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BLURtooth: Exploiting Cross-Transport Key
Derivation in Bluetooth Classic and Bluetooth Low
Energy
(paper number #45)

In this document we provide our response to the major revision, a paper diff, and the

updated paper. We thank the reviewers for the opportunity to refine the paper and hope
to have addressed all raised issues as intended. We look forward to continuing to work
with the reviewers.

Summary of Changes

e We now describe the CTKD-related key overwrite countermeasure in the standard,
explain that it was introduced with Bluetooth 5.1, demonstrate that is not effective
against the BLUR attacks, and propose effective countermeasures.

e We extended the BLUR attack evaluation to cover all CTKD versions supporting
CTKD (i.e., 4.2, 5.0, 5.1 and 5.2) by buying and successfully exploiting three more
devices. We leverage the evaluation results to explain how the presented attacks are
standard-compliant up to Bluetooth 5.2.

e We improve the description about what is public and what we had to reverse-engineer
in CTKD. We now introduce the issues with CTKD (i.e., CTKD vulnerabilities)
before describing the attacks. We now discuss our CTKD Reverse-engineering
methodology.

e We improved the presentation of the attacks. We now describe how each attack
takes advantage of the presented cross-transport vulnerabilities. We discuss how we
discovered the attack by inference. We improved their positioning with respect to
recent work. We show what is the threat model related to the unintended session
attack.



e We extended the countermeasure section. We now state that each countermeasure
addresses a specific CTKD issue, and provide a minimal set of countermeasures to
fix all the BLUR attacks. We explain how we evaluated the cross-transport key
tampering countermeasure to stop a BLUR impersonation attack on actual devices.

e We improved the presentation of the attacks by describing how they map to the
CTKD issues, how we discovered them, and what is the threat model related to the
unintended session attacks.

e Other minor changes. We rewrote the Abstract and Introduction to be more concise.
The Background now includes a better explanation about BT and BLE Secure
Connections. To add the requested material, we moved Table 4 and the Lessons
Learned section to the Appendix.

2 Detailed Changes with Answers to Reviewers

2.1 Key downgrade countermeasure in the standard

Concern The reviewers raised a concern about the following countermeasure in the
Bluetooth 5.2 standard “While performing cross-transport key derivation, if the key for
the other transport already exists, then the devices shall not overwrite that existing key
with a key that is weaker in either strength or MITM protection” and asked us to conduct
our attacks on a Bluetooth 5.2 device to check the effectiveness of such countermeasure.

Answer We successfully conducted the BLUR attacks on a Xiaomi Mi 11, which is one
of the few Bluetooth 5.2 smartphones currently available. The BLUR attacks are able to
bypass the quoted countermeasure as the countermeasure is enforcing two requirements
not violated by our key overwrite attacks. In particular, when we overwrite a key we don’t
reduce its strength (entropy) and MitM protection. But, we declare “no input/output
capabilities” with “MitM protection” to trigger pairing with Just Works association.

We also revised the Bluetooth standard changelog and we saw that the quoted coun-
termeasure was introduced with Bluetooth 5.1. To strengthen our argument about the
ineffectiveness of the quoted countermeasure we also successfully tested a Xiaomi Mi 10T
Lite Bluetooth 5.1 smartphone. This adds to the other 5.1 device that we tested in the
past a Tth gen Thinkpad X1 laptop.

To demonstrate the results of our experiments, we’d be happy to share evidence, e.g.,
pcap traces, demonstration videos, or other relevant information that the reviewers deem
necessary. We will release all of this information together the source code of our attack
along with the accepted paper in a public repository.

Regardless of our experimental results, it is not clear why the Bluetooth SIG introduced
a countermeasure targeting only 5.1 and 5.2 devices, instead of introducing a defense that
protects all Bluetooth versions compatible with CTKD.



Paper update In Section 3.1, we introduce the key overwrite via CTKD countermeasure
present in the standard since version 5.1. Then, we explain that our attacks are not
triggering that countermeasure as they are not violating the strength and MitM protection
requirements that is enforcing, and that we experimentally verified this claim by successfully
attacking devices supporting Bluetooth 5.1 and 5.2.

We also provide a forward pointer to our countermeasures section (Section 7) where we
explain in detail why our attacks are not covered by the countermeasure in the standard
and the need for effective countermeasures. In Section 4.3 we explain how we negotiate
“Just Works” without triggering the countermeasure.

2.2 Standard-compliance of the BLUR attacks

Concern The reviewers asked why we are classifying our attacks as standard-compliant.

Answer We claim that our attacks are standard-compliant as they are exploiting
weaknesses in the specification of CTKD, which is a security mechanisms provided by the
Bluetooth standard. Our claim is supported by experimental evidence, as all devices that
we tested are vulnerable to the BLUR attacks regardless of their hardware and software
details and Bluetooth versions.

