Paper changes for CCS21 compared to SEC21

In this document, we summarize our changes concerning the last Major Revision
that we got from USENIX Security that after the discussion ended up with
a Reject and Resubmit decision. The USENIX Security reviewers asked for a
complete re-write of several sections of the paper and that is what we did. In
the following subsection we describe our modifications in detail. For reference,
we are also attaching the last reviews and a paper diff.

Description of CTKD in non-adversarial settings (Sections
2, 3)

We rewrote Section 2 and 3 to clarify what information about CTKD is present in
the Bluetooth standard and other public information (see 3.1) and what we had
to experimentally reverse-engineer (see 3.2). Doing so, we are also clarifying our
contribution to the analysis of CTKD. Leveraging what we reverse-engineered,
we now provide dedicated descriptions with related Figures of how CTKD works
for BT and BLE, and we emphasize their differences.

Section 3 now expresses our contribution related to CTKD, provides an intro-
duction to the BLUR attacks, enables a reader to tinker with CTKD and come
up with their own attacks, and also serve as future documentation for CTKD
which was so far lacking (even in the Bluetooth standard). Finally, as requested,
we thought again about the attack root causes, we reduced them from five to
four and we moved them in the discussion section (Section 7).

Presentation of the BLUR attacks (Section 4)

We worked on Section 4 to simplify the presentation of our attacks. In particular,
we introduce the attacks by first presenting a high-level attack strategy in 4.3
that explains the attacker’s tricks. Then, we improve the technical description
of each presented attack both in text and visually by coloring in red the fields
modified by the attacker. Overall Section 4 should be self-contained and use the
right level of abstraction to let the reader appreciate attacks and their novelty.
For example, we want to make clear that is not only yet another attack abusing
“Just Works”.

Re-implementation of CTKD’s derivation function (Section
5)

We worked on Section 5 to clarify our re-implementation of the CTKD key
derivation function. In 5.3 we clarify that what we are not re-implementing
the whole CTKD protocol but focus on its key derivation function and that
our implementation is not required to conduct the attack. Moreover, we also
rewrote 5.2 to better explain why we needed to build our attack device and

what its capabilities are compared to standard laptops, smartphones, and even
software-defined radios.

Attacks’ root causes and countermeasures (Section 7)

We improve our analysis of the BLUR attacks in Section 7. In 7.1 we re-wrote
our description of the presented cross-transport issues (CTI) and we clearly state
these CTIs represent the attacks’ root causes and that were extrapolated from
the BLUR attacks. We also address the reviewers’ concerns with the proposed
countermeasures by rewriting 7.2 such that it is clear which Countermeasure
is needed to fix which attack and/or cross-transport issue. We rewrote 7.3 to
better distill our lesson learned. Regaling why the presented issues are in the
standard, we cannot comment as we are not part of the Bluetooth SIG.

Attacks’ comparison with related work (Section 8)

We were asked to place the BLUR attacks in the context of prior related work.
To address this comment, we added Table 3 which compares the BLUR attacks
with state-of-the-art attacks on BT or BLE. With the help of Table 3 we want
to clearly communicate what is the role of the BLUR attacks withing other
standard-compliant and implementation-specific examples. It should be now
clear that the BLUR attacks reach unprecedented goals such as persistence, and
effectiveness regardless of the victim’s state and targeted transport.

BLURtooth: Exploiting Cross-Transport Key Derivation in
Bluetooth Classic and Bluetooth Low Energy

Anonymous Author(s)

ABSTRACT

The Bluetooth standard specifies two incompatible wireless trans—
ports: Bluetooth Classic (BT) fer-high-throughput-serviees-an

Bluetooth Low Energy (BLE)ﬁar—vefyL}ew—pewer—sefwee&—Besp&e
BT-and-BLE-, The two transports have different security architec-

tures and threat models Jn-partieularpairing-enablestwo-deviees

to-establish-aleng—termkey—to—securethe-communieation—Two
deviees-and provide dedicated pairing protocols to establish long-term

keys. Traditionally, two devices would have to pair over BT and
BLE to use both transperts-seeurely-—Sinee-pairing-the-same-deviees
twice—is-eonsidered—user-unfriendly’securely. But in 2014, Blue-

tooth v4.2 intredueced-Cross-Transportiey Derivation(CTKD)addressed

this usability issue by introducing Cross-Transport Key Derivation
CTKD) for BT and BLE. CTKD allows twerde\ﬂee&te—pai%eﬂee

keyszespite‘GPKBﬂHewiﬂg%fayefsal—eﬁestabhshm BT and BLE

airing keys just by pairing over one transport. Despite the fact
that CTKD crosses the security boundary between BT and BLE, the

seeuﬂty—rmpkea&eﬂ&ef;GPKB—haveﬂePye%beefnﬂyeshgatedBluetooth

standard does not include CTKD in its threat model and does not

provide a complete description of it.

We-present-the first To address these issues, we present a full
characterization of CTKD obtained via reverse-engineering and a
security analysis of CTKDand-identify—. Based on our findings
we introduce four standard-compliant attacks on CTKD breaking
the strongest BT and BLE security modes. Our attacks are the first
examples of cross-transport issues-at-the Bluetooth-specifieation
level—These-issues-enable,for-thefirst-time—exploitation—of-both

ttacks for Bluetooth, as they enable breakm BT and BLE by att&ekmg

traffie manipulation-and-malicious-session-establishmenttargeting

just one of the two. In contrast to prior standard-compliant attacks,
our attacks do not require the attacker to be present when the
victims are paring or establishing secure sessions, and their effect

is persistent. We describe how the attacks can be used to impersonate

and take over any device, man-in-the-middle secure sessions, and

establish unintended sessions as an anonymous device. We refer
to them-as-BEUR-attacks-our attacks as BLUR attacks, as they blur

the securlty boundary between BT and BLE. qlhe—B{:UR—attac—ks—afe

We r0v1de a low cost im lementatlon of the BLUR attacks and we
successfully evaluate them on 13 devices with 10 unique Bluetooth

chips -and-diseuss-effectivecountermeasuresfrom popular vendors

such as Cypress, Dell, Google, Lenovo, Samsung, and Sony. We
discuss the root causes of the BLUR attacks and present effective

countermeasures to fix them. We disclosed our findings and coun-
termeasures to the Bluetooth SIG in May 2626-2020 and received

1 INTRODUCTION

Bluetooth is a pervasive wireless technology used by billions of de-
vices including mobile phones, laptops, headphones, cars, speakers,
medical, and industrial appliances [?]. Bluetooth is specified in an
open standard maintained by the Bluetooth special interest group
(SIG)viFhe—l-atest—V&stefref—ﬂae%taﬂd-afdﬁ and its latest version is

AARARAAARARAAARANAARAAAA

2 [?]. The standard specifies two different inecompatible-wireless
tfaﬂspeﬁs—thluetooth Classic (BT) and Bluetooth Low

Energy (BLE). BT is best suited for connection-oriented and high-
throughput use cases, such as streaming audio and voice calls;while
BEE-is-bestsuited-for-verylow—pewer. While BLE is optimized for

connection- less and very-low-power use cases such as localization
nd d1 ital contact tracing.

addfes&diﬁefefﬁ«usefase&&he&taﬂdafd—maﬁ&ams—sepﬂmfeﬁeﬁﬁfty

security architectures and threat models for BT [? , p. 947] and
BLE [?, p. 1617]. While-theseseeurity-architecturesaddressdifferent
: Jels. 4 il . hanisms.ineludi
Both transports provide pairing and secure session establishment
protocols. Pairing enables deviees-to-establish-a-the establishment
of shared long term keykeys, and secure session establishment
enable&allgw/vpalred devices to establish-a-seeure-communieation
channelby negotiating a-sessionkey thatis create a secure channel
through a (fresh) session key derived from the pairing leng-term
key.

Deviees thatsuppoertbeth-BT-and BEE Traditionally, two devices
would have to pair twiee-to-use-both-transperts-seeurely—over BT
and BLE to securely use both. However, pairing the same devices
two times is considered user-unfriendly. To address this usability
issue, Bluetooth v4.2 {released-in-26+4)yintroduced Cross-Transport
Key Derivation (CTKD) te-mitigate-the—user-unfriendly requirement
to—pair-thesame-devieestwiee—After pairing—on—onetranspert;
CTKD-allows-the-ereation-of-asecondlong-termkeyforthe-other
transpertfor BT and BLE in 2014 CTKD enables to pair two devices
once, either on BT or BLE, and negotiate BT and BLE pairing keys
without having to pair a second time [?, p. 1401]. For example, two
devices can pair over BT;generate-the BT Jong-term-BLE declaring
@@v&w&m&%ke% and then-run-CHKCD

)derlveaBT airin ke without usin BT Alternatlvel the can

use CTKD from BT to derive BT and BLE pairing keys. All ma-
jor Bluetooth software stacks—{(e.g., Apple, Linux, Android, and

Windows) and hardware providers (e.g., Cypress, Intel, Qualcomm,
Broadcom, Apple, Sony, and Bose) implementCFKD-support CTKD.

Anonymous submission #9999 to ACM CCS 2021

Actually, Apple presented CTKD as a core “always-on™Bluetooth
and always-on feature to improve Bluetooth’s usability [?].

o e f . Fosis of CTKD. ‘

Security-wise, CTKD has not received any attention from the research
community and is only partially documented in the Bluetooth standard.

