote attacker in Bluetooth
range with Alice and Bob

:::
who

:
is
::
in

::::::::
Bluetooth

::::
radio

:::::
range

:::
with

:::
the

:::::
victims. The attacker aims to compromise the secure BT and BLE
sessions between the victims without tampering with their de-
vices. The attacker’s knowledge is limited to what Alice and Bob
::
the

::::::
victims

:
advertise over the air, e.g., full or partial Bluetooth

addresses, Bluetooth names, authentication requirements, IO capa-
bilities, and device classes.

The attacker does not know any
::
BT

::
or

:::
BLE

:
key shared between

Alice and Bob and is not present while they pair or establish secure
sessions

::
the

:::::::
victims,

:::
does

:::
not

::::
have

::
to

::
be

::::::
present

:::::
when

::
the

::::::
victims

:::
pair

::
or

:::::::
negotiate

::
a
:::::
secure

::::::
session. The attacker can scan and dis-

cover BT and BLE devices, jam the Bluetooth channel, pair with
Alice and Bob

::::::
devices,

::::
send

::::::
pairing

:::::::
requests

:::
and

::::::::
responses,

:::
use

CTKD, proposeweak associationmechanisms (e.g., “JustWorks”
::
Just

:::::
Works), and dissect and craft unencrypted Bluetooth packets.

The attacker has four goals. The first goal
:::
one is to imperson-

ate Alice (to Bob) and
::::::::
potentially

:
take over Alice’s secure ses-

sions. The second intent
:::
goal is to impersonate Bob (to Alice)

and
:::
also

:
take over Bob’s secure sessions.

::
By

::::
take

::::
over,

:::
we

::::
mean

:::
that

::::
after

:::
the

:::::
attack

::
the

:::::::
security

::::
bond

:::::::
between

::
the

::::
two

::::::
victims

:
is

::::::
broken.

::
We

::::
note

::::
that, Alice and Bob’ impersonations are different

goals as they require different attack techniques (i.e., Bluetooth
:::::::::::
impersonation

::::::::
techniques

::::
(i.e.,

:
master and slave impersonation

attacks). The
::::::::::::
impersonations).

:

:::
The

:::::::
attacker’s

:
third objective is to establish a man-in-the-middle

position in a secure session between Alice and Bob and
:::
two

:::::
victims

:::
and requires combining and synchronizing the impersonation attacks
on Alice and Bob

:
’s
:::::::::::
impersonation

::::::
attacks. The fourth goal is to pair

and
:::::::
objective

:
is
::
to
:
establish unintended and possibly stealthy ses-

sions with Alice or Bob as an arbitrary device, without breaking
existing pairings and secure sessions betweenAlice and Bob.

::::
taking

:::
over

:
a
::::::
session

:::
and

:::::::
breaking

::::::
existing

::::::
security

:::::
bonds.

:::
An

::::::::
unintended

:::::
session

::::::
enables

:::
the

::::::
attacker

::
to

:::::
access

:
a
::::
much

::::::
broader

:::::
attack

:::::
surface

:::
than

:::
the

:::
one

:::::::
exposed

::
in

:
a
::::::::::::
connection-less

:::::::
scenario.

4.3 Attack Strategy
Wefirst demonstrate the CTKD life cycle in a non-adversarial setting
to later highlight the CTKD issues (Section 7.1) and attacks (Section 4).
The first phase of the CTKD life cycle is Discovery, see Figure 3.
DuringDiscovery, Alice and

:::
now

::::::
describe

:::
our

:::::
attack

::::::
strategy

::::
using

:::::
Alice’s

:::::::::::
impersonation

::
as

:
a
:::::::
reference

:::::::
example

:::
and

::::
with

:::
the

:::
help

::
of

:::::
Figure

::
4.

:::
Let

::
us

::::::
assume

:::
that

:::::
Alice

::
is

:
a
::::::
laptop

:::
and

:::
Bob

::
is
::
a
:::
pair

:
of
::::::::::
headphones

:::
and

:::
the

::::::
victims

:::
are

:::::::
already

:::::
paired

:::
and

::::
they

:::
are

::::::
running

:
a
:::::
secure

:::
BT

::::::
session.

::::
Since

:::
the

:::::
victims

::::::
support

::::::
CTKD,

:::
they

::
are

::::
also

::::::
pairable

::::
over

:::
BLE,

::::
even

::
if

::
the

::::::::
transport

:
is
:::
not

:::::::
currently

::
in

:::
use.

::::::
Charlie

::::
sends

::
a
:::
BLE

::::::
pairing

::::::
request

::
to

:::
Bob

:::::::::
pretending

::
to

::
be

::::
Alice

:::
and

::::::
claiming

:::::
CTKD

:::::::
support. Bobfind each other and exchange

their capabilities (e.g., Alice scanswhile Bob is advertising his presence).
During this phase Alice and Bob declare BT, BLE, SSP, and Secure
Connections support. Note that the Bluetooth standard does not
include CTKD support as a separate feature but it is implicitly
activated by declaring BT, BLE, SSP, and Secure Connections.

After Discovery, Alice and Bob initiate Pairing that can be performed
either over BT or BLE. As a result of pairing Alice and Bob establish
a secret pairing key (e.g., or) using SSP with Secure Connections.
In particular, this pairing mode uses ECDH to generate a shared
secret and a key derivation function that generates the pairing key
using as inputs the shared secret, Alice and Bob’ ADD, and two
nonces. Once Alice and Bobshare a pairing key, then they complete
a Bluetooth association phase. There are different associationmechanism
and in our threat model we assume that Aliceand Bob use a strong
mechanism (e.g., Alice and Bob generate the same numeric sequence
and the user confirms those).

After association is completed, Alice and Bob run the CTKD
key derivation function to compute a second pairing key for the
transport that was not used while pairing (e.g., derive from or vice
versa). The Bluetooth standard provides a CTKD function that is
deterministic, as it uses a pairing key and constant strings (e.g.,
"brle" or "lebr") as inputs [? , p. 1401]. Moreover,

:::
even

::
if
::::::
running

:
a
::
BT

::::::
session

::::
with

::::
Alice,

:::
has

::
to

:::::
answer

::
to

::::::
Charlie

:::
with

:
a
::::
BLE

:::::
pairing

Figure 4: The three phases of the
:::::
Attack

::::::::
strategy.

:::::
Alice

:::
and

::::
Bob

:::
are

::::::
paired

::::
over

:::
BT

::::
and

::::
run

::
a

:::::
secure

::::
BT

:::::::
session.

::::::
Charlie

:::::
pairs

::::
with

::::
Bob

::
as

:::::
Alice

::::
over

::::
BLE

:::::::::
declaring CTKD

life cycle: Discovery (to exchange features), Pairing (to
agree on

:::::::
support.

:::::
Then

:::::::
Charlie

::::::
agrees

:::::
upon

:
a

::::
BLE

:
pair-

ing key
::::
with

::::
Bob,

:
and, through

:::
via CTKD, create a

::::
tricks

:::
Bob

::::
into

:::::::::::
overwriting

::::::
Alice’s

:::
BT

:
pairing keyfor the other

transport)
:
.
:::
As

::
a
::::::
result,

::::::
Charlie

::::
can

::::::::
establish

::::
BT

:
and

Communication (
::::
BLE

:::::::
sessions

::::
with

::::
Bob

::
as

:::::
Alice,

:::
and

:::::
takes

::::
over

:::
the

::::
real

:::::
Alice

:::::
who

::::
can

:::
no

::::::
longer

:::::::
connect

:
to

::::
Bob.

:::::
Using

:
a
:::::::
similar

:::::::
strategy,

:::::::
Charlie

:::
can

::::
also

:::::::::::
impersonate

:::
Bob

::
to

:::::
Alice,

::::::::::::::::
man-in-the-middle

:::::
Alice

::::
and

::::
Bob,

::::
and

:
establish

secure sessions on
:::::::::
unintended

:
BT and /or BLE)

:::::::
sessions

::
as

::
an

::::::::
arbitrary

:::::
device.

6

Anonymous submission #9999 to ACM CCS 2021

::::::
response

::
as
:::::::
Charlie’s

:::::::
message

:
is
::::::::
compliant

::::
with the Bluetooth stan-

darddoes not require to exchange any packet over the air to signal
when CTKD is used and the outcome of its usage.

As soon asAliceand Bob complete Pairing they start theCommunication
phase. During this phase Alice and Bob establish secure sessions
over BT and/or BLE. Each session derives a fresh session key from
the correspondent

::::
Then,

::::::
Charlie

::
(as

:::::
Alice)

:::
and

:::
Bob

::::
agree

:::
on

:
a
:::
BLE

pairing key andsession nonces (e.g., from , and from), and uses the
session key to encrypt and integrity-protect the link layer traffic
with AES-CCM.

CTKDis an interesting attack surface for several reasons. CTKD
crosses the security boundary between BT and BLE. Therefore, a
CTKD vulnerability is exploitable for both BT and BLE. As CTKD
bridges BT and BLE, an attacker can exploit known vulnerabilities
on BT to exploit BLE and vice versa. As CTKD is an optional feature
and is transparent to the user, an attack exploiting CTKD is hard to
detect. As CTKD requires Secure Connections support, an attacker
can break the most secure BT and BLE modes by targeting CTKD.

Despite the listed reasons, the Bluetooth standard does not provide
a security analysis of CTKD and does not include CTKD in the
BT and BLE threat models [? , p. 1401]. As a result, CTKD remains
an unexplored attack surface and in this work, we address this
concern by performing the first security analysis of CTKD. Our
analysis uncovers cross-transport issues (summarized in Table ??).
We now describe each issue in detail by using the CTKD life cycle
phases presented in Section ??.

Cross-transport issues (CTIs) with CTKD. The issues are at the
Bluetooth specification level. SC abbreviates Secure Connections
and KO abbreviates Key Overwrite.

CTI 1: Roles (Discovery). During Discovery, Alice and Bob can
discover each other and trigger Pairing both over BT and BLE. This
is a consequence of CTKD as it enables more ways to pair devices
with less user interaction. Alice, as master, is expected to send
pairing requests over BT or BLE to Bob, and the user expects to pair
Aliceand Bob by discovering Bob on Alice’s screen and sending a
pairing request to Bob. However, BT master and slave roles are
not fixed (unlike BLE) and Alice can receive pairing requests over
BT. The attacker can take advantage of this role asymmetry to
impersonate a slave device that is already trusted byAlice and send
a pairing request to Alice over BT even if Alice is expecting to
receive only BT and BLE pairing responses.

CTI 2: Secure Connections (Discovery). During Discovery, Alice
and Bob exchange their capabilities before starting the pairing process.
To use CTKD they declare “Secure Connections” support for the
transport used for pairing. However, the specification does not
specify if CTKD support requires “Secure Connections” support
only for the pairing transport or for both transports. From our
experiments, we find that CTKD is usedwhen “Secure Connections”
is only supported by the pairing transport. This issue considerably
increases the CTKD attack surface, as an attacker is not limited to
target only deviceswhich support BLEandBT “Secure Connections”
but can also target devices that support BLE orBT “Secure Connections”.

CTI 3: Association (Pairing). During Pairing, Alice and Bob can
pair either over BT or BLE.While BT and BLE pairings use different

protocols they both include an association phase. The issue is that
CTKD does not enforce the chosen association mechanism across
BT and BLE. This issue can be exploited by the attacker to pair
with a weak association mechanism, such as “Just Works”, on one
transport while the other transport expects a strong association
mechanism, such as “Numeric Comparison”. This is especially dangerous
in case of impersonation attacks because the user is not going to
notice an attacker that is re-pairing using “Just Works” pretending
to be a trusted device.

CTI 4: Key Overwrite (Pairing). During Pairing, Alice and Bob
use CTKD to derive a second pairing term key for the transport not
used for pairing. If Alice and Bob already shared a long term key
for such transportCTKDwill overwrite the existing pairing key. This
is an issue because an attacker who is impersonating either Alice
or Bob can use CTKDto overwrite long term keys. For example, ,
::
via

::::::
CTKD,

:::::::
generate

:
a
::::
new

::
BT

::::::
pairing

:::
key

::::
that

::::::::
overwrites

:::::
Alice’s

:::
key

::
in

::::
Bob’s

:::
BT

:::
key

:::::
store.

::
In

:::::
doing

::
so,

:::::::
Charlie,

::::
wins

:::
two

:::::
prizes

:::
with

::::
one

::::
shot,

::
as

::
he

::::
takes

::::
over

:::::
Alice’s

:::
BT

:::
and

::::
BLE

::::::
sessions

::::
with

:::
Bob.