Paper update We extended the Evaluation section to cover all Bluetooth versions
supporting CTKD (4.2, 5.0, 5.1, and 5.2) and more devices and chipsets. In particular, we
successfully exploited a Xiaomi Mi 11 (Bluetooth 5.2), a Xiaomi Mi 10T Lite (Bluetooth
5.1) and a Pixel 4 (Bluetooth 5.0). Our updated result, together with the reasoning on how
we bypass the proposed countermeasure from the Bluetooth SIG, significantly strengthen
our claim about standard-compliance.

2.3 Root causes of the attacks

Concern The reviewers asked to describe the attacks’ root causes before the attacks
and to show which root cause maps to which attack and how they are related to the
presented countermeasures. There was also a concern about all the attacks exploiting the
same vulnerability.

Answer We agree that the paper should provide a better transition between the de-
scription of CTKD (Section 3) and the attacks (Section 4) and describe how the issues
map to the attacks.

Paper update We moved the description of the attacks root causes (CTI) in Section
3.3, before the description of the attacks (Section 4). Then, we added a new subsection
(Section 4.6) to explicitly state which CTI vulnerability is exploited in which BLUR



attack (see Table 1). This subsection should also clarify that the BLUR attacks are taking
advantage of multiple vulnerabilities in the specification of CTKD.

2.4 Reverse-engineering CTKD and attack discovery

Concern The reviewers asked to better explain what we had to reverse-engineer about
CTKD as the standard already provides a complete description about it and there is
a risk of overclaiming the RE contribution. Moreover, they asked to describe our RE
methodology and how we discovered the BLUR attacks.

Answer The Bluetooth standard is describing how to derive keys using CTKD and what
are the preconditions needed use it. However, it is not explaining how CTKD is negotiated
and used over the air from BT and BLE. We agree that the paper lacks a discussion about
our RE methodology and how we discovered the attacks and we are happy to provide
both.

Paper update In Section 3.1 we better explain what is publicly known about CTKD
(e.g., devices’ requirements and version numbers, the CTKD key derivation function, the
key overwrite threat already addressed in the standard). In the first paragraph of Section
3.2, we explicitly say that the standard lacks a description about how CTKD is negotiated
and used and we had to RE these information. Our RE methodology is described in
a dedicated paragraph at the end of Section 3.2 and at the beginning of Section 4 we
describe how we discovered the BLUR attacks.

2.5 Unintended Session Threat Model

Concern The reviewers asked to clarify what is the threat model related to unintended
session attacks and why it is relevant.

Answer We agree that the threat model about the unindented session attacks was not
clear and we updated it to better show why those attacks are relevant and effective.

Paper update We updated the first paragraph of Section 4.5 explaining that an
unintended session attack is valuable because it is stealthy, allows to escalate Bluetooth
privileges, enables to covertly access extra key material (such as BLE key to de anonymize
devices) and increase the probability of reaching vulnerable code on the victim device
(including remote code execution bugs).



2.6 Countermeasures to the BLUR attacks

Concern The reviewers asked to extend the countermeasure section, to explain which
countermeasure fix which attack, to evaluate them and to comment on possible side effects
and their relation with the ones proposed in the BIAS paper.

Answer We agree with the reviewers and we significantly extended our countermeasure
section. Firstly, we explain why the key overwrite countermeasure in the Bluetooth
standard is not sufficient to fix the BLUR attacks (as the attacks are not violating the
strength and MitM protection requirements enforced by such countermeasure). This key
detail was not explained clearly enough in the earlier version of the paper and we are
happy that the reviewers pointed out this issue.

Paper update We promoted the countermeasure discussion to a full section (Section 7).
We present four countermeasures (C1, C2, C3, C4) explicitly stating that each one addresses
its related CTI issue (e.g., C1 addresses CTI 1). When describing each countermeasure,
we also comment on possible side effects introduced and how to address them. About C2
(align BT and BLE role) we explicitly state that that countermeasure is not proposed in
the BIAS paper. We extend C3 such that it overs both key write and overwrite attacks
via CTKD. Related to the BLUR attacks, we explicitly state that the minimum set of
countermeasures to address them is C3 and C4.

Finally, we better describe how to implement the countermeasures in the Bluetooth
Host, and how we implemented and evaluated a proof-of-concept for C3 to block a BLUR
impersonation attack by disabling write permission on the file containing the BT and BLE
keys on a Linux laptop.

2.7 Comparison with Related Work

Concern The reviewers found our comparison with related work not satisfactory and
asked to clarify why the BLUR attacks are novel compared to prior work.

Answer We updated our discussion around related work to better show why the attacks
are novel and valuable.