In particular, CTKD is not part of the Bluetooth threat model and
the standard does not provide a complete description of it. On
the other hand, CTKD is a very interesting, yet-unexplored, attack
surface, as it is a standard-compliant seeurity-issues—Those-issues
feature, is used together with the most secure modes of BT and
BLE (i.e., Secure Connections), is crossing the security boundar
between BT and BLE, and is transparent to the end-user.

In our work, we provide a complete description of CTKD obtained
by merging the scattered and incomplete information about CTKD
from the Bluetooth standard, and the result of reverse-engineering
Wmmm%d on our ﬁﬂdmg%

deﬂeesesﬂeﬂsdescrl tion, we erformed a securlt evaluatlon of
CTKD and we present four novel and standard-compliant attacks

on CTKD. Our attacks enable BF-and BEE-eross-transportexploitation

f;;;f? :*fa* & compliant . “‘i Ihff;y a‘*j eﬁ all] dev R *;f;f
they-blur-the seeurity-boundary-between-are the first examples of
cross-transport exploitation for Bluetooth, as they exploit BT and
BLE only by targeting one transport.

The attacks are very effective as they can defeat all BT and BLE

security mechanisms including Secure Simple Pairing (SSP), Secure

Connections (SC), and strong associations. In contrast to previeusly
published-attacksenBTandBEEprior standard compliant attacks [?

be present during pairing er-and secure session establishment -
Thereforeourattacks-have lowerrequirementsfor-the-attacker
te-sti ing-and they result in a persistent compromise of
particular, they enable to impersonate and take over secure sessions
from any BT or BLE device, man-in-the-middle BT and BLE secure

sessions, and establish unintended BT and BLE sessions with a

victim device while remaining anonymous and without breakin,
existing security bonds. We name our attacks BLUR attacks, as the
blur the security boundary between BT and BLEseeuﬂtngﬂaP&ntees.

r0v1de a low-cost implementation of the BLUR attack based on a
WMBluetooth development boardeennected-te—&

epeﬂ-seﬁfe&tee}s—qlhi&makeﬁepfedﬂe}ﬂgw\y/gébgmme
BLUR attacks si :

use-ourattackimplementationto-evaluateare areal and standard-compliant

threat by successfully conducting them on a diverse set of devices.

In particular, we use our implementation to exploit 13 deviceswith
unique devices employing 10 unique Bluetooth chips ;frem-the

from major hardware and software vendors s-e-g=(i.e., Broadcom,
Cambridge Silicon RadiofESR}, Cypress, Google, Intel, Linux, Qual-

comm, and Windowsand-representing-all Bluetooth-versions-that

suppert) implementing the most common Bluetooth versions supportin,
CTKD (ie., Bluetooth versions 41 4.2, 5.0, and 5. l)aﬁekeveﬂ—a

To concretely address the presented attacks we infer their root
causes by listing four cross-transport issues with the specification
of CTKD. Then, we address those issues and the related BLUR
attacks by proposing four effective countermeasures that can be

implemented at the operating-system level (i.e., in the Bluetooth
Host) with low effort. We summarize our contributions as follows:

. We pefferm—the everse-engineered CTKD and performed

EIE.W d 'E 1 1 . . bl
. Based on that, we design four standard-compliant attacks

on CTKD. The attacks break all BT and BLE security mechanisms

including SSP, SC, and strong association, do not require
the attacker to be present while the victims are pairing and
establishing secure sessions, and their effect is persistent.
Moreover, our attacks are the first examples of cross-transport
attacks MMMWT and BLE
e :] it the s p—
{Seetien4)-Our attacks allow-impersonationrintereeption;
- uslation. and uninterded sessions i Seetions,
weresult in impersonation and take over of devices, MitM
their secure sessions, and establishment of unintended sessions
as an anonymous device. We name our attacks BLUR attacks,

as they blur the security boundary between BT and BLE.
e We present a low-cost implementation of the BLUR attacks

based on a Linux laptop and a Bluetooth development
board.

o Weeconfirm-thatreal-world BT-and BEE-We use our implementation

to confirm that actual devices are vulnerable to the BLUR

attacks by evaluating-ourattacks-onsuccessfully attacking
13 unique-deviees(Seetion-¢different devices employing
10 unique Bluetooth chips and covering the majority of
Bluetooth versions compatible with CTKD (e.g., 4.1, 4.2,
5.0, and 5.1). We provideeeonerete-discuss four concrete
attacks’ root causes in the specification of CTKD and we
provide four practical countermeasures to fix the-presented

isstres—them.

e We disclosed our findings and countermeasures to the Blue-
tooth SIG in May 2020. The Bluetooth SIG acknowledged
our-findings-them and assigned CVE-2020-15802 to the
BLUR attacks. In September 2020, the Bluetooth SIG re-
leased a security note about our report at(without contact-
ing us) at https://www.bluetooth.com/learn-about-bluetooth/
bluetooth-technology/bluetooth-security/blurtooth/.

2 BACKGROUND
We now compare the most relevant features of BT and BLE;and
introduce CTKD.. To r0v1de recise technical descriptions we

https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/

Anonymous submission #9999 to ACM CCS 2021

follow the Bluetooth standard’s master/slave terminology instead
of more apt terms like leader/follower.

2.1 A Comparison of BT and BLE

BT and BLE are two wireless transports specified in the Bluetooth

standard. These transports are incompatible (ie5-while-they-uase

.they use different physical
layers and Imk layersare-different) and are designed to complement

each other. BT is used for high-throughput and connection-oriented
services, such as streaming audio and voice. BLE is used for very
low-power and low-throughput services such as localization and
monitoring. Fypieally-high-end-High-end devices, such as laptops,
smartphones, headsets, and tablets, provide both BT and BLE(in-a
singleradio-chip), while low end devices such as mice, keyboards
and wearables provide either BT or BLE.

BT and BLE have similar security mechanisms but different secu-
rity architectures and threat models. Beth-In particular, both trans-
ports provide a pairing mechanism, named Secure Simple Pairing
(SSP), to let two devices establish a shared long term key. BLE SSP is

erformed over the Security Manager Protocol (SMP) [?, p. 1666]
while BT SSP uses the Link Manager Protocol (LMP) [?, p. 568
. During pairing, BLE allows negotiating the entropy of the long
term key while BT does not. Beth-transperts-Additionally, BT and

BLE prov1de a secure session establishment mechanism to deﬂve—a

For BT, the master is the connection initiator, the slave is the
connection responder, and roles can be switched —Beth-master
or-slave-eanrequestarole-switch-almestanytime-dynamically by
any party after a radio link between-thetwo-is established. For
BLE, the master and slave roles are fixed and switchingroles-is
not-supported—Fhe-master-cannot be switched. The BLE master
(defined as central) acts as the connection initiator (BEE-eentral)

and-the-slave-as-and the BLE slave (defined as peripheral) as the
connection responder{BEE-peripheral). High-end BEE-devices, such

as laptops and smartphones, implement-both-master-and-support
both BLE master and BLE slave modes and are typically used as the

masterBLE masters, while low-end devices, such as fitness trackers

or-smartwatehes-typieally-implement-only-the-and smartwatches,
support only the BLE slave mode.

3 SECURITY ANALYSIS OF CTKD

In this section, we present our security analysis of CTKD. In particular,

in Section 3.1 we describe what is publicly known about CTKD,
and in Section 3.2 we complement it by reverse-engineering how
CTKD works in practice for BT and BLE.

3.1 Public Information about CTKD

Fwo-devicesthatsuppertBT-and BLE haveto-pairBefore the introduction

of CTKD, a user had to pair the same two devices over BT and

ationestablishver BLE-BLE (i.e., two times) to use both transports securely.

a secure commumcatlon channel using a session key derived from
the long-term pairing key. During session establishment, BT al-

lows negotiating the entropy of the session key while BEE-the BLE
session key inherits the entropy of the sessionkeyfrom-theentropy
of the long termkeyagsociated long term key.

BT and BLE use the same notion of pairable and discoverable
states. If a device is pairable then it will accept pairing requests
from other devices. If it is discoverable it will reveal its identity
when other devices scan for nearby devices. Contrary to popular
belief [?], a device can answer to a pairing request even if it is not
discoverable. For example, if the user knows the MAC address of
her pair of headphones she can complete BT or BLE pairing from
her laptop without putting the headphones into discoverable mode.

BT and BLE suppert-provide a “Secure Connections” mode that
uses FIPS compliant security primitives such as AES-CCM for au-

thenticated encryption; Eliptie-Curve Diffie Hellman(ECBH)over

pairing phase-against- Furthermore, they provide similar ways to
protect against man-in-the-middle attaeks(MitM) attacks during
the pairing phase defined in the standard as association procedures.
Two examples of associations are “Jast-WorksJust Works that pro-
vides no protection-and—Numerie-Comparisen——MitM protection
and Numeric Comparison that provides protection against Whﬁ&%ﬂm@%mmm

curve [?,p. 269]. As a consequence, an attacker who can break
CTKD can break BT and BLE’s stron est security mode. Ha-deviee

attacks-a MitM by requiring user interaction during pairing (e.g.,
the user has to manually confirm that she sees the same numeric
code on the pairing devices).

Both BT and BLE define use a master-slave medium access protocol

but define the master and slave roles in-different-waysdifferently.