::
In
:::::
other

:::::
words,

:::::
Alice

:::
can

:::
no

:::::
longer

::::::
connect

::
to
::::
Bob

::
as

:::
she

:::
does

:::
not

:::::
know

:::
the

:::
BT

:::
and

:::
BLE

::::::
pairing

::::
keys

::::::::::
(overwritten

::
by

:::
the

:::::::
attacker).

::::::::::
Furthermore,

::::::
Charlie

:::
also

::::::::
overwrites

::::
other

:::::::
security

:::
keys

:::
that

:::
are

::::::::
distributed

:::::
during

::::::
pairing,

:::::::
including

:::::
CSRK

::::::::
(signature

:::
key)

:::
and

:::
IRK

:::::
(MAC

::::::::::::
randomization

::::
key).

:::
We

::::
note

:::
that

:::
the

::::::::
overwrite

:::
trick

::
is

:::::::::
transparent

:
to
:::
the

:::
end

::::
user

:
as
:::
the

:::::::
standard

:::
does

:::
not

:::::::
mandate

:
to
:::::
notify

:::
the

:::
user

:::::
about

:::::
CTKD,

:::
and

:::::
works

::::
even if Alice and Bob are

running a secure session over BT then the attacker can pair with
Bob over BLE while impersonating Alice and overwrite the BT key
that is shared by Alice and Bob

::::::
sharing

:::
BT

:::
and

::::
BLE

:::::
pairing

::::
keys

:::::
before

::
the

:::::
attack

:::::
takes

::::
place.

CTI 5: States (Communication). During Communication, Alice
and Bob establish secure sessions over BT and/or BLE. In our experiments,
we observed that Alice and Bob remain pairable over BT and BLE.
Bob also remains discoverable over BLE. This is not the case without
CTKD where a device is pairable and optionally discoverable only
on one transport. This issue gives the attacker more options to
discover and pair with victim devices. For example, the attacker
can pair on the transport that is not currently in use by Alice
and Bob . Furthermore, in some CTKD use cases one transport
is supposed to be used only for pairing and deriving keys for the
other. Hence, that transport is always in a pairable state but never
used after pairing. This enables the attacker to establish unintended
malicious sessions on both transports by pairing on the unused one
and forcing CTKD.

We now design four novel CTKD cross-transport attacks based
on the cross-transport issues that we discuss in Section 7.1. We
provide the first attacks that exploit CTKD, blurring the security
boundary between BT and BLE. Our attacks are standard-compliant
and enable impersonation, interception, andmanipulation of traffic
between victims, aswell as unintended sessions

:::::::
Following

:
a
:::::
similar

::::::
strategy,

::::::
Charlie

:::
can

:::::::::
impersonate

::::
Bob

:
to
:::::
Alice,

::::::::::::::
man-in-the-middle

::::
them,

:::
and

:::::
create

:::::::::
unintended

:::::::
sessions

::
as

::
an

:::::::
arbitrary

:::::
device

:
with

a victimdevice. We call our attacks BLUR attacks.
::
We

::::
note

:::
that

:::
our

::::
attack

:::::::
strategy

::
is

:::::::
effective

::::::
because

:::
the

::::::::
Bluetooth

:::::::
standard

::::
does

::
not

::::::
enforce

::::::::
important

::::::
security

::::::::
properties

::
at

::
the

::::::::
boundary

::::::
between

::
BT

:::
and

::::
BLE

:::
and

::::
does

:::
not

::::::
address

::
all

::::::::::::
cross-transport

:::::
threats

::
in

::
its

::::
threat

::::::
model

:::
(see

::::::
Section

:::
7.1

::
for

:::::
more

::::::
details).

::
In

:::
the

::::::::
remaining

7

Anonymous submission #9999 to ACM CCS 2021

:
of
::::
this

::::::
section,

::
we

:::::::
describe

:::
the

:::::::
technical

:::::
details

::
of

:::
the

:::
four

:::::
BLUR

::::::
attacks.

4.4 Impersonation Attacks
Master impersonation. Charlie impersonates Alice (master) and

takes over her BT secure session
:::
and

::::
BLE

::::::
sessions

:
with Bob as in

BLUR impersonation attack strategy. Charlie pairs with Bob over
one transport (e.g., BLE) and (over)writes the pairing keys for

both transports, including Alice’s BT pairing key.
Figure 4 presents the BLUR impersonation attack strategy Before
the attack takes place Alice and Bob (the victims) are running a
secure BT session and they share a BT long term key (). As a side
effect of CTKD, Alice and Bob are pairable on BLE. Charlie (the
attacker), targets BLE (which is not used by the victims) and pairs
with Bob over BLE as Alice and triggers CTKD, while the real
Alice is communicating with Bob over BT. Because of CTKD,
Charlie forces Bob to overwrite the BT pairing key that he

established with Alice with his own. As a result, Charlie takes
over Alice’s BT session from BLE. The real Alice can no longer
connect to Bob as she does not possess the correct and can

attempt to re-pair with Bob only when Charlie terminates his BT
session with Bob. Charlie uses the described attack strategy to
perform master and slave impersonation attacksas follows:

Charlie (master)

C

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request as Alice:
JW, ADDA, SC, CTKD, PKC , NC

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

Compute KBLE

Derive KBT

Compute KBLE

Derive KBT

BLE Key Distribution: CSRKC , IRKC

BLE Key Distribution: CSRKB, IRKB

Figure 5: Master
:::::
BLUR

::::::
master

:
impersonation attackand

takeover. Charlie
::::
sends

::
a
::::
BLE

::::::
pairing

:::::::
request

::::
with

::::::
Alice’s

::::::
address

:
(acting as master

:::::
ADD𝐴) pairs with

:::::::
including

::::
Just

:::::
Works

:::::
(JW)

::::::::::
association

::
to

::::::
avoid

::::
user

::::::::::
interaction,

::::::
CTKD,

:::
and

:::
his

::::::
public

:::
key

::::::
(PK𝐶).:Bob:::::::

answers
::::
with

::
a
::::
BLE

::::::
pairing

:::::::
response

::::::::
thinking

::::
that

::
he

::
is
:::::::
talking

::
to

:::::
Alice.

::::
The

:::::::
attacker

:::
and

:::
the

::::::
victim

:::::
agree

::
on

:
KBLE:, :::

and
::::::
derive KBT,:::

via
::::::
CTKD

:::
and

:::::::
complete

::::
BLE

::::::
paring

:::
by

:::::::::
generating

::::
and

::::::::::
distributing

:::::
more

::::
keys over

:
a

:::::
secure

:
BLE

::::::
session.

:::
As

::
a
:::::
result

:::
of

:::
the

::::::
master

::::::::::::
impersonation

::::::
attack,

::::::
Charlie

:::::
tricks

::::
Bob

::::
into

:
overwriting

Alice’s key
::::
keys

::::
with

:::
his

::::
ones

:::
and

:::::
takes

::::
over

:::::
Alice

::::
who

:::
can

::
no

::::::
longer

:::::::
connect

::::
back

::
to

::::
Bob.

Figure 5. Charlie discovers Bob as he is pairable over BLE and
:::
Bob

:
is

:::::
already

:::::
paired

::::
with

:::::
Alice,

:::
and

:::
can

:::
run

:
a
:::
BT

:::::
session

::::
with

:::
her

::::
while

:::::
Alice’s

:::::::::::
impersonation

:::::
takes

::::
place.

:::::::
Notably,

:::
Bob

:::::
must

::
be

::::::
pairable

:::
over

:::
BT

:::
and

:::
BLE

::
to

::::::
support

:::::
CTKD

::::
from

::
BT

::::
and

:::
BLE.

::::::
Charlie

::::
takes

::::::::
advantage

:
of
::::
that

:::
and sends a BLE pairing request

::
as

::::
Alice

::
by using

Alice’s Bluetooth address (ADD𝐴), Secure Connections support (to
trigger CTKD), and “Just Works ”

:::
Just

:::::
Works

::::
(JW)

:
association to

avoid user interaction .
::::
while

:::::::
pairing,

::
his

:::::
public

::::
key

:::::
(PK𝐶),:::

and
:::::
CTKD

::::::
support.

:

::
As Charlie’s BLE pairing request does not collide with the BT

traffic exchanged by Alice and Bob as BT and BLE use different
physical layers and link layers.

Bob sends Charlie
:
is

:::::::::::::::
standard-compliant,

:::
Bob

:::::
sends

::::
back a BLE

pairing response believing that Alice wants to pair (or re-pair)
over BLE using CTKD.

:::::
Then, Charlie and Bob use the exchanged

public keys to compute DK. Then they use DK and the exchanged
nonces (N𝐶 , N𝐵) to compute

::::::
compute

:
KBLE. Then, they locally

compute ,
:::::
derive KBT from:::

via
:::::
CTKD,

:::
and

:::::::
exchange

::::::::
additional

:::
BLE

:::
key

::::::
material

::::
(e.g., using the CTKD’s key derivation function (ctkd)

. As a result of
::::
CSRK,

::::
IRK)

::::
over

::
a

:::
BLE

::::::
secure

::::::
session.

::::
After

:
the

master impersonation attack , Charlie forces Bob to overwrite the
BT pairing key that he established with Alicewith his BT pairing
key, establishes a BLE pairing key with Bob , and takes over

:
is

::::::::
completed

:::::
Charlie

::::
takes

::::
over

:::::
Alice’s

:::
BT

:::
and

:::
BLE

::::::
sessions

::
by

::::::
tricking

:::
Bob

:::
into

:::::::::
overwriting

:
Alice’s BT session

:::
and

:::
BLE

::::
keys

::::
with

::
his

::::
ones.

BLUR man-in-the-middle attack. The attacker uses the BLUR
Impersonation attack against two devices thatwere previously paired.
The two devices do not detect a change but Charlie now has access
to all traffic.

Slave impersonation. Charlie impersonates Bob (slave) and takes
over his BT secure session

:::
and

:::
BLE

:::::::
sessions with Alice as in Fig-

ure 6. In this case Charlie has to wait until the secure BT session
between Alice and Bob is interrupted (e.g., by running a master
impersonation attack against Bob). Then Charlie can exploit role
asymmetries between

::::
have

:::::
already

:::::
paired

:::
and

:::
can

:::
run

:
a
:::
BLE

:::::
secure

:::::
session

:::::
while

::
the

:::::::::::
impersonation

::::
takes

:::::
place.

::::
Alice

:::
has

::
to

::
be

::::::
pairable

:::
over

:
BT and BLE

::
to

::::::
provide

:::::
CTKD

::::::
support

::::
from

::::
both

::::::::
transports,

:::
and

:::::
Charlie

:::::
takes

:::::::
advantage

::
of

:::
that

:
by sending a BT pairing request

to Alice who is typically expecting pairing responses either over
BT or BLE. Charlie’s pairing request include Secure Connections
support (to trigger CTKD), Bob ’s Bluetooth

::
as

:::
Bob

::::
using

:::::
Bob’s ad-

dress (ADD𝐵)and “JustWorks ” association to avoid user interaction.
,
::::
Just

:::::
Works

::::
(JW),

:::
and

::
his

:::::
public

:::
key

:::::
(PK𝐶).:::::::

Charlie’s
:::::
paring

::::::
request

:
is
::::
still

:::::::::::::::
standard-compliant

::::
even

:
if
::::::
Charlie

::
is
::::::::
supposed

::
to

::
be

:::
the

::::
slave

::
as

:::
BT,

:::::
unlike

::::
BLE,

:::::
enables

::
a
::::
slave

::
to

:::::
switch

::
to

:
a
::::::
master

:::
role

:::::
before

::::::
sending

:
a
::::::
pairing

::::::
request.

:

Alice, who is pairable over BT, sends a
::::
Alice

:::::::
answers

::::
with

:
a BT

pairing response believing that Bob wants to re-pair over BTusing
CTKD. Charlie andAlice use the exchanged public keys to compute
DK. Thenthey use DK and the exchanged nonces to derive (kdf2).
Then they locally derive ,

::::
and

::
the

:::
two

:::::
agree

::
on KBT:.::::

Then,
::::::
Charlie

::::
starts

:
a
:::::
secure

:::
BT

:::::
session

:::
and

:::::
sends

:
a
:::::::
tunneled

:::
BLE

::::::
pairing

:::::
request

:
to
:::::
Alice

:::
still

::::::::
pretending

::
to

::
be

:::
Bob.