Paper update We improved the discussion around Table 4 in Section 8 to address what
is novel and relevant about our attacks with respect to related work. In particular, we
clarify that the BLUR attacks are novel compared to other standard-compliant attacks
because they are the first exploiting CTKD, and the first cross-transport attacks for BT
and BLE. We also clarify their relevance related to the weak precondition needed to
conduct the attacks and their significant impact on the Bluetooth ecosystem even when
the victim devices are using the strongest BT and BLE security modes.
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ABSTRACT

The Bluetooth standard specifies two-incompatible—wireless
transports—Bluetooth Classic (BT) and Bluetooth Low En-
ergy (BLE). The two transports have different security ar-
chitectures and threat models and provide dedicated pairing
protoeolsto-establishlong-termkeysand session establishment
protocols. Traditionally, two devices would have to pair
over BT and BLE to use both securely. But in 2014, Blue-
tooth v4.2 addressed this usability issue by introducing Cross-
Transport Key Derivation (CTKD )fer-BFf-and-BEE. CTKD
allows establishing BT and BLE pairing keys just by pair-

ing over one transport. BPespite-thefaetthat-While CTKD
crosses the security boundary between BT and BLE, the

model-and-deesnet-providea-complete-deseription-ofitlittle
information is know about CTKD internals and no prior

work analyzed its security implications.
To—address—these—issuesln_this work, we present a—full

eha%ac—%eﬂz&ﬂefrthe ﬁrst com lete descrl tion of CTKD ob-
tained ~ e e

d%ﬁ%ekﬁ—ﬁﬂ—@%—bfed{ﬂﬂg—%h&ﬁeﬁg%mmw
scattered information from the Bluetooth standard and results
security evaluation of CTKD and uncover four issues in its
specification that can be used to cross the security boundary
between BT and BLEseeurity—modes—Our-attacks-are—the
ﬁr&t—e*amp}e%—e# We leverage these issues to design four
standard-compliant attacks exploiting CTKD and enabling
cross-transport attacksfor Blaetoothastheyenable breakine
Bluetooth exploitation. The attacks work even if the strongest
W@BT and BLE W%ﬂgjﬂﬁ%@ﬁ&@f

te—tmpef%eﬁﬁte&ﬂéﬁtkeever—aﬂ{ybdev&eeare in place and the
allow to impersonate, man-in-the-middleseeure-sessions, and

establish unintended sessions as-an—anonymets-devieewith
arbitrary devices. We refer to our attacks as BLUR attacks,
as they blar—blur the security boundary between BT and
BLE. We provide a low-cost implementation of the BLUR
attacks and we successfully evaluate them on 16 devices
with 14 unique Bluetooth chips from popular vendorssueh

5 : ole. e : .
discuss the root causes of the BLUR attacks and present
effective countermeasures to fix them. We disclosed our find-
ings and countermeasures to the Bluetooth SIG in May 2020
and received CVE-2020-15802.

1 INTRODUCTION

Bluetooth is a pervasive wireless technology used by billions
of devices including mobile phones, laptops, headphones, cars,
speakers, medical, and industrial appliances [11]. Bluetooth
is specified in an open standard maintained by the Bluetooth
special interest group (SIG), and its latest version is 5.2 [10].
The standard specifies two transports: Bluetooth Classic
(BT) and Bluetooth Low Energy (BLE). BT is best suited
for connection-oriented and high-throughput use cases, such
as streaming audio and voice calls. While BLE is optimized
for connection-less and very-low-power use cases such as

loealization—and—digital-contact-tracingfitness tracking and

digital contact tracing.
The Bluetooth standard defines different security architec-

tures and threat models for BT [10, p. 947] and BLE [10,
p. 1617]. Beth-transports—provide-Each transport provides

pairing and secure session establishment protocols. Pairing
enablesresults in the establishment of sharedlongtermkeys;
a pairing key and secure session establishment allows paired
devices to create a secure channel through a {fresh—)fresh
session key derived from the-their shared pairing key.
Traditionally, two devices would have to pair over BT
and BLE to securely use both. Hewever;—pairing—thesame
deviees—two-times—is-considereduser-unfriendly—To-In 2014,
to address this usability issue, Bluetooth v4.2 introduced
Cross- Transport Key Derivation (CTKD )ferBT-endBlE-in
2044, CTKD enables to pair twe-devices once, either en-over
BT or BLE, and negotiate BT and BLE pairing keys with-
out having to pair a second time [10, p. 1401]. For-example;

BT to-derive B and BLE pairing keys—All major Bluetooth
software (e.g., Apple, Linux, Android, and Windows) and
hardware providers (e.g., Cypress, Intel, Qualcomm, Broad-

com, Apple, Sony, and Bose) support CTKD. AetuallyApple

Security-wise, CTKD has not received any attention from
the research community and is-enly—partielly—documented—in
the Bluetooth standard —n—partientar—CHKD—isneot—part
of-the Bluetooth—threat—model-and—thestandard—dees—neot
provide—a—eomplete—deseription—of—ithastily describes onl

some aspects and threats associated with CTKD. On the
other hand, CTKD is a very interesting ;—yet-unexplored;
attack surface, as it is a standard-compliant security fea-
ture, is used together with the most secure modes of BT and
BLE (i.e., Secure Connections), is-allows crossing the security
boundary between BT and BLE, and is even transparent to
the end-user.
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In eur-this work, we previde present a complete description