Paiﬂﬂg%heﬂame%w&éeﬂee&’mﬂee«r&eeﬂs&lereéiThe Bluetooth

SIG considered this procedure user-unfriendly >and-the Bluetoothstandard

verston-and improved Bluetooth’s usability by introducing CTKD
for Bluetooth 4.2(released-in2014)}introduces CTKDto-addressthis

isste—As—shown—inFigure 22-CTKD-enables—two—devicestopair

enees- in 2014. By using CTKD, two devices, pair only one time ei-
ther over BT or BLE, and then can securely use both [? , p. 280].

For example, a user—eaﬂ—p&tr‘a—headse%p\gl/r\/gff\h/e\gg\sgw s and a laptop
m over BLE, m%heﬁt—piﬁﬂﬂg—bhe—headset—ﬂ%seevefable

Mﬁ&&ﬁg—mﬁ%&‘—,&rx&ﬂﬁmwm
airing key for BT (without the user having to put the headsets into
BT pairing mode). Alternatively, the devices can pair over BT and

run CTKD to generate the BLE pairing key. In both scenarios, after

pairing once the headsets and the laptop can start secure sessions
over BT and/or BLE.

Beforeexplaining CTKDHtisimpertanttoreview-the differenees
betweenpairable(bondable) and-discoverable statesfor BFandBEE

The Bluetooth standard specifies that CTKD should be used only
when a device supports Secure Connections mode for that specific
transport [?, p. 1401]. Secure Connections is a security mode that
was introduced both for BT and BLE to enhance their security
primitives without affecting their security mechanisms. In particular,
Secure Connections mandates the usage of FIPS-compliant algorithms

Anonymous submission #9999 to ACM CCS 2021

paired-over BT

The Bluetooth standard speeifies-the-same-CTKD-funetionto
derive-also describes how CTKD derives pairing keys for BT and
BLE [? ., p. 1658]. CTKD uses the same key derivation function for
BT and BLEleng-termkeys—This-, and the function takes as in-
puts a 128-bit (16-byte) key and two 4-byte strings and derives a
128-bit (16-byte) keyusing-AES-CMACsee-Seetion5:3-for CTKD’s
internals)—CTKD-for BT -derives-a-BLEJong-term-, What changes
between BT and BLE are the strings used as inputs. When CTKD
is used to derive a BLE pairing key (Kpig) from a BT long term
pairing key (Kpt) and-the-strings—tmp2"and-"brle"-while CTKD
for BEE-derives—from—and-the-strings—tmpT—and—"lebr—As-the
standard-defines-eonstant-strings-and-nofresh-nonees-as-inputs;

the-CTKDP-funetion-derives-the same-output-key-whenreusing-the
same-input-then the key is derived using the “tmp2” and “brle”
“tmp1” and lebr” strings. We note that the CTKD key derivation
function is deterministic, as using CTKD on the same input key will
always generate the same output key.

CTKD-sbroadly-supported byseg=Despite being an optional
feature, from the Internet and our experiments we can conclude
that CTKD is supported by all major hardware and software vendors
including Apple [?], Google [?], Cypress [?], Linux [?], Qual-

»

feﬁBT—&ﬂd—EGBH—p&}mtg’feﬁBLEActuall Apple resented it as
a core and always-on Bluetooth feature during WWDC 2019.

3.2 Reverse Engineered Details on CTKD
The Bluetooth standard lacks a section about CTKD negotiation

and usage for BT and BLE, but merely provides scattered information.

Since knowing such information is essential to perform our security.
analysis, we reverse-engineered it. In this section we provide an
high-level summary of the information that we extracted from our
reverse-engineering process. To ease our description we abstract
the protocols at a message level, where each message captures one

Bluetooth master as Alice, and the Bluetooth slave as Bob.

CIKD from BLE. Figure 1 shows CTKD during BLE pairing. Alice
and Bob are pairable BLE and discover each other using BLE's
advertising and scanning features. Then, Alice and Bob negotiate
specific capabilities using paiting request and response messages.
The messages must contain Secure Connections (SC) and CTKD
support, together with an association method (Assoc), a source

comm [?], andIntel[]. CTKDiscombined-with-"Secure- Connections

Alice (master) Bob (slave)
< Devices pairable over BLE >

BLE Pairing Request:
Assoc, ADDy, SC, CTKD, PK 4, Ny
BLE Pairing Response:
Assoc, ADDg, SC, CTKD, PKg, N

DK = PKp - SK4
Kpre = kdf g (DK, Ny,
Np, ADD,4, ADDp)
Kpr = ctkd(KpLe,
“tmpl”, “lebr”)

DK =PK,4 - SKp
1\'1;1‘1;‘ = kdeE([)I{7 1\1147
Ng, ADD4, ADDj)
Kpr = ctkd(KpLg,
“tmpl”, “lebr”)

BLE Key Distribution: CSRK 4, IRK 4
BLE Key Distribution: CSRKpg, IRKp

Figure 1: CTKD usage during BLE pairing. Alice and
Bob negotiate SC and CTKD support during BLE pairing.
Then, they compute the BLE pairing key and from that
key, they derive the BT pairing key via CTKD (without
exchanging any message over BT). Finally, they generate
and exchange additional keys for BLE including signature
(CSRK) and identity resolving (IRK) keys. After the protocol
is completed Alice and Bob can establish secure sessions
both for BT and BLE (without having to pair over BT).

BLE address (ADD), a public key (PK), and a nonce (N). Technically,
CTKD su ort is declared b settln to one the Link Key bits of the

After exchan ing the pairing messages, Alice and Bob compute
a Diffie-Hellman shared secret (DH) using their remote public keys

and local private keys (PK). The shared secret is then used to compute

the BLE pairing key (Kpyg) using a dedicated BLE pairing key derivation

function (kdfi). Then, Alice and Bob use CTKD's key derivation
function (ctkd) to derive the BT pairing key (Kpr) from the BLE
key and the static strings “tmp1” and “lebr”. Finally, they establish
a secure session over BLE and exchange additional keys such as
CSRK, and IRK. Once the protocol is concluded, Alice and Bob can

establish secure sessions over BT and BLE without having to pair
over BT,

CIKD from BT: Figure 2 presents CTKD negotiation during BT
pairing. Alice and Bob are pairable over BT and discover each other
BT's inquiry mechanisms. Then, they exchange pairing request
and response messages over BT to negotiate several BT capabilities
(including SC), and to exchange their BT addresses, keys, and nonces.
Unlike CTKD for BLE, CTKD is not negotiated with the BT pairing
messages. But, Alice and Bob complete the BT pairing process by
computing DH and using it together with their BT addresses and

Anonymous submission #9999 to ACM CCS 2021

Alice (master) Bob (slave)

< Devices pairable over BT >

BT Pairing Request:
Assoc, ADDy4, SC, PK4, Ny

BT Pairing Response:
Assoc, ADDp, SC, PKp, Np

DK = PKp - SK4
KBT = kle[;fp(DI(7 1\1147
Ng, ADD4, ADD5)

DK = PK, - SKp
Ng, ADD4, ADD5)

BT CTKD Request:
CTKD, CSRK 4, IRK 4

BT CTKD Response:
CTKD, CSRKp, IRKp

[\V|;H; = Ctkd(KBT,
“tme” , “brle”)

*

[\,“H‘ = Ctkd([(]?,'f7
“tmp2” , “hrle”)

*

Figure 2: CTKD usage during BT pairing, Alice and Bob
during BT pairing negotiate SC support. Then, they compute
the BT pairing key, start a_secure session over BT and
send BT CTKD messages containing CTKD support and
other keying material generated for BLE such as signature
CSRK) and identity resolving (IRK) keys. Notably, the
CTKD request and response are encoded as BLE pairing
request and response and tunneled over BT. Afterward,
Alice and Bob derive the BLE pairing key, via CTKD (without
exchanging any message over BLE). After the protocol is

completed Alice and Bob can establish secure sessions both
for BT and BLE (without having to pair over BLE).

nonces to compute the BT pairing key (Kp) through the BT pairing
key derivation function (kdfpr).

Then, CTKD negotiation takes place, as Alice and Bob establish
a secure BT session and exchange two BT messages containing
the CTKD flag and additional security material needed for BLE
such as signature keys (CSRK) and identity resolving keys (IRK).
These two messages are peculiar as they are formed by BLE pairing
packets (SMP pairing request and response) sent over BT. This is
the first example of BLE tunneling over BT that we observed, and
the Bluetooth standard so far lacks any diagram or description of
this behavior. Once CTKD is negotiated, Alice and Bob use it to
derive the BLE pairing key (Kprg) from the BT key and the static
strings “tmp2” and “brle”. After the protocol is completed, Alice
and Bob can start BT and BLE secure sessions without having to
pair over BLE.

CTKD life cycle. By combining all the information acquired from
ublic documents, reverse-engineering implementations, and our

DlSCOVCIy Imtlahzatlon Communication

=) Yol mlal mia

Figure 3: CTKD life cycle has three phases: Discovery (to
and, through CTKD, create a pairing key for the other
transport), and Communication (to establish secure sessions
on BT and/or BLE).

experiments, we represent the CTKD life cycle for BT and BLE in

three phases: Discovery, Initialization, and Communication. Figure 3
shows the life cycle assuming that Alice is a laptop and Bob 2 pair
of headphones. During Discovery, Alice and Bob are pairable on
the relevant transport and discover each other. During Initialization,
Alice and Bob negotiate SC and CTKD, use one transport (either

BT or BLE) to establish a pairing key, and then derive a pairin,

key for the other transport using CTKD without having to pair a
to establish BT and BLE secure sessions using their shared pairing
keys. Each session uses a fresh session key derived from the pairing
key and session nonces.