:::
The

::::
BLE

:::::
pairing

::::::
request

::::::
includes

:::::
CTKD

::::::
support

:::
and

:::::::
Charlie’s

::::::::
signature

:::
and

:::::
MAC

:::::::::::
randomization

:::
BLE

::::
keys

::::::
(CSRK𝐶 ,:::::

IRK𝐶).::::
Alice

:::::::
answers

:::
with

:
a
::::
BLE

:::::
pairing

:::::::
response

::::::
tunneled

::::
over

:::
BT

:::
and

:::
the

:::
two

::::::
derives

:
KBLE from using CTKD ’s

8

Anonymous submission #9999 to ACM CCS 2021

Alice (master)

A

Charlie (slave)

C

Devices pairable over BT

BT Pairing Request as Bob:
JW, ADDB , SC, PKC , NC

BT Pairing Response:
Assoc, ADDA, SC, PKA, NA

Compute KBT Compute KBT

BT CTKD Request as Bob:
CTKD, CSRKC , IRKC

BT CTKD Response:
CTKD, CSRKA, IRKA

Derive KBLE Derive KBLE

Figure 6: Slave
:::::
BLUR

:::::
slave

::
impersonation attackand

takeover. Charlie (acting as slave) sends a BT pairing re-
quest

::::
with

::::::
Bob’s

:::::::
address

:::::::
(ADD𝐵):::::::::

including
::::
Just

::::::
Works

::::
(JW)

::::::::::
association

:
to Alice

::::
avoid

:::::
user

::::::::::
interaction,

::::
and

:::
his

:::::
public

::::
key (master

::::
PK𝐶):.::::

The
::::::
pairing

:::::::
request

::
is

::::
valid

:
as

::
BT

::::::
enables

::
to

:::::::::::
dynamically

::::::
switch

:::::
from

::::
slave

::
to

::::::
master

::::::
before

::::::
sending

::
a
::::::
pairing

:::::::
request.

:::::
Alice

:::::::
answers

::::
with

::
a
:::
BT

::::::
pairing

:::::::
response

::::::::
believing

::::
that

::::
she

:
is
:::::::
talking

::
to

:
Bob.

::::
The

:::::::
attacker

:::
and

:::
the

::::::
victim

:::::::
establish

:
KBT, :::::::

negotiate
::::::
CTKD

:::
and

::::::::
exchange

::::::::
additional

::::::
keying

::::::::
material

::
for

::::
BLE

::::
with

::
a

::
BT

::::::
CTKD

::::::
request

:::
and

::::::::
response

::::::::
messages,

::::
and

::::::
derive KBLE.:::

As
:
a
::::::
result

::
of

:::
the

::::
slave

:::::::::::::
impersonation

::::::
attack,

:::::::
Charlie

:::::
tricks

:::::
Alice

::::
into over-

writing Bob’s key
::::
keys

::::
with

:::
his

::::
ones

:::
and

:::::
takes

::::
over

:::
Bob

::::
who

:::
can

::
no

::::::
longer

:::::::
connect

::::
back

::
to

:::::
Alice.

key derivation functions (ctkd). As a result of the slave impersonation
attack, Charlie forces Alice to overwrite the BT pairing key that she
established with Bob with his BT key, shares a BLE key with Alice,
and takes over Bob’s BT session. Bob cannot re-establish secure
sessions with Alice as he no longer possesses the correct pairing
keys.

As summarized in Table ??, the master impersonation attack
takes advantage of all the cross-transport issues that we present in
Section 7.1 except CTI 1. In particular, the attacker takes advantage
of non-consistent “Secure Connections” support (CTI 2), lack of
consistency between

:::
via

:::::
CTKD.

::::
Once

:::
the

::::
slave

:::::::::::
impersonation

::::
attack

:
is
:::::::::
completed,

::::::
Charlie

:::::
takes

:::
over

:::::
Bob’s

:
BT and BLE association

methods (CTI 3), more opportunities to pair (CTI 5), and key overwriting
(CTI 4). The slave impersonation attack takes advantage of all CTIs
except CTI 5, including the role asymmetries between

::::::
sessions

::
by

::::::
tricking

::::
Alice

:::
into

:::::::::
overwriting

:::::
Bob’s BT and BLE (CTI 1)

:::
keys

::::
with

::
his

::::
ones.
Figure 7 presents the high-level description of our BLUR

Figure 7: Mapping the requirements of our four BLUR

::::::::::::::::
man-in-the-middle

::::::
attack.

:::::::
Charlie

:::::::::
combines

::::
the

::::::
master

:::
and

:::::
slave

::::::::::::::
impersonation

:
attacks

::::::::
presented

:::
so

::::
far

::
to

the discovered cross-transport issues (CTI)
:::::::
establish

::
a

::::::::::::::::
man-in-the-middle

:::::::
position

:::::::
between

:::::
Alice

:::
and

::::
Bob

::::
both

::
on

::
BT

::::
and

::::
BLE.

::::::::::::::
Man-in-the-middle.

:::::
Charlie

:::
can

::::::::::
conveniently

::::::
combine

:::
the

:::::::
described

:::::
master

:::
and

:::::
slave

:::::
attacks

::
to
::::::
launch

:
a
::::::::::::
cross-transport

:
man-in-the-

middle attack . As in the previous section,
::
as

:::::
shown

::
in

:::::
Figure

::
7.

:
If

Alice and Bob are paired over BT and they run a secure sessionover
BT. During this attack, Charlie sequentially performs the master
and slave impersonation attacks described in Section 4.4. As a result,
the attacker overwrites Alice and Bob ’s BTpairing keyswith known
keys, establishes BLE long term keys with Alice and Bob

::::::
running

:
a

:::
BLE

::::::
session, and positions himself in the middle to access all traffic

between the victims and to inject valid traffic both on
::::::
Charlie

::::
starts

:::
with

:::
the

:::::
slave

:::::::::::
impersonation

:::::
attack

:::::::::
presenting

::
to

::::
Alice

:::
as

:::
Bob

:::
over

:::
BT.

:::::::::
Otherwise,

::
he

::::::::
launches

:
a
::::::
master

:::::::::::
impersonation

:::::
attack

::
by

:::::::
targeting

:::
Bob

::
as
:::::
Alice

:::
over

::::
BLE.

:::::
After

:::
the

:::
first

:::::::::::
impersonation

:::::
attack,

:::
the

::::::::::
impersonated

:::::
victim

:
is
:::::
taken

:::
over

:::
and

:::::::::
disconnects

::::
from

::
the

:::::
other

::::::
victim.

::::
Then,

:::::::
Charlie

:::::
targets

:::
the

:::::::::::
impersonated

:::::
victim

:::
with

:
a
::::::
second

:::::::::::
impersonation

:::::
attack

:::
and

::::::::
establishes

:
a
::::
MitM

:::::::
position

::::::
between

:::
the

:::
two

:::::::
victims.

::
As

:
a
::::::
result,

:::::
Charlie

:::::::
controls

::
all

:
BT and

BLE
:::::
secure

:::::::
sessions

::::::
between

::::
Alice

::::
and

:::
Bob.

4.5 Unintended Session Attacks
Figure ?? shows the details of the MitM attack. Firstly, Charlie
impersonates Alice to Bob over BLE (as in Figure 5), overwrites
Bob’s BT key with his key (KBC). Secondly, Charlie impersonates

Figure 8: MitM
:::::
BLUR

:::::::::::
unintended

::::::::
sessions

:
attackand

takeover. Charlie impersonates Alice as in Figure 5,
impersonates

:::
can

::::
take

::::::::::
advantage

::
of

::::::
CTKD

:::
to

::::::::
establish

:::::::::
unintended

:::
BT

::::
and

::::
BLE

::::::
session

::::
with

:
Bob as in Figure 6, let

the victims mutually authenticate and then gets access to
their traffic

:
a
:::::::
random

::::::
device

::::
with

:::::::
arbitrary

::::::::::
capabilities.

:::
The

::::
same

:::
can

:::::::
happen

::
if

::::::
Charlie

::::::
targets

:::::
Alice.

9

Anonymous submission #9999 to ACM CCS 2021

Bob to Alice over BT as in Figure 6 and overwrites Alice’s BT key
with his key (KAC). Then, Alice and Bob exchange two nonces (𝑁𝐴 ,
𝑁𝐵) to authenticate the BT pairing key. Charliemutually authenticates
with Bob andAlice by using amessage authentication code (MAC)function
keyed with the appropriate key and input parameters. Finally,

::
So

::
far

::
we

::::::::
described

:::
how

::
to

:::::
exploit

:::::
CTKD

::
to

::::::::::
impersonate

:::
any

:::::::
Bluetooth

:::::
device,

:::::::
however,

:::
the

:::::::
attacker

:::
can

::::
also

::::
take

::::::::
advantage

::
of

:::::
CTKD

:
to
:::::::
establish

:::::::::
unintended

:::
BT

:::
and

::::
BLE

::::::
sessions

::::
with

::
a
:::::
victim

::
as

::
an

:::::::::
anonymous

:::::
device

:::
with

:::::::
arbitrary

:::::::::
capabilities.

:::::::::
Unintended

::::::
sessions

::
are

:::::::::
interesting

::::::
because

::::
they

::::::
expose

:
a
:::::
larger

:::::
attack

::::::
surface

::::
than

:
a
::::
setup

:::::
where

:::
the

:::::::
attacker

:::
can

:::
only

::::
send

:::::::
scanning

:::
or

::::::::
advertising

::::::
packets

:
to
:
a
:::::
victim

::::
(i.e.,

::::
when

:::
the

:::::
victim

:::
does

:::
not

::::
trust

::
the

::::::::
attacker).

::
For

:::::::
example,

:::
by

:::::::::
establishing

::::::::
unintended

:::::::
sessions,

:::
the

::::::
attacker

:::
can

::::::::
enumerate

::
all

:::
BT

:::
and

::::
BLE

::::::
services

::::::::
supported

:::
by

:::
the

:::::
victim

:::
and

:::::
exploit

:
a
::::::
remote

::::
code

:::::::
execution

::::::::::
vulnerability

:::
that

:::::
would

:::
not

::::
have

::::
been

::::::::
exploitable

::::::
without

:
a
:::::
secure

::::::
session.

::::::::::
Concurrently,

:::::
these

:::::
attacks

::
are

:::::
more

::::::
difficult

::
to

:::
spot

::::
than

:::::::::::
impersonation

::::
ones

::
as

::::
they

::
do

:::
not

:::::
require

::
to

::::
take

:::
over

:::::::
existing

:::::
secure

::::
bonds

::::
(i.e.,

:::
they

:::
do

:::
not

:::::
require

:
to
::::::::
overwrite

:::::
keys).

::
Let

::
us

:::
see

::::
how

::
an

::::::::
unintended

::::::
session

:::::
attack

:::::
works

::
in

:
a
::::::
scenario

:::::
where Alice and Bob establish

::
are

::::::
already

:::::
paired

:::
and

:::
are

::::::
running

a secure BT session with Charlie in the middle, and Charlie gets
access to all traffic exchanged by Alice and Bob and can modify
and inject arbitrary valid traffic between Alice and Bob.

As summarized in Table ??, the BLUR man-in-the-middle attack
is a composition of themaster and slave impersonation BLUR attacks
and takes advantage of all the CTI that we present in Section 7.1.

BLUR unintended sessions attack. Charlie sends a BLE pairing
request to Bob (who remains pairable over BLE due to CTKD) as an
unknown devicewith arbitrary capabilities. After CTKD completes,
Charlie can establish secure but unintended BT and BLE sessions
with Bob without breaking Bob’s existing pairings and sessions.

Figure 8 presents a BLUR unintended session attack targeting
Bob. In this

::
(see

::::::
Figure

::
8).

::
As

::
in

:::
the

:::::::::::
impersonation

:::::
attack scenario,

Alice and Bob are running a secure session over BT but they are
still

::::
must

::::
also

::
be

:
pairable over BLE in order to accept pairing

requests with other devices and run
::
to

::::::
support

:
CTKD. Charlie

targets Bob (slave) by sending him a pairing request over BLE as
an unknown device. Charlie can pretend to be any device having
arbitrary capabilities, e.g.,

::
by

::::::
sending

::
a
:::
BLE

::::::
pairing

::::::
request

::::
using

:
a
::::::
random Bluetooth address, Bluetooth name, device class, “Secure

Connections”
:::::
CTKD support, and weak

:::
Just

:::::
Works

:::
for association.