of CTKD obtained by mergine-theseattered-and-ineomplete
information-about-CHD reverse-engineering key information

missing from the Bluetooth standard —and—theresult—of

reverse-engiteering experilentsconducted-with-actual-devices.
Based-on-otr-deseription;-we-performed-(i.e., CTKD negotiation

and usage for BT and BLE). Then, we erform a securlty

evaluation 6fG

and we uncover four cross-transport issues (CTI) with CTKD's
specification. For example, CTKD enable to (over)write and
steal security keys and manipulate key authentications across
BT and BLEenlybytargeting-one-transport.
The-attacks-are-very-effeetive-astheyean-defeat-We leverage

the CTIs to design four novel attacks abusing CTKD capable
of defeating all BT and BLE security mechanisms including

Secure Simple Pairing (SSP), Secure Connections (SC), and
strong associations. {B—Geﬁﬁmﬁt—%e—pﬂe%ﬁf—dﬂéﬁfd-eemphdﬂﬁ

}H—pdfﬁte&hi‘—ﬁhey*m enable to 1mpersonate and
take over secure sessions from any BTerBEE-devieer-/BLE

master or slave device. Combining master and slave impersonation

the attacker can also man-in-the-middle BT and BLE secure
sessions, Furthermore, a bad actor can establish secure, but
unintended, and-establish-unintended-BT and BLE sessions
with a victim device while remaining anonymousand-witheut

breaking-existingseeurity-bonds. We name our attacks BLUR
attacks, as they blur the security boundary between BT and

BLE (by exploiting CTKD).

our attacks are the first cross-transport attacks for Bluetooth
as they can break BT and BLE by targeting just one of the
two and the first attacks exploiting CTKD. Additionally, our
attacks do not require the attacker to be present when a
victim is pairing or establishing a secure session; and they

detailed comparison see Section 8.
We provide a low-cost implementation of the BLUR at-

tack based on a Linux laptop and a Bluetooth development
board. We show that the BLUR attacks are a—real-effective
and standard-compliant threat—by successfully conductmg
them on-a-diverse set-of devices. - particulars we use owmr
implementation-to exploit 16 unique devicesemploying-. Our

set of vulnerable dev1ces employ 14 &fﬂq&&dlfferent Blue—
tooth chips from

Broadcom, Cambrldge Silicon Radio (CSR), Cypress, Geeg%e»
Fatel—FimeaQualeomm—and—Windows)—implementine—the
most—eommeon—Intel, Qualcomm) and covers all Bluetooth

versions supporting CTKD (i.e., Bluetooth verstons4-45-4.2,

5.0, and-5.1%, and 5.2) and even a Bluetooth 4.1 device to
which CTKD was backported.

In contrast to prior standard-compliant attacks [2, 4, 5, 9, 19, 20, 34, 38

feet—eaﬂsea—by—hsﬁﬂg—fe&r—emss-&&nspeﬁ—ﬂs&es—wrﬁh—ﬁhe
speeifieation—of-CTKD—Then—we-address—those—issties—We
address the BLUR attacks by presenting four countermeasures
addressing the four presented CTIs and the related BEUR
attacksby-propesingfour-effective-countermeasures-that-attacks.
Wcan be implemented at the eperating-system
apérating system level (i.e., inthe-Bluetooth Host) with low
effort. We MWQMW
key overwriting) by implementing it on a Linux laptop. We
responsible disclosed our findings to the Bluetooth SIG in
May 2020. Our report is assigned with CVE-2020-15802. In
September 2020, the Bluetooth SIG released a security note
about_our report (without contacting us) at https://www.

bluetooth.com/learn-about-bluetooth /bluetooth-technology/
bluetooth-security /blurtooth/. We summarize our contribu-
tions as follows:

» We present a complete description of CTKD combining
public and reverse-engineered CFKD-and-performed
its-first-seeurity-analysis—Based-on-that-information.
We _perform the first security evaluation of CTKD.
and uncover four vulnerabilities in its specification.
Among others, CTKD enables to adversarially pair.
over unused transports and to tamper with BT and
BLE security keys.

e Based on the identified issues we design four novel
and standard-compliant attacks o CTKD-The attacks

bfealﬁﬂlrca able of breakm BT and BLE %ee&&&y

&Hd—bhe%eﬂeeﬁs—pefﬂs%eﬂ&—l\'lefeever— ust by tar etm

one of the two. Compared to related work, our at-

etther-of-the-twoexploiting CTKD and actln across

transports. Our attacks result-in-impersonation-ane

%&keﬂve%e%deﬂeesﬂ%}bM—%he&r—see&f&sess&eﬂ&—&ﬂd
bis] i led .

devieeenable to impersonate, man-in-the-middle, and

establish unwanted and stealthy sessions with arbitrar
devices. We name our attacks BEUR-attacks; BLUR

attacks as they blur the security boundary between
BT and BLE.