4 BLUR ATTACKS VIA CTKD

We now present our threat model and the design of four novel and
standard-compliant attacks for Bluetooth. OQur attacks are the first
samples of cross-transport exploitation for Bluetooth, as they are
capable of exploiting BT and BLE just by targeting either of the
two. Our attacks are stealthy as CTKD is transparent to the users,
and do not require a strong attacker model as the attacker does not
have to be present when the victims are pairing or establishing a

secure session. As our attacks are blurring the security boundar
between BT and BLE, we name them the BLUR attacks.

4.1 System Model

Our system model considers two victims, Alice and Bob, who
yrant-to-can securely communlcate over BT and BLE. Ahc—e—aﬁd

WMM@%
secure BT and BLE modes, namely, SC and strong association (e.g.,
Numeric Comparison if both have the necessary 10). This setup
should protect the victims against device impersonation, traffic
eavesdropping, and active man-in-the-middle attacks on BT and
BLE [?, p. 269]. After-eompletingpairing;-Alice-and Bobeanrun
seeure-sessions-over BT-and/or BEE-~Without loss of generality,
we assume that Alice is the BF-andBEE-master and Bob is the

Anonymous submission #9999 to ACM CCS 2021

leader/follower-slave.

Regarding the notation, we indicate a BT pairing key with Kpr,
a BT session key with SKpT, a BLE pairing key with Kprg, a BLE
session key with SKpig. Mereover—we-We indicate a Bluetooth
address with ADD, a public key with PK, a private key with SK,
a shared Diffie-Hellman secret with DK, a nonce with N, and a
message authentication code with MAC.

4.2 Attacker Model and Goals
Our attacker model considers Charlie, a remote attacker inBluetooth
range-with-Aliee-and Bobwho is in Bluetooth radio range with the
victims. The attacker aims to compromise the secure BT and BLE
sessions between the victims without tampering with their de-
vices. The attacker’s knowledge is limited to what Alice-andBob
the victims advertise over the air, e.g., full or partial Bluetooth
addresses, Bluetooth names, authentication requirements, IO capa-
bilities, and device classes.

The attacker does not know any BT or BLE key shared between

sessiensthe victims, does not have to be present when the victims
air or negotiate a secure session. The attacker can scan and dis-
cover BF-and-BEE-devices;jamthe Bluetooth-channelpair-with

AlieeandBeb-devices, send pairing requests and responses, use
CTKD, propose weak association mechanisms (e.g., “JustWorks Just

Works), and dissect and craft unenerypted-Bluetooth packets.

The attacker has four goals. The first geal-one is to imperson-
ate Alice (to Bob) and potentially take over Alice’s secure ses-
sions. The second intent-goal is to impersonate Bob (to Alice)
and also take over Bob’s secure sessions. By take over, we mean
that after the attack the security bond between the two victims is
broken. We note that, Alice and Bob” impersonations are different
goals as they require different attack—techniques—{ies;Blueteoth
impersonation techniques (i.e., master and slave impersonation

The attacker’s third objective is to establish a man-in-the-middle
position in a secure session between Aliee-and-Beb-and-two victims
and requires combining and synchronizing theﬂmpefseﬂaﬂeﬂ—a&&eks

on-Alice and Bob’s impersonation attacks. The fourth geatis-te-pair
and-objective is to establish unintended and possibly stealthy ses-

sions w1th Ahce or Bob as an arbltrary device, w1thout bfeakmg
over a session and breaking existing security bonds. An unlntended

session enables the attacker to access a much broader attack surface

than the one exposed in a connection-less scenario.

4.3 Attack Strategy
We Grstd L CTKD life eveles i L et

The first haseof-the CTKD Lo wrehe to i b _
BuringDiseovery:Atieeandnow describe our attack strategy using
Alice’s impersonation as a reference example and with the help of
Figure 4. Let us assume that Alice is a laptop and Bob is a pair
of headphones and the victims are already paired and they are
running a secure BT session. Since the victims support CTKD, they

are also pairable over BLE, even if the transport is not currently in
use. Charlie sends a BLE pairing request to Bob pretending to be
Alice and claiming CTKD support. Bobfind-each-otherandexchange

2. p. —even if runnin,

a BT session with Alice, has to answer to Charhe w1th a BLE pairin

Alice Bob

BT i
=i

BLE

Charlie as] B jum}
Q{7 s
BLE _Q.

Attack strategy. Alice
and Bob are paired over BT and run a secure BT session.
Charlie pairs with Bob as Alice over BLE declaring CTKD

w

agree—on—support. Then Charlie agrees upon a BLE pair-
ing key with Bob, and, threugh-via CTKD, ereate-a-tricks
Bob into overwriting Alice’s BT pairing keyfor-the other
transport). As a result, Charlie can establish BT and

BLE sessions with Bob as Alice, and takes

over the real Alice who can no longer connect to Bob.

Using a similar strategy, Charlie can also impersonate Bob
to Alice, man-in-the- mlddle Alice and Bob, and establish

seeure-sessions-on-unintended BT and /or-BLE)sessions as

an arbitrary device.

Anonymous submission #9999 to ACM CCS 2021

response as Charlie’s message is compliant with the Bluetooth stan-
darddees-netrequire-to-exchange-anypacket-over-the-airto-signal

the-eerrespendentThen, Charlie (as Alice) and Bob agree on a BLE
pairing key andsessien-nenees{e-g—from-andfrom);andusesthe
or L . b tink &%

or—B an-use Pto-overw etlone—term o3 e

via CTKD, generate a new BT pairing key that overwrites Alice’s
key in Bob’s BT key store. In doing so, Charlie, wins two prizes

with one shot, as he takes over Alice’s BT and BLE sessions with

Bob. In other words, Alice can no longer connect to Bob as she
does not know the BT and BLE pairing keys (overwritten by the
that are distributed during pairing, including CSRK (signature key)
and IRK (MAC randomization key). We note that the overwrite
trick is transparent to the end user as the standard does not mandate
to notify the user about CTKD, and works even if Alice and Bob are

strategy, Charlie can impersonate Bob to Alice, man-in-the-middle
targetonly-deviceswhich support BLE-and BT ions> them and create unintended sessions as an arbitrary device with
buteanalsetargetdeviees that suppert BLE-or BT-“Seeure Conneetions’ a victimdeviee-We-eall-our-attacks-BLUR-attacks. We note that our
attack strategy is effective because the Bluetooth standard does

EH3ssociation (Pairing). During PairingAliceandBobean BT and BLE and does not address all cross-transport threats in its
threat model (see Section 7.1 for more details). In the remaining

Anonymous submission #9999 to ACM CCS 2021

of this section, we describe the technical details of the four BLUR
attacks.

4.4 Impersonation Attacks

Master impersonation. Charlie impersonates Alice {master)-and
takes over her BT seeure-session-and BLE sessions with Bob as in

Charlie (master) Bob (slave)

< Devices pairable over BLE >

BLE Pairing Request as Alice:
JW, ADD4, SC, CTKD, PK¢, N¢

BLE Pairing Response:
Assoc, ADDg, SC, CTKD, PKp, Np

Compute Kp1p
Derive Kpr

Compute Appp
Derive Kpr

BLE Key Distribution: CSRK¢, IRK¢
BLE Key Distribution: CSRKp, IRKp

Figure 5: Master-BLUR master impersonation attackand
takeever. Charlie sends a BLE pairing request with Alice’s

address (acting-as-masterADD) pairs-with-including Just
Works (JW) association to avoid user interaction, CTKD,
and his public key (PKc). Bob answers with a BLE pairing
response thinking that he is talking to Alice. The attacker
and the victim agree on Kprr, and derive Kpr, via CTKD and
complete BLE paring by generating and distributing more

keys over a secure BLE session. As a result of the master
impersonation attack, Charlie tricks Bob into overwriting

Alice’s keykeys with his ones and takes over Alice who can
no longer connect back to Bob.

Figure 5. Charlie diseoversBob-asheispairableover BLE-andBob is
already paired with Alice, and can run a BT session with her while
Alice’s impersonation takes place. Notably, Bob must be pairable
over BT and BLE to support CTKD from BT and BLE. Charlie takes
advantage of that and sends a BLE pairing request as Alice by using
Alice’s Bluetooth address (ADD 4), Seeure-Conneetionssupport{te
trigger- CTKD)-and—Just-Works~Just Works (JW) association to
avoid user interaction —while pairing, his public key (PKc), and

CTKD support.
As Charlie’s BLE palrlng request dees—ﬂet—eeﬂide—wﬁh%he%?

Bob-sends-Charlie-is standard-compliant, Bob sends back a BLE
pairing response believing that Alice wants to pair (or re-pair)

over BLE using CTKD. Then, Charlie and Bob use-the-exehanged

publie keys-to-eompute PK-Then-they-use DK-and-the-exchanged
nonees(NC;-NB)-to-eompute-compute Kp g—Then;—theyloeally
eomptite, derive Kpt from-via CTKD, and exchange additional BLE
key material (e.g., using-the- CTKD s key-derivationfunetion{etkd)

—As-aresult-of CSRK, IRK) over a BLE secure session. After the
master impersonation attack -Charlie forees Bob-te-overwrite-the
BT-pairing-key-that-he-established-with-Alieewith-his BT pairing

is

> 5

key—establishes—aBEE—pairingkey—with-Beb——and-takes—eover
completed Charlie takes over Alice’s BT and BLE sessions by trickin
Bob into overwriting Alice’s BT sessionand BLE keys with his ones.