Bob , accepts to pair with Charliewhile continuing his session with
Alice. Then, Charlie and Bob

::::::
answers

:
to
:::::::
Charlie’s

::::::
request

:::
and

:::
the

:::
two negotiate KBLE, and derive KBT using

::
via CTKD. Now, Char-

lie can establish secure but unintended BT and BLE sessions with
Bob without breaking his existing pairings or sessions with other
devices

::::
Bob’s

::::::
existing

::::::
sessions

:
(e.g., with Alice) .

Charlie can also establish unintended sessionswithAlice (master).
In particular, he can impersonate a BLE slave and start advertising
his presence. Once Alice discovers Charlie, she can establish a BLE
connection with him, and Charlie can explicitly request to pair
using a SMP Security Request packet [? , p. 1401]. Then, Alice and
Charlie compute , and derive using CTKD. Now

:::
and

::
by

:::::
using

::
an

:::::::::
anonymous

::::::
identity

:::
and

::::::
arbitrary

:::::::::
capabilities.

:::::
Using

:
a
:::::
similar

:::::::
strategy,

Charlie can establish secure but unintended BT and BLE sessions

X1 7th gen WH-CH700N

Alice
(master)

Bob
(slave)X1 3rd gen

USB

CYW920819

Charlie (attacker)

BTSecure Session

Figure 9: Example BLUR Attack Scenario. Alice (master) is
a ThinkPad X1 7th gen, Bob (slave) is a pair of Sony WH-
CH700N headphones and Charlie (attacker) is a CYW920819
board connected via USB to a ThinkPad X1 3rd gen. Alice
and Bob have paired in absence of Charlie, and are running
a secure BT session.

with Alice without breaking her existing pairings or sessions with
other devices (e.g., with Bob). Charlie can take advantage of the
unintended sessionswithAliceand Bob inmanyways. For example,
he can use the session to drop known exploits such as BlueBorne [?]
, BLEEDINGBIT [?], or SweynTooth [?], new exploits, and to enumerate
and tamperwith BT and BLE services and characteristics (including
the protected ones).

::::
reach

:::
the

::::
same

::::
goals

:::::::
targeting

:::::
Alice.

Those attacks are particularly effective when the victims are
using one transport only to pair and derive keys with CTKD. For
example, a Bluetooth speaker only streams music over BT but is
also pairable over BLE to enable users to discover it without having
to put it into BT pairing mode. As summarized in Table ?? the
unintended session BLUR attack takes advantage of CTI 2 and CTI
4.

5 IMPLEMENTATION
In this section we describe our attack scenario, our implementation
of a custom attack device to perform the BLUR attacks and our
re-implementation of CTKD’s key derivation function. The tools
that we developed will be open-sourced

:::
We

:::
will

::::
fully

:::::::::
open-source

:::
both

:::
the

:::::
attack

:::
and

:::
our

:::::
CTKD

:::
key

::::::::
derivation

::::::::::
functionality.

5.1 Attack Scenario
Our attack scenario follows the example in Figure 9 and includes
two victims, Alice (master) and Bob (slave). In Figure 9 Alice is
represented by a 7th generation ThinkPad X1 laptop and Bob by a
pair of SonyWH-CH700N headphones. The attacker (Charlie) uses a
CYW920819 development board [?] and a 3rd generation ThinkPad
X1 laptop as an attack device. The implementation of the attack
device is presented in Section 5.2. In our evaluation,

:::::::
presented

::
in

:::::
Section

::
6,
:
we use the same attack scenario with different

:
to
:::::
attack

::::
other victim devices.

To understand the capabilities of the victims and the attacker we
summarize their most important Bluetooth features in Table 1. We
note that Bobis capable of using CTKD over BLE even if he does
not support “Secure Connections” over BT and does not support
Bluetooth version 4.2. This confirms the “Secure Connections ”
cross-transport issue (CTI 2) thatwe discuss. Furthermore to conduct
the attacks we had to develop an attack device that enabled us to

10

Anonymous submission #9999 to ACM CCS 2021

Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716
Version 5.1 4.1 5.0
Name x7 WH-CH700N x1
ADD Redacted Redacted Redacted
Class 0x1c010c 0x0 0x0
BT SC True Only Controller True
BT AuthReq 0x03 0x02 0x03
BLE SC True True True
BLE AuthReq 0x2d 0x09 0x2d
CTKD True True True
h7 True False True
Role Master Slave Master
IO Display No IO Display
Association Numeric C. Just Works Numeric C.
Pairable True True True

Table 1: Relevant Bluetooth features for Alice, Bob, and
Charliein our example attack scenario. Alice and Bob
support CTKD even if Bob’s Host does not support BT SC
(BT “Secure Connections”).We redact the devices’ Bluetooth
addresses for privacy reasons.

change all the features in Table 1. Some of those features, such as
the version and subversion numbers, are particularly challenging
to modify as they require patching a Bluetooth firmware that is
typically proprietary and closed-source

::::
Table

::
1

:::::::::
summarizes

::
the

::::
most

::::::
relevant

::::::
features

:::
of

::::
Alice,

::::
Bob,

::::
and

::::::
Charlie.

::::
Alice

::::
and

:::
Bob

::::
have

::
an

::::
Intel

:::::::
Bluetooth

::::
chip,

:::::
while

:::
Bob

:::
has

::
a

::::::::
Cambridge

::::::
Silicon

::::
Radio

::::
(CSR)

::::
one.

::::
Alice,

::::
Bob,

:::
and

::::::
Charlie

::::::
support

::::::::::
respectively

:::::::
Bluetooth

::
5.1,

:::
4.1,

:::
and

:::
5.0.

::::
Alice

:::
and

::::::
Charlie

::::::
support

:::::
Secure

::::::::::
Connections

:::
both

::
on

:::
the

::::
Host

:::
and

:::
the

::::::::
Controller,

:::::
while

:::
Bob

::::
only

::
on

:::
the

:::::::::
Controller.

::
All

::::::
devices

::::::
support

:::
BT,

:::
BLE,

:::
and

::::::
CTKD.

:::::::
Regarding

::::::
pairing

::::::::
association

:::::::
methods,

::
the

::::::
laptops

::::::
support

:::::::
Numeric

:::::::::
Comparison,

:::::
while

::
the

:::::::
headsets

:::
only

::::::
support

::::
Just

:::::
Works

::
as

::::
they

:::
lack

:
a
::::::
display.

5.2 Custom Attack Device
Attack Device Block Diagram. The attack device is composed of
Linux laptop (Host) and a CYW920819 (Controller) connected via
USB and communicating using the Host Controller Interface (HCI)
protocol.

To implement the BLUR attack we had to develop
::
To

::::::
conduct

:::
our

:::::
attacks

:::
we

::::::::
developed a custom attack device . As we can see

from its block diagram in
::::::
making

:::
use

:
of
:
a
::::::::::
CYW920819

::::::::::
development

::::
board

::::::::
connected

::
to

:
a
::::
Linux

:::::
laptop

::::
(see Figure 10, the attack deviceconsists

of a Linux laptop implementing the Bluetooth host component
using BlueZ (i.e.,

:
).

::::
Both

::::::
devices

:::
BT,

::::
BLE,

:::
SC,

::::
and

:::::
CTKD.

:::::
Using

::::::
standard

::::::
laptops,

::::::::::
smartphones

::
or

::::::
dongles

::
is

::
not

:::::::
sufficient

::
to

::::::::
implement

::
the

:::::
BLUR

::::::
attacks,

::
as

:::
they

::
do

:::
not

::::
allow

::
to

::::::
modify

::
all

::::::
device’s

::::::::
identifiers

Figure 10:
:::::
Attack

::::::
Device

:::::
Block

::::::::
Diagram.

::::
The

::::::
attack

:::::
device

:
is
::::::::::
composed

::
of

::::::
Linux

::::::
laptop

::::::
(Host)

::::
and

::
a
:::::::::::
CYW920819

:::::::::::
development

:::::
board

:::::::::::
(Controller)

:::::::::
connected

::::
via

::::
USB

::::
and

:::::::::::::
communicating

:::::
using

:::
the

:::::
Host

:::::::::
Controller

::::::::
Interface

:::::
(HCI)

:::::::
protocol.

:::
(e.g., user-space) and the Linux kernel. The laptop is connected via
USB to a CYW920819 development board . The board implements
the Bluetooth controller using a firmware and a baseband. The
laptop and the board support BT , BLE , SSP, Secure Connections,
andCTKDand they communicate using theHost Controller Interface
(HCI) protocol over USB

:::
BT

:::
and

:::
BLE

::::::
address)

:::
and

::
all

:::::::
devices’

::::::::
capabilities

::::::::
advertised

:::
over

:::
the

:::
air

::::
(e.g.,

:::::::
firmware

:::
and

::::::::
controller

::::::::
versions).

:
A

::::::::::::
software-defined

:::::
radio

::::
(SDR)

::
is
::::
also

::
out

::
of
:::::
scope

::::::
because

:::::
there

:
is

::
no

:::::::::
open-source

:::::::
BT/BLE

:::
SDR

::::
stack

::::::::
currently

:::::::
available.

::::::
Instead,

:::
with

:::
our

:::::
attack

:::::
device,

:::
we

:::
can

::::::
program

:::
our

::::::::::
development

::::
board

:::::::::
(Bluetooth

::::::::
Controller)

::
to
::::::::::
impersonate

:::
any

:::::::
BT/BLE

:::::
device,

::
we

:::
can

:::::
patch

::
its

:::::::::::
closed-source

:::::::
firmware

::
to

::::::
control

::::
both

::
BT

::::
LMP

:::
and

:::
BLE

::
LL

::::
link

::::
layer

::::::
packets.

::::::::
Moreover,

:::
we

:::
can

:::
alter

:::
the

::::::
laptop’s

::
BT

:::
and

:::
BLE

:::::
kernel

:::
and

::::::::
user-space

::::
code

::
to

::
set

::::::::
Bluetooth

::::::::::
Host-specific

::::::::::
configuration

:::
bits

::::
such

::
as

:::::::::
negotiating

:::::
CKTD

:::
and

::::
Just

:::::
Works.

:::
We

:::
now

:::::::
describe

:
in
:::::
detail

:::
how

:::
we

::::::
modify

::
the

:::::
attack

::::::
device’s

::::
Host

:::
and

::::::::
Controller

:::::::::
components.

:::
Host

::::::::::
modifications. For the host, we used

::
use

:
standard Linux

tools to configure an
:::::::
Bluetooth interface (e.g., hciconfig), and to

discover and pair with a device (e.g., bluetoothctl, hcitool and
btmgmt). In particular, btmgmt was very useful as , unlike other
tools, it enables to decide the type of pairing request and declared
associationmechanism.

:
it

::::::
provides

:::::
handy

:::::::
low-level

:::::::::
commands.

:::
For

:::::::
example,

:
it
:::::::
includes

::::::::
commands

:::
to

:::::
toggle

:::
BT,

::::
BLE,

:::
SC,

:::::::
scanning,

:::
and

:::::::::
advertising.

::::::::
Moreover,

:
it
:::::
allows

::
to

:::::
easily

::::
send

::::::
custom

:::::
pairing

::::::
requests

::
on

:::
BT

:::
and

:::
BLE

:::
and

::
to

:::
set

::
the

::::::
related

::::::::
association

::::
(e.g.,

:::
Just

::::::
Works).

Furthermore, we wanted to access the traffic exchanged over
the air by our attack device

::::::::
configured

:::
our

:::
host

::
to

:::
get

::
all

:::::::
link-layer

::::::
packets

:::
sent

:::
and

:::::::
received

::
by

:::
the

::::::::
controller. This is not available

on a standard Bluetooth device. To achieve this goal
::::
handy

:::
as

:
it

:::::
enables

::
to
:::::::
monitor

::::
both

:::
HCI

:::
and

::::::::
link-layer

::::::
packets

::::::
directly

::::
from

::
the

::::
host

:::
(e.g.,

:::::
using

:::::::::
Wireshark).

::
To

::::::
activate

:::::::
link-layer

::::::
packet

:::::::::
forwarding,

we sent a proprietary
::::::
Cypress

:
HCI command from the host to

enable diagnosticmode on
:::
the

:::::::
controller

::::
that

::::::
switches

::
on

::
an

::::::::::::
undocumented

::::::::
diagnostic

::::
mode

::
in
:
the controller. This mode tells the board to

copy all the BT and BLE link-layer packets and send them over
HCI to the host. Then, we added extra C code to the Linux kernel
to parse those HCI packets. With this setup, we can monitor both

11

Anonymous submission #9999 to ACM CCS 2021

HCI and link-layer traffic directly from the hostwithout requiring
over-the-air BT and BLE sniffers

:::::
special

:::
HCI

::::::
packets

::
in

:::
the

::::
host.