e We present a low-cost implementation of the BLUR
attacks based on a Linux laptop and a Bluetooth
development board. We use our implementation to
eonfirm—that—aetual-deviees—are—vulnerableto—the

S s SS ing-attack 16
different dev1ces employing 14 unique Bluetooth
chips and covering the-majority-of-all Bluetooth ver-
sions compatible with CTKD (e.g., 4+-4.2, 5.0, and

5. 1}—We~diseuﬁ%feﬂ%eeﬂefe%&&%&eks—feet—e&uﬁes

in—thespeeifieation—eof-CTKD—and—weprovidefour
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, and 5.2). Our evaluation demonstrates that the
BLUR attacks are very effective and specification-complianthat provides no MitM protection and Numeric Comparison

To address them, we discuss four countermeasures

to address the presented issues and attacks affectin
CTKD.

2 BACKGROUND

We now compare the most relevant features of BT and BLE.
To provide precise technical descriptions we follow the Blue-
tooth standard’s master/slave terminology instead of more
apt terms like leader/follower.

2.1 A Comparison of BT and BLE

BT and BLE are two wireless transports specified in the Blue-
tooth standard. These transports are incompatible (e.g.,they
use different physical layers and link layers) and are designed
to complement each other. BT is used for high-throughput
and connection-oriented services, such as streaming audio and
voice. BLE is used for very low-power and low-throughput
services such as localization and monitoring. High-end de-
vices, such as laptops, smartphones, headsets, and tablets,
provide both BT and BLE, while low end devices such as
mice, keyboards and wearables provide either BT or BLE.

BT and BLE have similar security mechanisms but differ-
ent security architectures and threat models. In particular,
both transports provide a pairing mechanism, named Secure
Simple Pairing (SSP), to let two devices establish a shared
long term key. BLE SSP is performed over the Security Man-
ager Protocol (SMP) [10, p. 1666], while BT SSP uses the
Link Manager Protocol (LMP) [10, p. 568]. During pairing,
BLE allows negotiating the entropy of the long term key
while BT does not. Additionally, BT and BLE provide a
secure session establishment mechanism to establish a secure
communication channel using a session key derived from the
long-term pairing key. During session establishment, BT al-
lows negotiating the entropy of the session key while the BLE
session key inherits the entropy of the associated long term
key.

BT and BLE use the same notion of pairable and dis-
coverable states. If a device is pairable then it will accept
pairing requests from other devices. If it is discoverable it will
reveal its identity when other devices scan for nearby devices.
Contrary to popular belief [41], a device can answer to a
pairing request even if it is not discoverable. For example, if
the user knows the MAC address of her pair of headphones
she can complete BT or BLE pairing from her laptop without
putting the headphones into discoverable mode.

BT and BLE prov1de a “Secure Connectlons mode that

In particular, Secure Connections mandates the usage of
FIPS-compliant algorithms such as AES-CCMfer-authenticated

curve [10, p. 269]. Furthermore, they provide similar ways
to protect against man-in-the-middle (MitM) attacks dur-
ing the pairing phase defined in the standard as association
procedures. Two examples of associations are Just Works

that provides protection against a MitM by requiring user
interaction during pairing (e.g., the user has to manually
confirm that she sees the same numeric code on the pairing
devices).

Both BT and BLE use a master-slave medium access
protocol but define the master and slave roles differently. For
BT, the master is the connection initiator, the slave is the
connection responder, and roles can be switched dynamically
by any party after a radio link is established. For BLE, the
master and slave roles are fixed and cannot be switched.
The BLE master (defined as central) acts as the connection
initiator and the BLE slave (defined as peripheral) as the
connection responder. High-end devices, such as laptops and
smartphones, support both BLE master and BLE slave modes
and are typically used as BLE masters, while low-end devices,
such as fitness trackers and smartwatches, support only the
BLE slave mode.

3 SECURITY ANALYSIS OF CTKD

In this section, we present our security analysis of CTKD.
In particular, in Section 3.1 we describe what is publicly
known about CTKD, and-in Section 3.2 we complement it
by reverse-engineering how CTKD works in practiceferB+

and-BEE—. Finally, in Section 3.3, we present four securit,
issues with CTKD's specification, which are the root causes
of the BLUR attacks presented in Section 4.

3.1 Public Information about CTKD

Before the introduction of CTKD, a user had to pair the
same two devices over BT and BLE (i.e., two times) to use
both transports securely. T—heB}ue%ee%}kS{G—eeﬁﬁéefedﬁﬂt

procedure-user—unfriendly-andimproved Bluetooth’susability
In 2014, the Bluetooth SIG addressed this usability issue
with Bluetooth 4.2 by introducing CTKDferBluetooth4-2
in-26+4—, By using CTKD, two devices, pair only ene-time
once either over BT or BLE, and then can securely use
both [10, p. 280]. For example, a pair of headsets and a lap-
top can pair over BLE, run CTKD to derive a second pairing
key for BT (without the user having to put the headsets into
BT pairing mode). Alternatively, the devices can pair over
BT and run CTKD to generate the BLE pairing key. In both
scenarios, after pairing once the headsets and the laptop can
start secure sessions over BT and/or BLE.