Slave impersonation. Charlie impersonates Bob {slave)-and takes
over his BT seeure-sessionrand BLE sessions with Alice as in Fig-
ure 6. I this-ease-Charlie has to-wait until the seeure BT session

be%weefrAhce and Bob t&m%efmpteé{eg—byﬂmﬂmgﬂ«mastef

WWMW%MWWM
session while the impersonation takes place. Alice has to be pairable
over BT and BLE to provide CTKD support from both transports,
MWMMQMby sending a BT pairing request
to Alice whe-istypieally-expeeting-pairing-respenses—either-over
BT-er BEECharlie’spairingrequest-inelude-Seeure-Conneections
support{to-trigger CTKD); Bob-s-Bluetooth-as Bob using Bob’s ad-
dress (ADDg)and-“Just Works“associationtoavoiduserinteraction.
Just Works (JW), and his public key (PK(-). Charlie’s paring request

is still standard-compliant even if Charlie is supposed to be the

slave as BT, unlike BLE, enables a slave to switch to a master role

before sending a pairing request.
Alieeswhe-is-pairable-over BT sends-a-Alice answers with a BT
pairing response believing that Bob wants to re-pair over BTusing
‘Fhen-they-loeally derive; and the two agree on Kpr, Then, Charlie
starts a secure BT session and sends a tunneled BLE pairing request
to Alice still pretending to be Bob, The BLE pairing request includes
CTKD support and Charlie’s signature and MAC randomization
BLE keys (CSRK¢, IRKc). Alice answers with a BLE pairing response
tunneled over BT and the two derives Kpip from—using €HKb-s

Anonymous submission #9999 to ACM CCS 2021

Alice (master) Charlie (slave)

< Devices pairable over BT >

BT Pairing Request as Bob:
JW, ADDg, SC, PK¢, N¢

BT Pairing Response:
Assoc, ADD g4, SC, PK4, Ny

Compute Kgr Compute Kgr

BT CTKD Request as Bob:
CTKD, CSRK¢, IRK¢~

BT CTKD Response:
CTKD, CSRK 4, IRK 4

Derive A’m,]{ Derive Avmqu

Figure 6: Slave—BLUR slave impersonation attackand
takeever. Charlie (aeting—as—slave)-sends a BT pairing re-
quest with Bob’s address (ADDg) including Just Works
(JW) association to Aliee-avoid user interaction, and his
public key (masterPKc). The pairing request is valid as BT
enables to dynamically switch from slave to master before
sending a pairing request. Alice answers with a BT pairing
response believing that she is talking to Bob, The attacker
and the victim establish Kgr, negotiate CTKD and exchange
additional keying material for BLE with a BT CTKD request
and response messages, and derive Kpg. As a result of the
slave impersonation attack, Charlie tricks Alice into over-
writing Bob’s keykeys with his ones and takes over Bob who
can no longer connect back to Alice.

Alice s
6,,6 p
e,

W

\ m%%,,
\ Charlie

Bob

(o
o“a‘\
&
of

e‘\«\
oy
A

Figure 7: BLUR
man-in-the-middle attack. Charlie combines the master
and_slave impersonation attacks presented so far to
establish a
man-in-the-middle position between Alice and Bob both on
BT and BLE.

Man-in-the-middle. Charlie can conveniently combine the described

master and slave attacks to launch a cross-transport man-in-the-
middle attack —As-in-the-previeus-seetion;as shown in Figure 7. If
Alice and Bob are paired-over BT-and-theyrunaseeure-sessionover

key&fs%abhshes—BI:E—}eﬂg%emrkeyﬁﬁﬁh—Ahee—aﬂd—Beb unning a
BLE session, and-pesitions-himself inthe-middle-to-aceess-al-traffie
be%weeﬂ%ewemﬁﬁﬁd%eﬂﬂeewﬁd—tfaﬁw%e%}mﬂw
with the slave impersonation attack presenting to Alice as Bob
over BT, Otherwise, he launches a master impersonation attack
by targeting Bob as Alice over BLE. After the first impersonation
attack, the impersonated victim is taken over and disconnects from
the other victim. Then, Charlie targets the impersonated victim
with a second impersonation attack and establishes a MitM position.

between the two victims. As a result, Charlie controls all BT and

BLE secure sessions between Alice and Bob.

4.5 Unintended Session Attacks

eensisteneybetweernvia CTKD. Once the slave impersonation attack

is completed, Charlie takes over Bob’s BT and BLE asseciation

exeepEG"PPSﬂﬂe}&dtﬂg%hHe{e—a&yﬁtme%ﬂes—be{weefr M
tricking Alice into overwriting Bob’s BT and BLE {€F-)keys with

his ones.

- b hich level deserintion-of ourBLUR

Bob E ‘

o A_A_
BLE Q\. 0.,_

Always pairablej

over BLE

BLE
i -

Figure 8: MitM—BLUR unintended sessions attackand
takeever. Charlie -
impersonates—can take advantage of CTKD to establish
unintended BT and BLE session with Bob as inFigure 6, let

their-traffica random device with arbitrary capabilities. The
same can happen if Charlie targets Alice.

Anonymous submission #9999 to ACM CCS 2021

far we described how to exploit CTKD to impersonate any Bluetooth
device, however, the attacker can also take advantage of CTKD
to establish unintended BT and BLE sessions with a victim as an
anonymous device with arbitrary capabilities. Unintended sessions
are interesting because they expose a larger attack surface than
packets to a victim (i.e.. when the victim does not trust the attacker).
For example, by establishing unintended sessions, the attacker can
enumerate all BT and BLE services supported by the victim and
exploit a remote code execution vulnerability that would not have

been exploitable without a secure session. Concurrently, these attacks

are more difficult to spot than impersonation ones as they do not
require to take over existing secure bonds (i.e., they do not require
to overwrite keys).

where Alice and Bob establish-are already paired and are runnin,
a secure BT session with-Charlie-in-the-middleand-Charlie-gets

M@%Wsmam
Alice and Bob arerunning-a—seeure-session-over BF-but-they-are
stit-must also be pairable over BLE in-order—to-aeceept-pairing
requests—with-other-deviees—and-run—to _support CTKD. Charlie
targets Bob (slave}bfseﬂdmghfm—&paiﬂﬂgfequeskw%lﬁ—as

fﬂ’—b&f&weapabﬂiﬂeﬁg—b sendln a BLE airing request usin
arandom Bluetooth address, Bluetooth-name;deviceelass;—Seeure

Geﬂﬂec—ﬁeﬂ#CTKD support, and weak-Just Works for association.
Bob ’aeeepts—teﬁaﬂ—wﬁh—ehafhewh}}efeﬂﬂmmg—his—sesswﬂ—w%h
#AtieeThen Charlieand Bob-answers to Charlie’s request and the
two negotiate Kprg, and derive Kpt using-via CTKD. Now, Char-
lie can establish secure but unintended BT and BLE sessions with
Bob without breaking his-existing-pairings-or-sessions-with-other
deviees-Bob’s existing sessions (e.g., with Alice) -

Ghﬂfh&eempﬂte—aﬂédeﬂve—ﬁsmg%—%}ewandb using an

X1 7th WH-CH700N
g=n Secure BT Session

b —3——

Alice Bob
X1 3rd gen

(master)

CYW920819 (slave)

Charlie (attacker)

Figure 9: Example- BLUR Attack Scenario. Alice (master) is
a ThinkPad X1 7th gen, Bob (slave) is a pair of Sony WH-
CH?700N headphones and Charlie (attacker) is a CYW920819
board connected via USB to a ThinkPad X1 3rd gen. Alice
and Bob have paired in absence of Charlie, and are running
a secure BT session.

5 IMPLEMENTATION

In this section we describe our attack scenario, our implementation
of a custom attack device to perform the BLUR attacks and our
re-implementation of CTKD’s key derivation function. Fhe-teels

that-we-developed-will be-open—seurecedWe will fully open-source
both the attack and our CTKD key derivation functionality.

5.1 Attack Scenario

Our attack scenario follows the example in Figure 9 and includes
two victims, Alice (master) and Bob (slave). faxFigure-9-Alice is
represented by a 7th generation ThinkPad X1 laptop and Bob by a
pair of Sony WH-CH700N headphones. The attacker (Charlie) uses a
CYW920819 development board [?] and a 3rd generation ThinkPad
X1 laptop as an attack device. The implementation of the attack
device is presented in Section 5.2. In our evaluation, presented in
Section 6, we use the same attack scenario with-different-to attack
other victim devices.

anonymous identity and arbitrary capabilities. Using a similar strate
Charlie can establish- secure butunintended BT-and BLE sessions efess—tfaﬂspestsue{GPPZé&&Pweétseus&—Fﬁfthefmefﬁefeﬂdﬁet

the-attacks-we-had-te-developan-attack-deviee-that-enabled-uste
10

Anonymous submission #9999 to ACM CCS 2021

Alice Bob Charlie
Bluetooth >
Device(s) X17thgen WH-CH700N L 3rd gen/ BlueZ baseband «»)))
CYW920819
Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716 Linux HCI Bluetooth
Version 5.1 4.1 5.0 Kernel firmware
Name x7 WH-CH700N x1
ADD Redacted Redacted Redacted Linux laptop (Host) CYW920819 (Controller)
Class 0x1c010c 0x0 0x0
BT SC True Only Controller True Frgure 10: Attack D.ev1ce Block Diagram. The attack device
is composed of Linux laptop (Host) and a CYW920819
BT AuthReq 0x03 0x02 0x03

development board (Controller) connected via USB and
BLE SC True True True communicating using the Host Controller Interface (HCI)

BLE AuthReq 0x2d 0x09 ox2d P,I:Q/t\(,)\(;gl
CTKD True True True

h7 True False True

Role Master Slave Master

I0 Display No IO Display

Association Numeric C. Just Works Numeric C.