Modifying the controller required us to interact directly with

:::::::
Controller

::::::::::
modifications.

:::
We

::::::
modified

:::
the

:::::::
controller

:::
by

:::::::::
dynamically

::::::
patching

:
the development board ’s Bluetooth firmware . To extract

the
:::::::
Bluetooth

:
firmware

::::
using

:
a
:::::::
Cypress

:::::::::
proprietary

::::::::::
mechanisms.

::
To

:::::
patch

:::
the

:::::::
firmware

:::
we

:::
had

::
to
::::::
extract

::
it

::::
from

:::
the

:::::
board

:::
and

:::::::
statically

::::::::::::
reverse-engineer

::
its

:::::::
relevant

::::
parts.

::
In

::::::::
particular,

:
to
::::::
extract

::
the

:::::::
firmware

:
we used a proprietary HCI command from Cypress to

read and save a
::::::
runtime RAM snapshot from the board’s SoC. We

took the snapshot after the firmware was initialized to acquire the
firmware patches applied at runtime.We use thememorymaps

:::
that

::
we

:::::::
extracted

:
from the board’s SDK to extract the various

::::::
memory

segments from the snapshot including the ROM, the
::::
(e.g.,

::::
ROM,

RAM, and the scratchpadsegments). As expected, the firmware was
in the ROM segment and was a stripped ARM binary containing
16-bit Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM, RAM, and
scratchpad segments in Ghidra (a free and open-source decompiler
and disassembler)

::
in

:::::
Ghidra

::::
and

:::::::
statically

:::::::
analyzed

::::
them. In our

first reverse-engineering pass
:::
pass,

:
we isolated the libc functions

(e.g., malloc and calloc) by looking at the signatures and the
code patterns of the functions that are called the most. Then, we
found the firmware debugging symbols

:::::
hidden

:
in the board’s SDK

and loaded them into Ghidra. Using the debugging
::::
these

:
sym-

bols we isolated functions and data structures relevant for
:
to
:
the

BLUR attacks. Then, we wrote
::::
ARM

::::::
Thumb

:
assembly patches

to change their behaviors and we apply those patches at run-
time using internalblue [?]

:
,
::
an

::::::::::
open-source

::::::
toolkit

::
to

::::::
manage

:::::
several

::::::::
Bluetooth

::::::
devices

:::::::
including

:::
our

:::::
board. Our set of patches

allow modifying crucial capabilities and parameters declared by
the controller including the Bluetooth address and name, device
class, Secure Connections support, and authentication requirements
(as shown in Table 1).

:::::
allows

::::::::::
transforming

:::
our

:::::
board

::
in

:::::::
whatever

:::::
device

:::
we

::::
want

::
by

::::::::
changing

::
its

:::::::::
identifiers

:::::::
including

::::::::
addresses,

:::::
names,

:::
and

:::::::::
capabilities,

:

5.3 CTKD Key Derivation Function
Our BLUR attacks leverage CTKD, so the first step of our evaluation
requires to confirm that the devices under test support and (correctly
) implement it . As CTKD is an optional feature and it is not negotiated
with a dedicated flag, we can only speculate that a device supports
it if it declares Secure Connections support for BT and BLE. Furthermore,
there are no available tools to check the correctness of the keys
derived via CTKD.

To address those issues we implemented the CTKD derivation
function based on the Bluetooth standard [? , p. 1401]. Our implementation
::
We

:::::::::::
implemented

::::::
CTKD’s

::::
key

::::::::
derivation

:::::::
function,

::::::::
following

::
its

:::::::::
specification

::
in
:::
the

::::::::
Bluetooth

:::::::
standard

:::::::::
[? , p. 1401].

:::
We

::::
used

:::
our

::::::::::::
implementation

::
to

:::::
check

:::
that

:::
the

::::
keys

::::
that

::
we

::::::::
observed

:::::
during

:::
our

:::::::::
experiments

::::
were

:::::::
correctly

:::::::
derived,

:::
yet,

::
it

:
is
:::
not

:::::::
required

::
to

::::::
conduct

:::
the

::::
BLUR

::::::
attacks.

:::
Our

::::::::::::
implementation

::
is

:::::
written

::
in

::::::
Python

:
3
:::
and uses the PyCA cryptographic module [?], was successfully

tested against the standard’s test vectors and the CTKDkeys produced
during our attacks. To enable other researchers to investigate CTKD
we will open-source our implementation.

:::
We

:::::
tested

::
it

:::::
against

:::
the

:::::
CTKD

:::
test

::::::
vectors

::
in

:::
the

:::::::
standard

:::::::::
[? , p. 1721].

:::
We

::::
now

::::::
describe

::
its

:::::::
technical

:::::
details.

𝐾𝐵𝐿𝐸 =

{
𝑓 (𝑓 (𝑡𝑚𝑝2, 𝐾𝐵𝑇) , 𝑏𝑟𝑙𝑒) if h7 is supported
𝑓 (𝑓 (𝐾𝐵𝑇 , 𝑡𝑚𝑝2) , 𝑏𝑟𝑙𝑒) otherwise

::

CTKD function for BT (top) and BLE (bottom). The functions
are the same but use a sequence of two AES-CMAC with different
input quantities. In the first AES-CMAC, the devices use a constant
string as key and the pairing key as input if they support the h7
conversion function, otherwise, they swap the two. In the second
AES-CMAC, the devices use the MAC from the first stage as key
and a constant string as the input to derive the cross-transport
pairing key.

We nowdescribe the CTKDkey derivation function implementation
details. The Bluetooth standard specifies a single CTKD function
(see Section 3.1) that is used with different parameters for BT and
BLE. Figure ?? shows the CTKD key derivation function for BT
(top) and BLE (bottom). Both use a chain of two AES-CMAC blocks
in sequencewith different keys and 4-byte constant strings. AES-CMAC
is a message authentication code (MAC) based on the AES block
cipher [?]. In particular, BT uses , "tmp2" and "brle" and derives
::
We

::::::::::
implemented

::::::
CTKD’s

:::
key

::::::::
derivation

:::
for

::
BT

::::::
deriving

::::
and

:::::::
following

::
the

:::::::
equation

:::::
above.

:::
The

::::
key

:::::::
derivation

::::::::
computes KBLE, while BLE

uses , "tmp1" and "lebr" and derives .
In the first

::::
using

::
a
:::::::
function

:::::
f(𝑎, 𝑏)

:::
that

::::::::::
corresponds

::
to

:
AES-

CMAC, if both devices support the
::::::::::::
(𝑘𝑒𝑦, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡).

::
If

::::
both

:::::
pairing

:::::
devices

::::::
declare

::
h7

::::::
support,

::::
thenKBLE:is::::::::

computed
::::
using

:::
the

:::::::
equation

:
at
:::
the

:::
top

::::::::
otherwise

::
the

:::
one

::
at
:::
the

::::::
bottom. h7 conversion function

:
is
::
a
:::
key

:::::::::
conversion

:::::::
function

::::::
defined in the Bluetooth standard

[? , p. 1634], the long term key is used as key and the string as
input, otherwise, the string (padded with 12 zeros) is used as key
and the long term key as input

:::
and

::
is

::::::::
negotiated

:::::
during

::::::
pairing

::::
using

:::::::
AuthReq

:::::::::
[? , p. 1634]. In the second AES-CMAC, the 128-bit

(16-byte) output of the first AES-CMAC is used as key and the
string as input. The 128-bit (16-byte) output of the secondAES-CMAC
is the derived long term key.

𝐾𝐵𝑇 =

{
𝑓 (𝑓 (𝑡𝑚𝑝1, 𝐾𝐵𝐿𝐸) , 𝑙𝑒𝑏𝑟) if h7 is supported
𝑓 (𝑓 (𝐾𝐵𝐿𝐸 , 𝑡𝑚𝑝1) , 𝑙𝑒𝑏𝑟) otherwise

::

::
We

::::
also

::::::::::
implemented

::::::
CTKD’s

:::
key

::::::::
derivation

:::
for

::::
BLE

::::::
deriving

:::
and

:::::::
following

:::
the

:::::::
equation

:::::
above.

::
In
::::
this

:::
case

:::
the

::::::
derived

:::
key

::
is

KBT.::::
The

::::::::
equations’

::::
logic

::
is

::::::
identical

::
to
:::
the

:::
one

::::::::
explained

:::
for

:::
BT.

::::
What

::::::
changes

:::
are

:::
the

::::
input

:::::::::
parameters.

:
In
::::::::
particular,

:::
the

::::::::::
computation

:::
uses

::
as

::::::
inputs: KBLE,::::::

“tmp1”,
:::
and

:::::
“lebr”.

:

6 EVALUATION
In this section we present how we conducted the BLUR attacks and
our evaluation results on 13 unique devices

:::::
devices

:::::
using 10

:::::
unique

:::::::
Bluetooth

::::
chips

:
(see Table 2). The tested devices represent popular

laptops, phones
::
Our

:::::::::
evaluation

:::::
exploit

:::::::
different

:::::
device

:::::
types

:::
(e.g.,

::::::
laptops,

::::::::::
smartphones, headphones, and an embededd platform. The

devices are from a broad set of device producers (
:::::::::
development

::::::
boards),

:::::::::::
manufacturers

::::
(e.g., Samsung, Dell, Google, Lenovo, and

12

Anonymous submission #9999 to ACM CCS 2021

Sony), run different operating systems (
:::
e.g.,

:
Android, Windows,

Linux, and proprietaryOSes), use different Bluetooth chipsets (from
:::
and

:::::::
Bluetooth

::::
chip

::::
(e.g., Broadcom, CSR, Cypress, Intel, Qualcomm,

and Samsung).

6.1 Conducting the Attacks
The BLUR attacks, presented in Section 4, include master imperson-
ation, slave impersonation, man-in-the-middle, and unintentional
::::::::
unintended

:
session attacks. In the next paragraphs, we describe

how we conducted them using our custom attack device described
in Section 5.2.

Laptop (master)
::::
BLUR impersonation attack. To impersonate the

laptop, we configure
::::
patch our attack device to clone the laptopBluetooth

features,
:
’s

::::::::
Bluetooth

::::::
features

:
(including Bluetooth address, Blue-

tooth name, device class, BT and BLE “Secure Connections” support,
and advertised services. We accomplish this task by patching

::
SC,

:::
and

:::::
CTKD

:::::::
support).

:::::
Then,

:::
we

::::
send

:
a
::::
BLE

::::::
pairing

::::::
request

::::
from

the attack device ’s Bluetooth firmware and configuring the attack
laptop accordingly. Once the attack device looks like the impersonated
laptop, we ask the headphones to pair over BLE using “Just Works
” and CTKD.

:
to
:::
the

:::::::::
headphones

:::::::
declaring

:::::
CTKD

:::
and

::::
Just

:::::
Works

::::::
support. The

malicious BLE pairing request is sent using btmgmt’s text-based
user interface (TUI). The headphones accept the request to pair over
BLE, update the BLE long term key, run CTKD for BT, update the
BT long term key,

:::::
pairing

::::::
request,

:::
and

:::
the

::::::
devices

::::
agree

:::
on KBLE,

:::::
derive KBT:::

via
:::::
CTKD and establish a secure BLE sessionwith the

attack device. Then, the headphones terminate the BT session with
the impersonated laptop and establish a secure BT session with the
attack device. The impersonated laptop cannot connect back with
the headphones as it does not possess the new BT and BLE long
term keys

:::::
correct

::::::
pairing

:::
keys

::::::::::
overwritten

::
by

:::
the

::::::
attacker.

Headphones (slave)
::::
BLUR

:
impersonation attack. To impersonate

the headphones, we configure
::::
patch

:
our attack device to clone the

headphonesBluetooth features using the same technique adopted
for the laptop impersonation. Once

:
’
:::::::
Bluetooth

:::::::
features.

:::::
Then,

::
we

:::
send

::
a
:::
BT

::::::
pairing

::::::
request

::::
from the attack device looks like the

impersonated headphones we ask the laptop to pair over BT using
“Just Works ” and CTKD. The malicious BT pairing request is sent
:
to
:::
the

:::::
laptop

:::::::
declaring

:::::
CTKD

:::
and

:::
Just

:::::
Works

::::::
support

:
using btmgmt’s

TUI. The laptop accepts to pair over BT, updates the BT long term
key, and runs CTKDfor BLE. Then, we

::
and

:::
the

::::::
devices

:::::
agree

::
on

KBT,::::::::
negotiate

:::::
CTKD,

:::::
derive KBLE::

via
:::::
CTKD,

:::
and

:
establish a secure

BT sessionwith the headphones
::::::
session

:::
over

:::
BT.