CTKD is employed by dual-mode devices which support
Secure Connections [10, p. 1401]. Those devices include laptops

headsets, tablets, smartphones, and speakers and their version

rwhich enhances their

security primitives Wlthout affecting their security mechanisms.
3

is among 4.2, 5.0, 5.1, 5.2. From the Internet and our experiments
we find that CTKD is supported by all major hardware and
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le [43], Google [6], Cypress [13
Notably, Apple

software vendors including A
Linux [12], Qualcomm [32], and Intel [21].

presented it as a core and always-on Bluetooth feature during
WWDC 2019. Stating at the most recent Bluetooth market
update that “in 2024 all our mobile devices will be dual-mode
and support CTKD” [? ]

CTKD specifies a single key derivation function ferB+

and-BlsEand-the (KDF) based on AES-CMAC, regardless
of which transport is used to pair [10, p. 1658]. The function
takes as inputs a 128-bit (16-byte) key and two 4-byte strings
and derives a 128-bit (16-byte) key. What-changesbetween
BT -and BLE-are-thestringsused-as—inputs—Whenr—GHKD
is—used—to-derive-aBEE-pairing key-O—from—a-1f CTKD is
started from BLE, then the BT pairing key {)thenthekey
is derived using the “tmp2” and “brle” strings. In the other
case, the derivation is performed using the “tmpl1” and “lebr”
strings. We-note-that-the-CTFKD-The key derivation function
is deterministic, as using CTKD on the same input key will

always generate the same output key—, and can overwrite

existing pairing keys by-design. The implementation details
of CTKD’s KDF' are presented in Section 5.3.

Since version 5.1, the Bluetooth standard addresses a specific
key overwrite attack via CTKD with the following statement:
for_the other transport already ewists, then the devices shall
in_either strength or MITM protection” [10, p. 1401]. This

CTKD if the overwritten key has either a lower entro ie.,
such countermeasure is enforced only for 5.1 and 5.2 devices
and is not backported to all devices compatible with CTKD.

The attacks that we present in Section 4 are neither lowerin
the key strength or MitM requirements enforced by the standard
and we experimentally validated this claim by successfull

Alice (master) Bob (slave)
< Devices pairable over BLE >

BLE Pairing Request:
Assoc, ADDy4, SC, CTKD, PKy4, N4
BLE Pairing Response:
Assoc, ADDg, SC, CTKD, PKg, Np

DK = PKp - SK4
Kpre = kdf g (DK, Ny,
Ng, ADD4, ADDg)
Kpr = ctkd(KpLe,
“tmpl”, “lebr”)

DK = PK,4 - SKp
I\VBLL' = kdeE(]:)I{7 NA,
Np, ADD4, ADDjp)
KBT = Ctkd(l\'m‘,;l,
“tmp1777 ﬁLlebrﬂ)

BLE Key Distribution: CSRK 4, IRK 4
BLE Key Distribution: CSRK g, IRKpg

Figure 1: ©FKD—usage—during-BLE pairing with
CTKD. Alice and Bob negotiate SC and CTKD sup-
port during BLE pairing. Then, they compute the
BLE pairing key and from that key, they derive the
BT pairing key via CTKD (without exchanging any
message over BT). Finally, they generate and ex-
change additional keys for BLE including signature
(CSRK) and identity resolving (IRK) keys. After the
protocol is completed Alice and Bob can establish se-
cure sessions both for BT and BLE (without having
to pair over BT).

attacking 5.1 and 5.2 devices (see Section 6.2). In Section 7,
we provide an extended discussion about why the key overwrite
countermeasure in the standard is not effective against our
attacks, and we propose effective countermeasures instead.

3.2 Reverse Engineered Details of CTKD
Fhe-Since the Bluetooth standard lacks a seetion—abott
ovidesser Link onSi ] . bing .
. ] ; o i, . }
#—discussion about how CTKD is negotiated and used we
had to reverse-engineer (RE) these missing information. In
this section we ﬁfe«ﬂde—aﬁ—kﬂgh-}evel—aﬁﬁma%yﬁf—ﬁheﬂﬂfefm&ﬁeﬂ
s A essdescribe.
how CTKD works when used from BLE and BT, what we

AW SR VWOLES WACH USCC Ao Dot alil R, WALl WE
had to RE and our RE methodology. To ease our descrip-
tion, we abstract the protocols at a message level s—where
Furthermorer—and we refer to the Bluetooth master as-Aliee;
and-the-Bluetoothslave-as-and slave as Alice and Bob.
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GFED—from—BLE pairing with CTKD. Figure 1 shows
CHKD-during BEE-pairingwhat happens when two devices

are pairing over BLE and using CTKD to derive also the BT
pairing key. Alice and Bob are pairable BE-and-over BLE

and BT and discover each other using BLE s—advemﬁﬂg
&H&se&mmgfe%ﬁessgwm\mm Then Atee