Pairable True True True

and-CTKD-and-they-communieate-using-the Host ContrellerInterface
Table 1: Relevant Bluetooth features for Alice, Bob, and {HEDprotocolover USBBT and BLE address) and all devices’ capabilities
Charliein—our—example—attack—seenarioe. Alice—and—Beb advertised over the air (e.g., firmware and controller versions). A
support CTKD-even-if Bob’s Host-does not support BT S€ software-defined radio (SDR) is also out of scope because there is
(BT “Seeure- Conneections”)-We redact the devices’ Bluetooth no open-source BT/BLE SDR stack currently available.
addresses for privacy reasons. Instead, with our attack device, we can program our development
board (Bluetooth Controller) to impersonate any BT/BLE device,
we can patch its closed-source firmware to control both BT LMP
and BLE LL link layer packets Moreover, we can alter the laptop’s
BT and BLE kernel and user-space code to set Bluetooth Host-specific
configuration bits such as negotiating CKTD and Just Works. We
now describe in detail how we modify the attack device's Host and
bypiealy proprictary and-cosed-souceTable summarizes the most Contzollr components.

relevant features of Alice, Bob, and Charlie. Alice and Bob have Host modifications. For the host, we wsed-use standard Linux

%WMMMM tools to configure an Bluetooth interface (e.g., hciconfi g), and to
(CSR) one, Alice, Bob, and Charlie support respectively Bluetooth discover and pair with a device (e.g., bluetoothctl, hcitool and
31,41, and 5.0. Alice and Charlie support Secure Connections both btmgmt) In partlcular btmgmt was Very useful as ;untike-other
on the Host and the Controller, while Bob only on the Controller. d b o a

Alldevices support BT, BLE, and CTKD. Regarding pairing association m&mmﬁ%imm
methods, the laptops support Numeric Comparison, while the headsets - ovample it includes commands to toggle BT, BLE, SC, scanning,

only support Just Works as they lack a display. and advertising. Moreover, it allows to easily send custom pairin
. requests on BT and BLE and to set the related association (e.g., Just
5.2 Custom Attack Device Works).

Furthermore, we wanted-to-aceess-the-traffie-exchanged-ever
the-airby-eur-attaek-devieeconfigured our host to get all link-layer
packets sent and received by the controller. This is not-available
on—a-standard-Bluetooth-deviee—To-achieve-this-geat-handy as it
enables to monitor both HCI and link-layer packets directly from
our attacks we developed a custom attack device —As<wecan-see the host (e using Wireshark). To activate link-layer packet forwarding,
fronrits bloek-diagraminmaking use of a CYW920819 development we sent a proprietary Cypress HCI command from the host to

board connected to aLinux la to see Flgure 10%%%%&%%%
mplementing—the %Wthe controller This-mode-tells—the boardte

uﬁﬂgBJr&eZ—&&) Both dev1ces BT, BLE SC, and CTKD Usin a a e e e

standard laptops, smartphones or dongles is not sufficient to implement HGI—to—the—host—Then we added extra C code to the L1nux kernel

the BLUR attacks, as they do not allow to modify all device’s identifiers ~ to parse those HCF-paekets—With-thissetup;we-ean-monitor-both
11

Anonymous submission #9999 to ACM CCS 2021

HCLand Jinkd Fedireetlvf hel ” ..
over-the-air BT-and BEE-sniffersspecial HCI packets in the host.

Modifinet I i . sttt

patching the development board *sBluetooth-firmware—To-extraet
the Bluetooth firmware using a Cypress proprietary mechanisms.
To patch the firmware we had to extract it from the board and

statically reverse-engineer its relevant parts. In particular, to extract
the firmware we used a proprietary HCI command frem-Cypress-to

read and save a runtime RAM snapshot from the board’s SoC. We

firmware patehes-appliedatruntime-Weuse the memory maps that

we extracted from the board’s SDK to extract the varieus-memory
segments from the snapshot ineluding-the ROM;-the-(e.g., ROM,
RAM, and the scratchpadsegments). As expected, the ﬁrmware was
in the ROM segment and was a stripped ARM binary containing
16-bit Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM, RAM, and

scratchpad segmentsin-Ghidra{afreeandopen-source-decompiler
and-disassembler)in Ghidra and statically analyzed them. In our

first reverse-engineering-passpass, we isolated the libc functions
(e.g., malloc and calloc) by looking at the signatures and the

code patterns of the functions that are called the most. Then, we
found the firmware debugging symbols hidden in the board’s SDK
and loaded them into Ghidra. Using the-debugging-these sym-
bols we isolated functions and data structures relevant for-to the
BLUR attacks. Then, we wrote ARM Thumb assembly patches
to change their behaviors and we apply those patches at run-

time using internalblue [?], an open-source toolkit to manage
several Bluetooth dev1ces 1nclud1n our board. Our set of patches

{as-shown-inTable-H—allows transforming our board in whatever
device we want by changing its identifiers including addresses,
names, and capabilities

5.3 CTKD Key Derivation Function

CTKD test vectors in the standard [?, p. 1721]. We now describe

{f (f (tmp2,Kpr), brle) if h7 is supported
KBLE =

f (f (Kpr, tmp2) , brle)

otherwise

We implemented CTKD’s key derivation for BT deriving and followin,
the equation above. The key derivation computes Kgp g-while BEE
uses—tmptand-tebrand-derives—

Tathefirst using a function f(a, b) that corresponds to AES-
CMAC+ifboth-devicessupportthe-(key, plaintext). If both pairin,
devices declare h7 support, then Kg1 g M@A%‘meegm
at the top otherwise the one at the bottom. h7 eenversionfunction
is a key conversion function defined in the Bluetooth standard
. ! iset} ing (padded-with 12 b L]
Mﬂmﬁmﬁw&m%mmmwg

using AuthRe . 1634]. Inthe second-AES-CMAC - the-128-bit
é}é—byte)—eﬁtpﬁkef%heﬁfst—AES—GMAeﬁ—ﬁsed—as—key—&ﬂd—%he

if h7 is supported

otherwise

Ker = f(f tmp1,KpLE), lebr)
BT —
f (f (KpLE, tmp1), lebr)

We also implemented CTKD's key derivation for BLE deriving
 and following the equation above. In this case the derived key is
Kpr. The equations’ logic is identical to the one explained for BT.

atiodses as inputs: Kpr g, “tmp1”, and “lebr”,

W&m«mmmlwwuwwwmf%m
specification in the Bluetooth standard [?., p. 1401]. We used our
implementation to check that the keys that we observed during
our experiments were correctly derived, yet, it is not required to
conduct the BLUR attacks. Our implementation is written in Python.
3 and uses the PyCA cryptographic module [?]-was-sueeessfully

we-will-open-souree-our-implementation. We tested it against the
12

6 EVALUATION

In this section we present how we conducted the BLUR attacks and
our evaluation results on 13 unique-deviees-devices using 10 unique
Bluetooth chips (see Table 2). The-tested-devieesrepresent-popular
taptops; phonesQur evaluation exploit different device types (e.g..
laptops, smartphones, headphones, and an-embededd platform-The
deviees-arefrom-abroad-set-of devieeprodueers{development
boards), manufacturers (e.g., Samsung, Dell, Google, Lenovo, and

Anonymous submission #9999 to ACM CCS 2021

Sony), run-different-operating systems (e.g., Android, Windows,

Linux, and proprietary OSes), use-differentBluetooth-chipsets{from
and Bluetooth chip (e.g., Broadcom, CSR, Cypress, Intel, Qualcomm,

and Samsung).

6.1 Conducting the Attacks

The BLUR attacks, presented in Section 4, include master imperson-
ation, slave impersonation, man-in-the-middle, and unintentienal
unintended session attacks. In the next paragraphs, we describe
how we conducted them using our custom attack device described
in Section 5.2.

Laptop (master) BLUR impersonation attack. To impersonate the

laptop, we eonfigure-patch our attack device to clone the laptopBluetooth

featares;~s Bluetooth features (including Bluetooth address, Blue-

tooth name, device class, BFand BEE-Seeure-Conneetionssuppeort;
and-advertised-serviees—We-aceomplish-this-task-by-patehing-SC,
and CTKD support). Then, we send a BLE pairing request from
the attack dev1ce ‘s Bluetooth-firmware-and-configuring-theattack

to the headphones declaring CTKD and Just Works support. The

malicious BLE pairing request is sent using btmgmt’s text-based
user interface (TUI) The headphones accept the feq&est—te—paﬂ’—evef

BCI‘—}fmg—tefm—ker airing request, and the dev1ces agree on KBLE,
derive Kpt via CTKD and establish a secure BLE sessionwith-the

attack-deviee. Then, the headphones terminate the BT session with
the impersonated laptop and establish a secure BT session with the
attack device. The impersonated laptop cannot connect back with

the headphones as it does not possess the rewBF-and BELElong
termkeys-correct pairing keys overwritten by the attacker.