:::
The

::::::::::
impersonated

:::::::::
headphones

:::::
cannot

:::::::
connect

::
to

::
the

::::::
laptop

::
as

:::
they

:::
do

:::
not

:::
own

:::
the

:::::
correct

:::::
paring

::::
keys.

To evaluate
::::::
optimize

:::
the

::::::::
evaluation

::
of

:::
the master and slave im-

personation attack experimentally
::::::
attacks, we used the attack de-

vice both as the attacker and as one of the victims
:::
the

::::::::::
impersonated

:::::
victim. For example, in a master impersonation attack we pair the
attack device with the slave victim device, we disconnect them, we
“forget” the victim device on the attack device andwe run themaster
impersonation attack from the attack device. This setup is efficient
, because it allows us to quickly test many slave victims. For the

slave impersonation, we use the same procedure and quickly test
many

:
to

:::
test

:::
our

:
master victims.

::::
BLUR

:
Man-in-the-middle attack. By using our BLUR implemen-

tation with two development boards connected to the same attack
laptop, we can impersonate the laptop and the headphones at the
same time, and man-in-the-middle them. In particular, we run the
laptop (master) impersonation attack first, and then the headphone
(slave) impersonation attack. As a result, the attack device positions
itself in the middle between the victims.

If a victim device is vulnerable to themaster or slave impersonation
attack, then is also vulnerable to the man-in-the-middle attack ,
as the latter requires a vulnerable master device and a vulnerable
slave device .

Unintended sessions attack. To perform the unintended sessions
attacks, we configure the attack device to impersonate an arbitrary
device with arbitrary services over BT and BLE. Then we send a
malicious pairing request to the headphones over BLE and one
to the laptop over BT. Both pairing requests declare support for
CTKD and “Just Works”. The attackdevice establishes new BT and
BLE keys bothwith the headphones and the laptop and starts unintended
sessions with both

::::
BLUR

:::::::::
Unintended

:::::
sessions

:::::
attack.

:::
For

::
the

:::::::::
unintended

::::::
session

:::::
attack,

::
we

::::::
patched

::::
our

:::::
attack

:::::
device

::
to

::::
look

:::
like

::
an

::::::::
unknown

:::::
device

::
to

::
the

::::::
current

::::::
victim.

:
If
:::
the

:::::
victim

::
is

:
a
::::::
master,

::
we

:::
run

:::
the

::::
same

::::
steps

:::
used

::
in

:::
the

::::
slave

:::::::::::
impersonation

:::::
attack

:::::::
otherwise

:::
we

::
use

:::
the

:::::
master

:::::::::::
impersonation

::::::
attack’s

:::::
steps.

::
In

::::
both

:::::
cases,

:::
the

::::::
attacker

::::::
creates

:::::::
unwanted

:::
but

::::::
trusted

::::
bonds

::::
with

:
a
:::::
victim

:::
and

:::
can

:::::::
establish

:::::
secure

::::::
sessions over BT and BLE .

We test this attack by connecting the target victim to a third
device and then by trying to establish unintended sessions with
the victimas an arbitrary device over the transport that is not used
by the legitimate connection. For example, if the victim is a pair of
headphones that is connected with a laptop over BT then we run
the unintended session attacker over BLE.

:
.

6.2 Evaluation Results
BLUR attacks evaluation results. The last three columns contain a
checkmark () if a device is vulnerable to the master impersonation
attack (MI), slave impersonation attack (SI), man-in-the-middle attack
(MitM), or unintended session (US) attack. If the victim’s role is
slave thenwe test the victim against a master impersonation attack
(Role =Master), otherwise, we test it against a slave impersonation
attack (Role = Slave), and we group the attacks in one column
(MI/SI column). As shown by the last three columns, all the tested
devices (unique Bluetooth chips) are vulnerable to all relevant
BLUR attacks.

We evaluated the BLUR attacks on
:::::
against 13 devices, the

:::::
unique

:::::
devices

:::::::::
(employing

:
10

::::::
unique

:::::::
Bluetooth

:::::
chips)

:::
and

:::
our

:
results are

summarized in Table 2. The first six columns indicate the deviceproducer
::
’s

:::::::
producer,

:::::
model

:::::
name,

:::::::
operating

::::::
system, device model , OS, chip

manufacturer, chip model, and supported Bluetooth version. The
seventh column indicates the attacker role. The

::::::
contains

:::::
either

::::
Slave

:
if
:::
the

:::::
device

:::
was

:::::
tested

::::::
against

:
a
::::
slave

:::::::::::
impersonation

:::::
attack,

::
or

:::::
Master

::
if

::
the

::::::
device

:::
was

:::::
tested

:::::
against

::
a
:::::
master

:::::::::::
impersonation

:::::
attack.

:::
The

:::::
table’s

:
last three columns contain a checkmark

::::
check

13

Anonymous submission #9999 to ACM CCS 2021

Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave ✓ ✓ ✓

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave ✓ ✓ ✓

Google Pixel 2 Android Qualcomm SDM835 5.0 Slave ✓ ✓ ✓

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave ✓ ✓ ✓

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave ✓ ✓ ✓

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave ✓ ✓ ✓

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave ✓ ✓ ✓

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Slave ✓ ✓ ✓

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master ✓ ✓ ✓

Sony WH-CH700N Proprietary CSR 12942 4.1† Master ✓ ✓ ✓

† CTKD functionality was backported by the vendor to Bluetooth 4.1 for this device.

Table 2:
:::::
BLUR

::::::
attacks

:::::::::
evaluation

:::::::
results.

:::
The

::::
first

:::::
three

::::::::
columns

:::::
show

:::
the

:::::::
device’s

::::::::
producer,

::::::
model,

::::
and

:::
OS.

:::
The

:::::
next

:::
two

:::::::
columns

::::
state

:::
the

:::::::::
Bluetooth

:::::
chip’s

:::::::
produce

::::
and

::::::
model.

:::
The

:::::
sixth

::::::
column

::::
tells

:::
the

:::::::::
Bluetooth

::::::
version

::
of

:::
the

::::::
target

::::::
device.

:::
The

::::::
seventh

:::::::
column

::::::::
indicates

:::
the

::::::::
attacker’s

::::
role

::::
(e.g.,

::
if

::::
Slave

:::::
then

:::
the

:::::::
attacker

::
is

:::
the

::::
slave

::::
and

::::::
targets

:
a
:::::::
master).

:::::::
Finally,

:::
the

:::
last

::::
three

::::::::
columns

:::::::
contain

:
a
:::::
check

:::::
mark

::
(✓

:
)
::
if

:
a
::::::
device

::
is

:::::::::
vulnerable

::
to

:::
the

::::::::
relevant

:::::
BLUR

::::::
attack.

:::
We

::::::
group

::::::
master

::::
and

::::
slave

::::::::::::
impersonation

::::::
attacks

:::
in

:::
the

:::::
same

::::::
column

::::::
(MI/SI)

:::
as

::::
each

::::::
victim

:::
can

::::
only

:::::
have

:::
one

::::
role.

:::
All

::::
the

::::::
devices

::::
that

:::
we

:::::
tested

:::
are

:::::::::
vulnerable.

::::
mark (✓) if a device is vulnerable to the master impersonation
attack (MI),

:::::
master

::
or slave impersonation attack (

:::
MI/SI), man-in-

the-middle attack (MitM), or unintended session (US) attack. The
master and slave impersonation attacks are grouped in one column
(MI/SI column). If the victim’s role is slave then we test it against a
master impersonation attack, otherwise, we test it against a slave
impersonation attack. As shown by the last three columns, all the
devices (unique Bluetooth chips)

::::
From

::::
Table

:
2
:::
we

:::
can

::::
draw

:::::
several

::::::::
significant

:::::::::
conclusions.

::::::
Firstly,

:
it
:::::
shows

::::
that

::
the

:::::
BLUR

::::::
attacks

::
are

:::::::
practical

::
as

::
all

::::::
devices

:
that we

tested are vulnerableto all relevant BLUR attacks.
As we tested a wide range of devices that were all vulnerable,

our evaluation demonstrates that
:
.
:::::::
Secondly,

:::
the

:::
table

:::::::::::
demonstrates

:::
that

::
all

:::
the

::::::::
Bluetooth

:::::::
versions

:::
that

:::
we

:::::
tested

:::
are

::::::::
vulnerable,

:::
i.e.,

:::::::
Bluetooth

:::::::
versions

:::
4.1,

:::
4.2,

:::
5.0,

:::
and

:::
5.1.

:::::
Finally,

:::
the

::::
table

:::::::
confirms

:::
that the BLUR attacks are practical, standard-compliant, and affect
all the Bluetooth versions that support CTKD. As the BLUR attacks
are standard-compliant , potentially all standard-compliant devices
supporting CTKD are also vulnerable. Based on our evaluation, we
suggest that the Bluetooth SIG fix the issues that we uncover in
CTKD andwe provide our set of countermeasures for the Bluetooth
standard in Section 7.2

::
as

:::
they

:::::
work

::::::::
regardless

::
of

:::::::::::
device-specific

::::::::::::
implementation

:::::
details.

7 DISCUSSION
Wenowdiscuss the lessons learned and our set of countermeasures
to mitigate the

:
In
::::
this

::::::
section,

:::
we

::::::
describe

:
four

:::::
issues

:::::::
affecting

::::::
CTKD’s

::::::::::
specification

:::
that

:::
we

:::::::::
extrapolated

::::
from

:::
the BLUR attacks.

There are several lessons that we learnedwhile analyzing CTKD
and developing the

::::
These

:::::
issues

:::
are

::::::::::::::
standard-compliant

:::
and

:::::::
represent

::
the

::::
root

:::::
causes

::
of

::
the

:
BLUR attacks. In this section we report those

lessons evaluating
:::::::::
Furthermore,

:::
we

::::::
propose four

:::::::
effective

::::::::::::
countermeasures

:
to
::::::
address

:
the BLUR attacks. In this section we report those lessons

as they are useful for protocol designers who are dealing with
cross-transport features and related security issues

:::::
Finally,

::
we

::::::
discuss

::
the

::::
main

::::::
lessons

::::::
learned.

Cross-transport mechanisms need a cross-transport threat model.
Securitymechanisms, such as CTKD, that cross the security boundary
between two technologies with different threat models should be
designed using a

7.1 Cross-Transport Issues with CTKD

::
We

:::::::
isolated four

:
cross-transport threat model. For example, the

Bluetooth standard should consider that an attacker might try to
exploit BT from BLE via CTKDand vice versa. Unfortunately, at
the time of writing, the Bluetooth standard lacks a cross-transport
threat model. The lack of a threat model (along with a security
analysis) is the main reason why we were able to uncover severe
issues with CTKD

::::
issues

::::
(CTI)

::::
with

:::
the

::::::::::
specification

::
of

:::::
CTKD.

Similar security mechanisms with different threat models do not
provide the same security guarantees.

:::
All

:::
CTI

:::
are

::::::
related

::
to

:::
the

:::::::::::
cross-transport

:::::
nature

::
of

:::::
CTKD,

:::
i.e.,

:::
the

:::
fact

:::
that

:::::
CTKD

::::::
bridges BT

and BLE both provide their version of pairing and secure session
establishment. Onemight think that pairing over BT and then establishing
a secure session over BLE provides the same security guarantees of

14

Anonymous submission #9999 to ACM CCS 2021

pairing over BT and establishing a secure session over BLE. However,
this is not the case, as those mechanismsare similar but not equal
and they are designedwith different threat models in mind. Mixing
those procedures actually enables more ways to attack BT and BLE
(e.g.,

::::::
security

:::::::
domains

::::::
without

:::::::
properly

::::::::
enforcing

:::::
certain

:::::::
aspects.

::
We

::::
now

:::::::
describe

:::
each

::
of
::::
them

::
in
:::::
detail.

:

CTI 1: Role Asymmetry.
::
BT

:::
and

:::
BLE

:::::
define

::::
their

:::::
master

:::
and

::::
slave

::::
roles

::::::::
differently.

::
In

:::::::
particular,

:::
BT

::::::
enables

:
to
:::::
switch

::::
roles

::::::::::
dynamically

::
on

:::::::
demand,

::::
while

:::
for

::::
BLE

::
the

:::::
roles

::
are

:::::
fixed.

:::
The

:::::::
attacker

::::
takes

::::::::
advantage

:
of
::::
this

:::
CTI

::
by

:::::
acting

::
as

:
a
::::::
master

::
for

:::
BT

:::
and

::
a

::::
slave

::
for

:::
BLE.