Geﬂmwmmm&@wm
protocol. We found that CTKD is negotiated by setting to
one the Link Key flag of the Initiator and Responder key
distribution SMP fields [10, p. 1680] and that such negotiation
MMM&@LM@
should also declare Secure Connections support (SC) and
CTKD-supporttogetherwith-which is also spoofable. The

BLE pairing messages also contain an association method
(Assoc), a source BLE address (ADD), a public key (PK),

and a nonce (N). Feehnically, CFKDsuppert—is—deelared

Res Jorkey-distribtion SMPfields[10- 1636}
After exchanging the pairing messages, Aliee—and—Beb
the devices compute a Diffie-Hellman shared secret (BH)

Fhe shared seeret-is-then-DK) using the exchanged PK. DK
is used to compute the BLE pairing key (KpLg) using &
dedieated-BLE pairing key derivation function (kdfig). Then,
Aliee-and-Beb-the devices use CTKD’s key derivation func-
tion (ctkd) to derlve the BT palrlng key (KBT)ﬁefﬁJeheBLE

Wwwg%mmmm a se-
cure session over BLE and exchange additional keys sueh
CSRK and IRK). As a result, Alice and Bob ean—establish

B:PSJ}\E}& KBLE;}\I)&LKBT but they only paired over BLE.

CFED-from-BT pairing with CTKD. Figure 2 presents
CTKDnegotiation-during BT pairing BT pairing with CTKD.
Alice and Bob are pairable over BT and BLE and discover
each other %@W@mm Then,
they exchange pairing request and response messages over
BT to negotiate several BT capabilities (including SC), and to
exchange their BT addresses, keys, and nonces. Halike-CTKD

B e o L e

ButrAdice—andBob—eomplete—the B —pairine—process—by
eemputing-DH-and-using-Then, they compute DK and use it

together with their BT addresses and nonces to compute the
BT pairing key (Kgr) through the BT pairing key derivation
function (kdfpr).

Then—CTKD L kes-place. I | Beo}
establish-Unlike for BLE, BT pairing messages do not include
a CTKD flag. What happens is that the devices start a se-

cure BT session and exchange two BF-messages containing
the CTKD flag and additional security material needed for
BLE such as signature keys (CSRK) and identity resolv-
ing keys (IRK). These two messages are peculiar as they

are formed-byBEE-pairingpackets{SMP—pairingrequest

Alice (master) Bob (slave)

< Devices pairable over BT >

BT Pairing Request:
Assoc, ADDy4, SC, PK4, Ny

BT Pairing Response:
Assoc, ADDg, SC, PKp, N

DK = PKp - SK4
KBT = kdeT(DI{7 NA7
Ng, ADDy4, ADDpg)

DK = PK4 - SKp
KBT = kdeT(DI(7 I\IA7
Ng, ADDy4, ADDg)

BT CTKD Request:
CTKD, CSRK 4, IRK 4

BT CTKD Response:
CTKD, CSRKp, IRKp

]\1 3LE = Ctkd(KBT7
Atmp2?7 “brle”)

i

Kprp = ctkd(Kpr,
thmp2777 ‘Lbrle”)

*

Figure 2: ©FKD—usage during BT pairing with
CTKD. Alice and Bob during BT pairing negotiate
SC support. Then, they compute the BT pairing key,
start a secure session over BT and send BT CTKD
messages containing CTKD support and other key-
ing material generated for BLE such as signature
(CSRK) and identity resolving (IRK) keys. Notably,
the CTKD request and response are encoded as BLE
pairing request and response and tunneled over BT.
Afterward, Alice and Bob derive the BLE pairing
key, via CTKD (without exchanging any message
over BLE). After the protocol is completed Alice
and Bob can establish secure sessions both for BT
and BLE (without having to pair over BLE).

and—response)-encoded as BLE SMP packets but sent over
BT. Thisis-the-first-example-of BEltunnelinsover Bl that
w&ebsefveﬁk&fté—bhe—&ue%ee%h—s%&ﬂ&&%se—f&%%&d&s—aﬁy
the Bluetooth standard is not describing such "BLE tunneling’

rotocol to negotiate CTKD from BT. Once CTKD is nego-
tiated, Alice and Bob use it to derive the BLE pairing key

(Kgre) from the BT key and the static strings “tmp2” and
“brle”. After—theprotocolis—ecompletedsAtieeandBob—ean
start BT

RE methodology. To RE the negotiation and usage of CTKD
we used a Linux laptop connected to a dual-mode development
board as a test device. The laptop runs a patched Linux
kernel capable of pairing diagnostic messages from the board.
The board acts as the laptop fronted (i.e.; the laptop is the
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BT/BLE Host while the board is the BT/BLE Controller),
and is initialized to report to the laptop all sent and received
link-layer traffic using HCI diagnostic messages.