Headphones (slave) BLUR impersonation attack. To impersonate
the headphones, we eonfigure-patch our attack device to clone the

headphonesBluetooth-features-using-the-same-technique-adopted

for-the-laptop-impersonation—Onee-’ Bluetooth features. Then, we
end a BT pairing request from the attack dev1ce leek&hke—the

to the laptop declaring CTKD and Just Works support using btmgmt’s
TUL The laptop accepts to pair over BT, updates-the BTleng-term

keyand-runs-CTKDfor BEE—Then—we-a mmm

Kpgr, negotiate CTKD, derive Kppgvia CTKD, and establish a secure

BFsessionwith the headphonessession over BT. The impersonated

headphones cannot connect to the laptop as they do not own the

correct paring keys.

To evaluate-optimize the evaluation of the master and slave im-
personation attack-experimentallyattacks, we used the attack de-
vice both as the attacker and as-one-of the-vietimsthe impersonated
victim. For example, in a master impersonation attack we pair the
attack device with the slave victim device, we disconnect them, we
“forget” the victim device on the attack device and we run the master
impersonation attack from the attack device. This setup is efficient
rbecause it allows us to quickly test many slave victims. For the

13

slave impersonation, we use the same procedure and-quickly-test
many-to test our master victims.

BLUR Man-in-the-middle attack. By using our BLUR implemen-
tation with two development boards connected to the same attack
laptop, we can impersonate the laptop and the headphones at the
same time, and man-in-the-middle them. In particular, we run the
laptop (master) impersonation attack first, and then the headphone
(slave) impersonation attack. As a result, the attack device positions
itself in the middle between the victims.

BLUR Unintended sessions attack. For the unintended session attack,

we patched our attack device to look like an unknown device to
used in the slave impersonation attack otherwise we use the master

unwanted but trusted bonds with a victim and can establish secure

sessions over BT and BLE -

W hi 1 .] Lird
devieeand-thenby-trying-to-establish-unintended-sessions-with
the v1ct1mas—aﬂ—&fbttfafy—éewee—ever—the+faﬂspefkthaﬁs—net—used

We evaluated the BLUR attacks enagainst 13 deviees;the-unique
devices (employing 10 unique Bluetooth chips) and our results are

summarized in Table 2. The first six columns indicate the deviceprodueet’s_

roducer, model name, operating system, deviee-medel--OS;-chip
manufacturer, chip model, and supperted-Bluetooth version. The

seventh column indicates-the-attackerrole—The-contains either

Slave if the device was tested against a slave impersonation attack,

or Master if the device was tested against a master impersonation
attack. The table’s last three columns contain a eheekmark-check

Anonymous submission #9999 to ACM CCS 2021

Device Chip Bluetooth BLUR Attack
Producer Model 0os Producer Model Version Role MI/SI MitM US
Cypress ~ CYW920819EVB-02 Proprietary ~ Cypress CYW20819 5.0 Slave v v v
Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave v v v
Google Pixel 2 Android Qualcomm SDMB835 5.0 Slave v v v
Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave v v v
Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave v v v
Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave v v v
Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave v v v
Samsung Galaxy A90 Android Qualcomm SDMB855 5.0 Slave v v v
Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Slave v v v
Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Slave v v v
Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Slave v v v
Sony WH-1000XM3 Proprietary =~ CSR 12414 4.2 Master v v v
Sony WH-CH700N Proprietary ~ CSR 12942 4.1t Master v/ v v

+ CTKD functionality was backported by the vendor to Bluetooth 4.1 for this device.

Table 2: BLUR attacks evaluation results. The first three columns show the device’s producer, model, and OS. The next two
columns state the Bluetooth chip’s produce and model. The sixth column tells the Bluetooth version of the target device. The
seventh column indicates the attacker’s role (e.g., if Slave then the attacker is the slave and targets a master). Finally, the last
three columns contain a check mark (/) if a device is vulnerable to the relevant BLUR attack. We group master and slave
impersonation attacks in the same column (MI/SI) as each victim can only have one role. All the devices that we tested are

vulnerable.

mark (V) if a device is vulnerable to the-master-impersonation TFhere-areseveralessons-thatwelearned-whileanalyzing CTKD
attack-(MI);-master or slave impersonation attack (MI/SI), man-in- and-developing-the These issues are standard-compliant and represent
the-middle attack (MitM), or unlntended session (US) attack. The the root causes of the BLUR attacks. In-thisseetion-wereport-those
: lessons evaluating Furthermore, we propose four effective countermeasures
éMHS%ee%umﬂ)%ﬂth&Vietﬁﬂ%—re}eﬂs—s}ave—then—wetesHPagmﬂsPa to address the BLUR attacks. In-thisseetion-we report-thoselessons
. ; ot} ise. . . |] frl | desi] leali ”
impersonation-attack—Asshownby-the last three-columnsrall-the eross-transportfeaturesandrelatedseeurity-issuesFinally, we discuss

-deviees{unique Bluetooth-chips)- the main lessons learned.
From Table 2 we can draw several significant conclusions. Firstl .
Cross-transport-mechanismsneed-a-eross-transportthreat-model.

it shows that the BLUR attacks are practical as all devices that we
tested are vulnerablete-all-relevant BEUR attacks—
eurevaluation-demenstratesthat. Secondly, the table demonstrates

that all the Bluetooth versions that we tested are vulnerable, ie., 7.1 Cross-Transport Issues with CTKD

Bluetooth versions 4.1, 4.2, 5.0, and 5.1. Finally, the table confirms
thiat the P st sl st e b s B L We isolated four cross- transport thfe&t—meéel—l;eﬁex&mple—%he
a%l—the%tueteeth—vefsreﬂs—that—supperPGPKD—As—theBLUR attacks 6

staﬂdarekm%eet}eﬂ#—zas the work re ardless of devrce specific issues-with-CTKD-issues (CTI) with the specification of CTKD.

implementation details. Similansecurity-mochanismswith-different thueat-modols-do-net
7 DISCUSSION cross transport nature of CTKD, ie, the fact that CTKD bridges BT

Wenovw-diseuss-thelessonslearned-and-oursetef eountermeasures and BLE beth-previde-their-version-of pairing-and-seeuresession
to-mitigate-the-In _this section, we describe four issues affecting i i i iring-ov i
CTKD’s specification that we extrapolated from the BLUR attacks.

14

Anonymous submission #9999 to ACM CCS 2021

Align BT and BLE roles. To fix role asymmetries between BT and
BLE, a device should store the role that the remote device used while

pairing and enforce it across re-pairings. In case of a role mismatch,
the device should abort pairing.

(e;gpsecurlt domalns w1thout TO erl enforcm certain aspects.

We now describe each of them in detail.

En force Seeufe—@eﬁﬁeeﬁeﬁﬁ—(@?l—?)stron association mechanisms.

CTI 1: Role Asymmetry. BT and BLE define their master and slave

roles differently. In particular, BT enables to switch roles dynamically
on demand, while for BLE the roles are fixed. The attacker takes wmmmmwmmmm and
advantage of this CTI by acting as a master for BT and a slave for BLE and pairings, a device should enforee thiscondition before
BLE. For example, in the slave impersonation attack, the attacker
can send a BT pairing request, when the victim would expect to
receive only BT responses.

CTI 2: Association Asymmetry. The Bluetooth standard does not
mandate to enforce the same association mechanism for BT and

BLE. An attacker can take advantage of this issue to use a weak this-faettore-pair-with-a-vietim-devieeusing—Jast- Werks™evenif

association method on one transport when the other is expectin, the-vietimsupperts—Numerie- Comparisor’—A-devieeshould-keep
to use a stronger association mechanisms. For example, in the master track of the remotes-strongest association mechanism used while

impersonation attack even if the victims have paired over BT with pairing either on BT or BLE and enforce it for subsequent (re-
strong association, the attacker can pair over BLE with weak association)palrmgs If a weaker mechanism than the one stored is proposed,

(i.e., the BbUR-attacks)Just Work) and impersonate a device. airing should be aborted.
Properly-weighting-usability-against-seenrity-benefits-isleyCTKD Disable CTKD key overwritest€H4). CTKD allows (over)writing

was-introduced-to-improve CTI 3: Key (Over)write. With CTKD the %WM&WMM%}M
Bluetooth standard introduces a new attacky r1m1t1ve that is, cross-transptrt i i
trusted pairing keys and distribute new BT and BLE usabihitytn BT and BLE, To fix key overwrites via CTKD, a device should dis-
igh he-presented-issues-and-attackswelearned-that theusability allow key-overwrites-with-to update a trusted key via CTKD when

a paired device wants to re-pair. For example, re-pairing over BT
should not overwrite a BLE leng-term-pairing key that was securely
established in the past. When-a-deviee-hastostalongtermkeyfor
WM&%MMWMWM a-transport{egs-devieereset)it-should-explieitlyre-pair-on-that

take advantage of this issue. transport—
CTI 4: Pairing States. With CTKD the Bluetooth standard enables Dzsable paﬁ&b{e—&taffmwhen not needed(GH%) Inour

more ways to pair devices. The attacker can take advantage of this
example, in the master impersonation attack, the attacker sends a
pairing request over BLE while the victims are using BT.