:::
For

:::::::
example,

::
in
:::
the

::::
slave

::::::::::::
impersonation

:::::
attack,

:::
the

::::::
attacker

:::
can

::::
send

:
a
:::
BT

:::::
pairing

:::::::
request,

:::::
when

::
the

::::::
victim

:::::
would

:::::
expect

::
to

:::::
receive

::::
only

:::
BT

::::::::
responses.

:::
CTI

:
2:
:::::::::
Association

::::::::
Asymmetry.

::
The

::::::::
Bluetooth

:::::::
standard

:::
does

:::
not

::::::
mandate

::
to
::::::
enforce

:::
the

:::::
same

::::::::
association

:::::::::
mechanism

:::
for

:::
BT

:::
and

:::
BLE.

:::
An

:::::::
attacker

:::
can

::::
take

::::::::
advantage

::
of

:::
this

::::
issue

::
to
:::
use

::
a
::::
weak

::::::::
association

::::::
method

:::
on

:::
one

:::::::
transport

:::::
when

:::
the

::::
other

::
is

:::::::
expecting

:
to
:::
use

:
a
:::::::
stronger

::::::::
association

::::::::::
mechanisms.

:::
For

:::::::
example,

:
in
:::
the

:::::
master

:::::::::::
impersonation

:::::
attack

:::
even

::
if
:::
the

:::::
victims

::::
have

:::::
paired

::::
over

::
BT

::::
with

:::::
strong

:::::::::
association,

::
the

::::::
attacker

:::
can

::::
pair

:::
over

:::
BLE

::::
with

::::
weak

:::::::::
association

:::
(i.e., the BLUR attacks)

:::
Just

:::::
Work)

:::
and

::::::::::
impersonate

:
a
:::::
device.

Properly weighting usability against security benefits is keyCTKD
was introduced to improve

:::
CTI

::
3:

:::
Key

::::::::
(Over)write.

:::
With

:::::
CTKD

:::
the

:::::::
Bluetooth

:::::::
standard

::::::::
introduces

:
a
:::
new

:::::
attack

::::::::
primitive,

:::
that

::
is,

:::::::::::
cross-transport

:::
key

::::::::::
(over)writing.

:::
The

::::::
attacker

:::
can

:::
use

::::
such

:::::::
primitive

::
to

:::::::
overwrite

:::::
trusted

::::::
pairing

::::
keys

:::
and

::::::::
distribute

:::
new

:
BT and BLE usability. In

light of the presented issues and attacks , we learned that the usability
benefits introducedwith CTKD are not balancing the security issues
introduced byCTKD.We agree that no-onewants to use complicated
securitymechanisms, but the Bluetooth standard should have introduced
a secure and usable CTKDmechanism

::::
keys.

:::
All

::
the

::::::::
presented

:::::
attacks

:::
take

::::::::
advantage

::
of

:::
this

:::::
issue.

:::
CTI

:
4:
::::::
Pairing

::::
States.

::::
With

:::::
CTKD

::
the

::::::::
Bluetooth

:::::::
standard

:::::
enables

::::
more

::::
ways

::
to

:::
pair

::::::
devices.

::::
The

::::::
attacker

:::
can

:::
take

::::::::
advantage

::
of

:::
this

::::
issue

:
to
:::::
target

:::
the

:::::::
transport

:::
not

:::::::
currently

::
in

:::
use

::
by

::
the

::::::
victims.

:::
For

:::::::
example,

:
in
:::
the

::::::
master

:::::::::::
impersonation

:::::
attack,

:::
the

::::::
attacker

:::::
sends

:
a

:::::
pairing

::::::
request

::::
over

:::
BLE

:::::
while

:::
the

:::::
victims

:::
are

:::::
using

::
BT.

7.2 Countermeasures
We now present a set of countermeasures to address all the five
cross-transport issues (CTI) that we present

:::
four

:::::::::::::
countermeasures

:
to
:::::::
mitigate

::
the

:::::
BLUR

::::::
attacks

:::::::
presented in Section 7.1. Our countermeasures

:
4.
::
In

::::::::
particular,

::
the

::::
first

::::
three

::::::::
mitigations

:::::
defeat

:::
the

::::
BLUR

:::::::::::
impersonation

:::
and

::::::::::
MitM-attacks,

:::::
while

::
the

:::::::::
unintended

::::::
session

:::::
attacks

:::
are

:::::::
prevented

::
by

::::::::
deploying

::
the

:::::
fourth

:::::::::
mitigation.

:::
The

:::::::::::::
countermeasures

:::
are

:::
also

::::::::
addressing

:::
the

:::
CTI

:::::
issues

:::::::
described

::
in

::::::
Section

:::
7.1,

:::
and

:
can be im-

plemented in
::
on the device’s Bluetooth Host (i.e., device’s OS) ,

::
OS)

by storing and checking extra metadata about its state and trusted
remote devices.

::
list

::
of

:::::
trusted

::::::
devices.

:::
We

:::::
argue

:::
that

:::
the

:::::::
Bluetooth

:::
Host

::
is
:::
the

::::::
natural

::::
place

::
to

::::
store

:::
this

::::
new

:::::::
metadata

::
in

::::::
addition

::
to

::::
other

:::::::
metadata

::::
such

::
as

::::
long

::::
term

::::
keys.

Align BT and BLE roles (CTI 1). The BLUR attacks take advantage
of BT and BLE role asymmetries to act as a BT master while being
a BLE slave. To fix this issue

::::
Align

::
BT

:::
and

::::
BLE

:::
roles.

::
To

::
fix

:::
role

::::::::::
asymmetries

:::::::
between

::
BT

:::
and

:::
BLE, a device should store the role that the remote device used while
pairing and enforce it across re-pairings. In case of a role mismatch,
the device should abort pairing.

Enforce Secure Connections (CTI 2)
:::::
strong

::::::::
association

:::::::::
mechanisms.

In our experiments, we can use CTKDwith theWH-CH700Nheadphones
even if they only support “Secure Connections” for BLE. This should
not happen as CTKD should be used onlywhen “Secure Connections”
is provided by both

:
To

:::::
align

::::::::
association

:::::::
methods

:::::::
between BT and

BLE and
::::::
pairings,

:
a device should enforce this condition before

running CKTD and abort CTKD if this condition is not met.

Enforce strong association mechanisms (CTI 3). BT and BLE do
not protect the negotiation of the associationmechanism andCTKD
allows two devices to use different associationmechanisms on different
transports when pairing and re-pairing. The BLUR attack exploits
this fact to re-pair with a victim device using “Just Works” even if
the victim supports “Numeric Comparison”. A device should keep
track of the remotes’ strongest association mechanism used while
pairing

::::
either

:::
on

:::
BT

::
or

::::
BLE and enforce it for subsequent (re-

)pairings.
::
If

:
a
::::::
weaker

::::::::
mechanism

::::
than

:::
the

:::
one

:::::
stored

::
is

:::::::
proposed,

:::::
pairing

::::::
should

::
be

::::::
aborted.

:

Disable CTKD key overwrites(CTI 4). CTKD allows (over)writing
BT long term keys fromBLE and vice versa. This enables an attacker
to impersonate a device and take over her existing session on one
transport by attacking the other. To fix this issue

:::::
security

::::
keys

:::::
across

::
BT

:::
and

::::
BLE.

::
To

:::
fix

:::
key

::::::::
overwrites

:::
via

:::::
CTKD, a device should dis-

allow key overwrites with
::
to

:::::
update

::
a

:::::
trusted

:::
key

:::
via CTKD when

a paired device wants to re-pair. For example, re-pairing over BT
should not overwrite a BLE long term

::::::
pairing key that was securely

established in the past. When a device has lost a long term key for
a transport (e.g., device reset), it should explicitly re-pair on that
transport.

Disable pairable state
:::::
pairing

:
when not needed(CTI 5). In our

experiment we confirmed that a device might remain pairable over
BT and BLE even after it has paired and is communicating with a
remote device . This is problematic as an attacker can target the
transport that is not currently used by the two devices to launch
the BLUR attacks. To address this issue

::
To

::::::
prevent

::
an

::::::
attacker

::::
from

:::::
pairing

::::
with

:
a
::::::
victim

:::::
device

::
in

:::::::::
unexpected

::::
ways, a device should

automatically stop being pairable on a transport that is not currently
in use. For example, a pair of headphones who are running a secure
session over BT with a laptop should not answer pairing requests
over BLE unless the user explicitly renters

::
set

:::
the

:::::::::
headphones

::
in

pairing mode.

7.3 Lessons Learned

::::
There

:::
are

::::::
several

::::::
lessons

:::
that

:::
we

::::::
learned

::::
while

::::::::
analyzing

:::::
CTKD

:::
and

::::::::
developing

:::
the

:::::
BLUR

:::::
attacks.

:::
We

:::::
report

::::
them

::
in

:::
the

::::
hope

:::
that

:::
they

::::
will

::
be

:::::
useful

:::
for

:::::::
protocol

:::::::
designers

::::
who

:::
are

::::::
dealing

::::
with

:::::::::::
cross-transport

::::::
features

::::
and

:::::
related

:::::::
security

:::::
issues.

:::::::::::
Cross-transport

:::::::::
mechanisms

::::
need

:
a
:::::::::::
cross-transport

:::::
threat

:::::
model.

::::::
Security

::::::::::
mechanisms

:::
that

:::::
cross

:::
the

:::::::
security

:::::::
boundary

:::::::
between

:::
two

:::::::::
technologies

::::::
should

::
be

::::::
designed

:::
and

:::::
tested

::::::
against

:
a
:::::::::::
cross-transport

::::
threat

::::::
model.

:::
For

:::::::
example,

::
the

::::::::
Bluetooth

:::::::
standard

:::::
should

::::::
include

15

Anonymous submission #9999 to ACM CCS 2021

Attack

Year Paper Target Phase C I AK SC/SCO Persistent Note

Attacks on BT
2016 Albazrqaoe et al. [?] Standard Any G#### x - BlueEar Sniffer
2017 Seri et al. [?] Impl. Pairing # NA ✓ BlueBorne
2018 Sun et al. [?] Standard Pairing # ✓ - Passkey (MitM)
2018 Biham et al. [?] Impl. Pairing G# NA ✓ Fixed Coordinate Invalid Curve
2019 Antonioli et al. [?] Standard Pairing G## ✓ - KNOB (MitM)
2020 Antonioli et al. [?] Standard Pairing # ✓ - BIAS
2021 Tschirschnitz et al. [?] Standard Pairing # ✓ - Method Confusion (MitM)

Attacks on BLE
2016 Jasek et al. [?] Standard NA G#### x - Black Hat
2019 Seri et al. [?] Impl. NA #G#G## NA ✓ Bleedingbit
2020 Zhang et al. [?] Standard Pairing G#G#G## ✓ - MitM (SCO)
2020 Wu et al. [?] Standard Session ## # ✓ - BLESA
2020 Garbelini et al. [?] Impl. Any G#G#G## NA - SweynTooth fuzzer

Attacks on both BLE and BT
2019 Ossmann et al. [?] Standard NA G#### x - Ubertooth sniffer
2020 Antonioli et al. [?] Standard Pairing G## ✓ - Downgrade (MitM)
2021 This work Standard Any G# ✓ ✓

Table 3:
:::::::
Overview

:::
of

::::::
recent

:::::::
attacks

:::
on

:::::::::
Bluetooth

::::
and

::::
BLE.

:::
C

::
=

::::
Data

::::::::::::::
Confidentiality,

::
I
::
=

::::
Data

:::::::::
Integrity,

::
A

::
=
::::::
Device

:::::::::::::
Authentication,

::
K

:
=
::::
Key

:::::::::
disclosure.

:::
No

:
(#

:
)
:::::::
Partially

:
(G#

:
),

:::
Yes

:
(

:
).

:
in
:::
its

:::::
threat

:::::
model

::
an

::::::
attacker

::::
who

:::::
wants

::
to

:::::
exploit

:::
BT

::::
from

:::
BLE

:::
and

:::
vice

:::::
versa,

::::
rather

::::
than

:::::::::
considering

:::
only

:::::::
attackers

::::::
focused

:::::
either

::
on

::
BT

::
or
::::
BLE.

:

::::::
Security

:::::::::
mechanisms

::::
used

::
to
::::
cross

::
a
::::::
security

::::::::
boundary

:::::
should

:::::
provide

:::
the

::::
same

::::::
security

::::::::
guarantees.