the BLUR-attacks-To-addressthisissueTo prevent an attacker from
7.2 Countermeasures pairing with a victim device in unexpected ways, a device should
We now present a-set-of countermeasures—to-address-all-the five automatically stop being pairable on a transport that is not currently
eross-transportissues{CTh) thatwe presentfour countermeasures in use. For example, a pair of headphones who are running a secure
to mitigate the BLUR attacks presented in Sem%éesswn over BT with a laptop should not answer pairing requests
4, In particular, the first three mitigations defeat the BLUR impersonation ©Ver BLE unless the user explicitly renters-set the headphones in

and MitM-attacks, while the unintended session attacks are prevented ~ Pairing mode.

by deploying the fourth mitigation. The countermeasures are also

addressing the CTl issues described in Section 7.1, and can be im- ~ 7-3 Lessons Learned

plemented in-on the device’s Bluetooth Host (i-e-deviee’s-08)5-0S) There are several lessons that we learned while analyzing CTKD
by storing and checking extra-metadata about its state and trusted and developing the BLUR attacks. We report them in the hope that
remote deviees-list of trusted devices. We argue that the Bluetooth they will be useful for protocol designers who are dealing with
Host is the natural place to store this new metadata in addition to cross-transport features and related security issues.

other metadata such as long term keys. .
Cross-transport mechanisms need a cross-transport threat model.

Security mechanisms that cross the security boundary between
two technologies should be designed and tested against a cross-transport

threat model. For example, the Bluetooth standard should include
15

Anonymous submission #9999 to ACM CCS 2021

Attack

Year Paper Target Phase CIAK SC/SCO Persistent Note
Attacks on BT

2016 Albazrqaoe et al. [?] Standard Any ©O00O X - BlueEar Sniffer

2017 Serietal. [?] Impl. Pairing @©@@O NA v BlueBorne

2018 Sunetal. [?] Standard Pairing @©@@O v - Passkey (MitM)

2018 Bihametal. [?] Impl. Pairing ©@@0© NA v Fixed Coordinate Invalid Curve

2019 Antonioli et al. [?] Standard Pairing @@©O v - KNOB (MitM)

2020 Antonioli et al. [?] Standard Pairing @©@@O v - BIAS

2021 Tschirschnitz et al. [?] Standard Pairing @@@O v - Method Confusion (MitM)
Attacks on BLE

2016 Jasek etal. [?] Standard NA 0000 X - Black Hat

2019 Serietal. [?] Impl. NA 0000 NA v Bleedingbit

2020 Zhangetal. [?] Standard Pairing ©OOO v - MitM (SCO)

2020 Wuetal. [?] Standard Session OO@O v - BLESA

2020 Garbelini et al. [?] Impl. Any Q00O NA - SweynTooth fuzzer
Attacks on both BLE and BT

2019 Ossmann et al. [?] Standard NA 0000 X - Ubertooth sniffer

2020 Antonioli et al. [?] Standard Pairing @@©O v - Downgrade (MitM)

2021 This work Standard Any 0000 v v

Table 3: Overview of recent attacks on Bluetooth and BLE. C = Data Confidentiality, I = Data Integrit

Authentication, K = Key disclosure. No (O) Partially (D), Yes (@).

in its threat model an attacker who wants to exploit BT from BLE

and vice versa, rather than considering only attackers focused either
on BT or BLE,

Security mechanisms used to cross a security boundary should
rovide the same securit uarantees. Q&mmm
should be designed such that the mechanisms used to cross the
security boundary provides the same security guarantees in the
same threat model. Currently, this is not the case for Bluetooth as
CTKD uses BT and BLE pairings to cross the security boundary
and pairing over BT is different than pairing over BLE.

Usability should not outweigh security. CTKD was introduced to
improve Bluetooth’s usability, but, in light of the presented attacks,
introduced with CTKD. Indeed, it is paramount to weight security
and usability before introducing a critical security feature, especially

8 RELATED WORK

We summarize the positioning of our attacks compared to to related
work in Table 3, and provide additional details on those attacks in

the following. In general, the BLUR attacks are the first cross-transport

attacks (targeting both BT and BLE), are standard-compliant (i.e.,
expected to work on any device that supports CTKD), can be executed
outside the victims’ initial pairing phase, provide comprehensive

compromise of the security properties, break the most secure Bluetooth

modes (secure connections), and provide persistent compromise of

The Bluetooth provides a royalty-free and widely-available ca-
ble replacement technology [?]. Bluetooth standard compliant

16

A = Device

attacks are particularly dangerous as all Bluetooth devices are af-
fected, regardless of version numbers or implementation details.
Such standard-compliant attacks have appeared since the first ver-
sions of Bluetooth [? ?]. Standard-compliant attacks on BT include
attacks on legacy pairing [?], secure simple pairing (SSP) [? ? ?
], Bluetooth association [? ?], key negotiation [?], and authen-
tication procedures [? ? ?]. Standard-compliant attacks on BLE
include attacks on legacy pairing [?], key negotiation [?], SSP [? ?
], reconnections [?], and GATT [?]. Compared to the mentioned
attacks that target either BT or BLE, the BLUR attacks are the first
standard-compliant attacks targeting the intersection between BT
and BLE.

We have seen attacks targeting specific implementation flaws on
BT [?] and BLE [? ?]. As our BLUR attacks target the specification
level, they are effective regardless of the implementation details.
Several surveys on BT and BLE security were published [? ? ?]
but neither of those surveys nor the Bluetooth standard considers
CTKD as a threat. We here demonstrate that CTKD is a serious
threat and must be included in the threat model.

Cross-transport attacks were exploited for proximity technolo-
gies using Bluetooth and Wi-FI. Two prominent examples are at-
tacks on Apple ZeroConf [?] and Google Nearby Connections [?].
Our BLUR attacks are the first cross-transport attacks for BT and
BLE.

The cryptographic primitives used by Bluetooth have been ex-
tensively analyzed. For example, the Ey cipher used by BT was
investigated [?] and it is considered relatively weak [?]. SAFER+,
used for authentication, was analyzed as well [?]. BT and BLE
“Secure Connections” use the AES-CCM authenticated-encryption
cipher. AES-CCM was extensively analyzed [? ?] and it is FIPS

Anonymous submission #9999 to ACM CCS 2021

eomphiantFIPS-compliant. Our BLUR attacks target key negotia-
tion and not cryptographic primitives, and are effective even with .
perfectly secure cryptographic primitives. We use our implementation to experimentally confirm that CTKD-compatible
devices (using 10 unique Bluetooth chips) are vulnerable in practice.
9 CONCLUSION Qur attacks are successful on all the devices we tested which shows
. ‘ - that this is a serious problem in practice. We end the paper by
We present the first sceurity analysis of CTKD-and identifynovel discussing the feasibility of various low-cost, host-based countermeasures
feature in the Bluetooth standard that has, until now, not been a responsible disclosure process and notified the Bluetooth SIG of
scrutinized for security issues by the research community. We develop oy findings, resulting in CVE-2020-15802, and we intend to release
four attacks that take advantage of CTKD to exploit both BT and our attack implementation as an open source project.
BLE. Our attacks are the first examples of cross-transport issues ~16000-
and-attacks againstattacks on Bluetooth, they are standard-compliant,
and effective against the most secure BT and BLE —Our-attacks

betweenBT-andBEE-modes (i.e., Secure Connections and Secure

persistent compromise of the devices, i.e. it leaves the devices in a
compromised state even when the attacker is no longer present. In
contrast to previeusly-published-attacks-on-the-individual BT-and
BEE-transperts;our-attacks-on-CTKD-do-notrequire-the-attacker
standard-compliant attacks (i, attacks that also are not targeting
implementation bugs), our attacks are not limited to the pairing
phase. That means we can execute the attack on any device at any

our BLUR attacks we reach four significant goals. We achieve impersonation
and take-over for both the master and slave devices; man-in-the-middle
on secure sessions in the most secure mode (Secure Connections);

and establishing unintended sessions as an anonymous device. Collectivel
our attacks are called BLUR attacks as they blur the security bound-

ary between BT and BLE.

Weprovide and-diseussalow-eostimplementationTo demonstrate
the practicality of the BLUR attacksusing-off-the-shelf-hardware
and; we presented a low-cost implementation based on cheap readily

available hardware (a laptop, and a Bluetooth development board)
and open-source software—To-demonstrate-that-our-attacks-are

praeticalwe-sueeessfully-exploit-devieesfrom-differenthardware

ofa-eross-transportthreatmedel and-the- majortechniealchallenges
that-wefaced{eg—software (Linux, and internalblue). We also
describe solutions to the main technical challenges we faced durin
development, including low-level modifications of a Bluetooth firmware}-
W ﬁ - e BLUR s,
Eael 1d 6 ”
eeneretefix—that-ean-beimplemented-at-the Bluetoothstandard

17

	Paper changes for CCS21 compared to SEC21
	Description of CTKD in non-adversarial settings (Sections 2, 3)
	Presentation of the BLUR attacks (Section 4)
	Re-implementation of CTKD's derivation function (Section 5)
	Attacks' root causes and countermeasures (Section 7)
	Attacks' comparison with related work (Section 8)