::::::::::::
Cross-transport

:::::::::
mechanisms

:::::
should

::
be

:::::::
designed

::::
such

::::
that

:::
the

::::::::::
mechanisms

::::
used

::
to

::::
cross

:::
the

::::::
security

::::::::
boundary

:::::::
provides

:::
the

::::
same

::::::
security

:::::::::
guarantees

::
in

:::
the

::::
same

:::::
threat

:::::
model.

::::::::
Currently,

:::
this

::
is

:::
not

::
the

::::
case

:::
for

:::::::
Bluetooth

::
as

:::::
CTKD

:::
uses

:::
BT

:::
and

::::
BLE

:::::::
pairings

::
to

::::
cross

:::
the

:::::::
security

:::::::
boundary

:::
and

:::::
pairing

::::
over

:::
BT

:
is
:::::::
different

::::
than

::::::
pairing

:::
over

::::
BLE.

:

::::::
Usability

:::::
should

:::
not

:::::::
outweigh

::::::
security.

:::::
CTKD

:::
was

::::::::
introduced

::
to

::::::
improve

:::::::::
Bluetooth’s

:::::::
usability,

:::
but,

::
in

:::
light

::
of
:::
the

::::::::
presented

:::::
attacks,

::
the

:::::::
usability

:::::::
benefits

:::
are

:::
not

::::::::
balancing

:::
the

:::::::
security

:::::
issues

:::
also

::::::::
introduced

::::
with

:::::
CTKD.

::::::
Indeed,

:
it
::
is
:::::::::
paramount

:
to
::::::
weight

::::::
security

:::
and

::::::
usability

:::::
before

:::::::::
introducing

:
a
::::::
critical

::::::
security

::::::
feature,

:::::::
especially

:
if
::
it

:::::
allows

::::::
crossing

::
a

::::::
security

::::::::
boundary.

8 RELATEDWORK

::
We

:::::::::
summarize

::
the

:::::::::
positioning

::
of

:::
our

:::::
attacks

::::::::
compared

:
to
::
to

::::::
related

::::
work

::
in

::::
Table

::
3,

:::
and

::::::
provide

::::::::
additional

:::::
details

::
on

:::::
those

:::::
attacks

::
in

::
the

::::::::
following.

::
In

::::::
general,

:::
the

::::
BLUR

::::::
attacks

::
are

:::
the

:::
first

::::::::::::
cross-transport

:::::
attacks

::::::::
(targeting

::::
both

::
BT

::::
and

::::
BLE),

:::
are

:::::::::::::::
standard-compliant

:::
(i.e.,

:::::::
expected

:
to
::::
work

:::
on

:::
any

:::::
device

:::
that

::::::
supports

::::::
CTKD),

:::
can

::
be

:::::::
executed

:::::
outside

:::
the

:::::::
victims’

::::
initial

::::::
pairing

:::::
phase,

:::::::
provide

:::::::::::
comprehensive

:::::::::
compromise

::
of

::
the

:::::::
security

::::::::
properties,

::::
break

:::
the

::::
most

:::::
secure

:::::::
Bluetooth

:::::
modes

:::::
(secure

::::::::::
connections),

::::
and

:::::
provide

::::::::
persistent

:::::::::
compromise

::
of

::
the

:::::::
victims.
The Bluetooth provides a royalty-free and widely-available ca-

ble replacement technology [?]. Bluetooth standard compliant

attacks are particularly dangerous as all Bluetooth devices are af-
fected, regardless of version numbers or implementation details.
Such standard-compliant attacks have appeared since the first ver-
sions of Bluetooth [? ?]. Standard-compliant attacks on BT include
attacks on legacy pairing [?], secure simple pairing (SSP) [? ? ?
], Bluetooth association [? ?], key negotiation [?], and authen-
tication procedures [? ? ?]. Standard-compliant attacks on BLE
include attacks on legacy pairing [?], key negotiation [?], SSP [? ?
], reconnections [?], and GATT [?]. Compared to the mentioned
attacks that target either BT or BLE, the BLUR attacks are the first
standard-compliant attacks targeting the intersection between BT
and BLE.

We have seen attacks targeting specific implementation flaws on
BT [?] and BLE [? ?]. As our BLUR attacks target the specification
level, they are effective regardless of the implementation details.
Several surveys on BT and BLE security were published [? ? ?]
but neither of those surveys nor the Bluetooth standard considers
CTKD as a threat. We here demonstrate that CTKD is a serious
threat and must be included in the threat model.

Cross-transport attacks were exploited for proximity technolo-
gies using Bluetooth and Wi-FI. Two prominent examples are at-
tacks on Apple ZeroConf [?] and Google Nearby Connections [?].
Our BLUR attacks are the first cross-transport attacks for BT and
BLE.

The cryptographic primitives used by Bluetooth have been ex-
tensively analyzed. For example, the 𝐸0 cipher used by BT was
investigated [?] and it is considered relatively weak [?]. SAFER+,
used for authentication, was analyzed as well [?]. BT and BLE
“Secure Connections” use the AES-CCM authenticated-encryption
cipher. AES-CCM was extensively analyzed [? ?] and it is FIPS

16

Anonymous submission #9999 to ACM CCS 2021

compliant
::::::::::::
FIPS-compliant. Our BLUR attacks target key negotia-

tion and not cryptographic primitives, and are effective even with
perfectly secure cryptographic primitives.

9 CONCLUSION
We present the first security analysis of CTKD and identify novel
standard-compliant and

:
In

:::
this

::::
work

:::
we

::::::
examine

::::::
CTKD,

:
a
::::::
usability

:::::
feature

::
in
:::
the

::::::::
Bluetooth

:::::::
standard

::::
that

::::
has,

::::
until

::::
now,

:::
not

::::
been

::::::::
scrutinized

:::
for

::::::
security

::::
issues

:::
by

::
the

:::::::
research

:::::::::
community.

::
We

::::::
develop

:::
four

::::::
attacks

:::
that

::::
take

::::::::
advantage

::
of

:::::
CTKD

::
to

::::::
exploit

:::
both

:::
BT

:::
and

:::
BLE.

::::
Our

::::::
attacks

::
are

:::
the

::::
first

:::::::
examples

::
of
:
cross-transport issues

and attacks against
:::::
attacks

::
on

::::::::
Bluetooth,

::::
they

::
are

::::::::::::::::
standard-compliant,

:::
and

:::::::
effective

:::::
against

:::
the

:::::
most

:::::
secure

:
BT and BLE . Our attacks

show that CTKD enables an attacker to cross the security boundary
between BT and BLE.

:::::
modes

:::
(i.e.,

::::::
Secure

::::::::::
Connections

:::
and

:::::
Secure

:::::::::
Connections

:::::
Only).

::::
Our

::::::
attacks

:::
are

:::
the

:::
first

::::
ones

::::
that

::::::
achieve

:
a

:::::::
persistent

::::::::::
compromise

::
of

::
the

::::::
devices,

:::
i.e.,

::
it

:::::
leaves

::
the

::::::
devices

::
in

:
a

::::::::::
compromised

::::
state

::::
even

::::
when

:::
the

::::::
attacker

::
is

::
no

:::::
longer

::::::
present.

:
In

contrast to previously published attacks on the individual BT and
BLE transports, our attacks on CTKD do not require the attacker
to be present during pairing or secure session establishment. As a
result, our attacks have lower requirements for the attacker while
still allowing to break BT and BLE security guarantees.

::::
other

::::
prior

::::::::::::::
standard-compliant

::::::
attacks

:::
(i.e.,

::::::
attacks

:::
that

::::
also

::
are

:::
not

:::::::
targeting

::::::::::::
implementation

:::::
bugs),

:::
our

::::::
attacks

::
are

::::
not

:::::
limited

::
to
:::
the

::::::
pairing

:::::
phase.

:::
That

::::::
means

::
we

:::
can

::::::
execute

:::
the

:::::
attack

::
on

:::
any

:::::
device

::
at

:::
any

::::
time,

::::::
without

::::::
forcing

:
a
:::
new

::::::
pairing

:::::
event.

We identify cross-transport issues related to roles (CTI 1), “Secure
Connections” (CTI 2), association (CTI 3), key overwrite (CTI 4),
and pairing states (CTI 5). Based on those issues, we develop attacks
against BT and BLE enabling impersonations, traffic manipulation,
and malicious session establishment. We name our attacks

::::
With

:::
our

::::
BLUR

::::::
attacks

::
we

::::
reach

::::
four

::::::::
significant

::::
goals.

:::
We

::::::
achieve

:::::::::::
impersonation

:::
and

:::::::
take-over

::
for

::::
both

:::
the

:::::
master

:::
and

::::
slave

::::::
devices;

::::::::::::::
man-in-the-middle

::
on

:::::
secure

::::::
sessions

::
in
:::
the

::::
most

:::::
secure

:::::
mode

::::::
(Secure

::::::::::
Connections);

:::
and

:::::::::
establishing

::::::::
unintended

:::::::
sessions

::
as

::
an

:::::::::
anonymous

:::::
device.

:::::::::
Collectively

:::
our

:::::
attacks

:::
are

::::
called

:
BLUR attacks as they blur the security bound-

ary between BT and BLE.
We provide and discuss a low-cost implementation

::
To

:::::::::
demonstrate

::
the

:::::::::
practicality

:
of the BLUR attacksusing off-the-shelf hardware

and ,
:::
we

:::::::
presented

:
a
:::::::
low-cost

::::::::::::
implementation

::::
based

:::
on

::::
cheap

::::::
readily

::::::
available

::::::::
hardware

::
(a

:::::
laptop,

:::
and

::
a

:::::::
Bluetooth

::::::::::
development

:::::
board)

:::
and open-source software. To demonstrate that our attacks are
practical, we successfully exploit devices from different hardware
and softwaremanufacturers. Our devices range across all the Bluetooth
versions supporting CTKD (e.g., versions greater or equal to 4.2)
and also a version of Bluetooth 4.1 with backported CTKD features.

We discuss several lessons that we learned (e.g., the importance
of a cross-transport threatmodel) and themajor technical challenges
that we faced (e.g.,

:::::::
software

::::::
(Linux,

:::
and

::::::::::
internalblue).

::::
We

:::
also

::::::
describe

:::::::
solutions

::
to

::
the

::::
main

:::::::
technical

::::::::
challenges

:::
we

::::
faced

:::::
during

::::::::::
development,

:::::::
including low-levelmodifications of a Bluetooth firmware).

We present five countermeasures to mitigate the BLUR attacks.
Each countermeasure addresses a specific cross-transport with a
concrete fix that can be implemented at the Bluetooth standard

level.We responsibly disclosed our vulnerabilities, attacks, and countermeasures
to the Bluetooth SIG.

::
We

:::
use

:::
our

::::::::::::
implementation

::
to

:::::::::::
experimentally

::::::
confirm

:::
that

::::::::::::::
CTKD-compatible

:::::
devices

:::::
(using

:
10

::::::
unique

:::::::
Bluetooth

:::::
chips)

::
are

::::::::
vulnerable

::
in

:::::::
practice.

:::
Our

:::::
attacks

:::
are

::::::::
successful

::
on

::
all

:::
the

:::::
devices

:::
we

::::
tested

:::::
which

:::::
shows

:::
that

:::
this

::
is
::
a
::::::
serious

::::::
problem

:::
in

::::::
practice.

::::
We

:::
end

:::
the

:::::
paper

::
by

::::::::
discussing

::
the

::::::::
feasibility

::
of

:::::
various

:::::::
low-cost,

::::::::
host-based

:::::::::::::
countermeasures

:::
that

::::::
prevent

:::
the

:::::
attacks

::
at
:::
the

:::
cost

::
of
:::::
some

:::::::
usability.

::
We

:::::::
followed

:
a
:::::::::
responsible

:::::::
disclosure

::::::
process

::::
and

::::::
notified

:::
the

:::::::
Bluetooth

:::
SIG

::
of

:::
our

::::::
findings,

:::::::
resulting

::
in

:::::::::::::
CVE-2020-15802,

:::
and

::
we

:::::
intend

::
to

:::::
release

:::
our

::::
attack

:::::::::::::
implementation

::
as

::
an

::::
open

:::::
source

::::::
project.

:

=10000

17

	Paper changes for CCS21 compared to SEC21
	Description of CTKD in non-adversarial settings (Sections 2, 3)
	Presentation of the BLUR attacks (Section 4)
	Re-implementation of CTKD's derivation function (Section 5)
	Attacks' root causes and countermeasures (Section 7)
	Attacks' comparison with related work (Section 8)