To test CTKD from BLE we sent a BLE paiting request
from our test device to a pair of dual-mode headphones
(Sony WH-1000XM3) and we monitored the HCI log. To
check out CTKD from BT we sent a BT pairing request from
our test device to an Android smartphone (Pixel 2) and we

monitored the HCI log. In each case, we tested that it was
ossible to establish BT and BLE secure sessions witheut

having-to-pair-over BhEafter only pairing on one transport.
Notably, CTKD from BT was particularly tricky to reverse

as the CTKD negotiation messages over BT are decoded by

Wireshark but appear as standard L2CAP messages.

.' ’ ) . . .. .A . A ..

: ;, e . ‘

3.3 Isolated Issues with CTKD

vosh_session keyderived_from.the pairing ey and
session-nonees—or even overwrite trusted pairing keys with
her own. Furthermore, by using CTKD from BT the attacker
can get access to all BLE security keys distributed as part
of BLE pairing including identity resolving key usable to
de-anonymize a BLE device.

CI1 4: association manipulation. CTKD does not keep
track of which association mechanism was used as part of
pairing and the negotiation of the association scheme is not
protected. Indeed, an attacker can use CTKD to re-establish

airing keys using an arbitrary association scheme. This
includes a weak association to write or substitute authenticated

keys with unauthenticated ones (e. by re-pairing usin

We isolated four cross-transport issues (CTI) with the specification Just Works). Recently, association CODfUSlOﬂ attacks have

of CTKD resultln from CTKD brld ing BT and BLE in

roperly enforcing the security boundary between the two.
We now describe in detail each CTL.

CI1 1: extended pairing. CTKD introduces more options
to pair_two devices as dual-mode devices are pairable over
BT and BLE all the time. This enables an attacker to (silently)
pair over a transport that is currently unused. The attacker
does not need to wait until a victim is in discoverable mode,
as, despite common belief, a Bluetooth device in pairable
state already accepts pairing requests.

CTI 2: role_asymmetry. While BT and BLE roles are

defined differently, CTKD does not enforce which role was
used to pair on which transport. BT roles can be switched

been proposed for BT or BLE [39], CTKD extends this issue
across transports.

4 BLUR ATTACKS VIA CTKD

‘We now present our threat model and the design of four novel
and standard-compliant attacks fer-Blueteothon CTKD. Our
attacks are the first samples of cross-transport exploitation
for Bluetooth, as they are capable of exploiting BT and BLE
just by targeting either of the two. Our attacks are stealthy
as CTKD is transparent to the users, and do not require a
strong attacker model as the attacker does not have to be
present when the victims are pairing or establishing a secure
session. As our attacks are blurring the security boundary
between BT and BLE, we name them the-BLUR attacks.

The attacks were discovered by inference from the analysis
resented in Section 3 and the data collected during our

even before pairing, while BLE roles are fixed. This is problematic experiments with real devices (e.¢.. BT and BLE link layer

because an attacker can adversarially switch BT role before
using CTKD and send a BT pairing re uest to a %ap%op

victim which expects BT and BLE pairing responses. We
note that, issues with role asymmetry have been already
proven effective to bypass BT authentication during session
establishment [4].

CTI 3: key tampering. CTKD enables to tamper with all
BT security keys from BLE and vice versa using only a single
run of the pairing protocol. This is a new and powerful
attack primitive for Bluetooth. For example, an attacker
can use CTKD to write new pairing keys for BT and BLE

and HCI packets).
4.1 System Model

Our system model considers two victims, Alice and Bob,
who can securely communicate over BT and BLE. The vic-
tims support CTKD, and are using the most secure BT and
BLE modes, namely, SC and strong association (e.g., Nu-
meric Comparison if both have the necessary 10). This setup
should protect the victims against device impersonation, traf-
fic eavesdropping, and active man-in-the-middle attacks on
BT and BLE [10, p. 269]. Without loss of generality, we
assume that Alice is the master and Bob is the slave.
Regarding the notation, we indicate a BT pairing key
with Kgr, a BT session key with SKgr, a BLE pairing key
with KpLg, a BLE session key with SKprLg. We indicate a
Bluetooth address with ADD, a public key with PK, a private
key with SK, a shared Diffie-Hellman secret with DK, a nonce
with N, and a message authentication code with MAC.
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4.2 Attacker Model and Goals

Our attacker model considers Charlie, a remote attacker who
is in Bluetooth radio range with the victims. The attacker
aims to compromise the secure BT and BLE sessions between
the victims without tampering with their devices. The at-
tacker’s knowledge is limited to what the victims advertise
over the air, e.g., full or partial Bluetooth addresses, Blue-
tooth names, authentication requirements, IO capabilities,
and device classes.

The attacker does not know any BT or BLE key shared
between the victims, does not have to be present when the
victims pair or negotiate a secure session. The attacker can
scan and discover devices, send pairing requests and responses,
use CTKD, propose weak association mechanisms (e.g., Just
Works), and dissect and craft Bluetooth packets.

The attacker has four goals. The first one is to impersonate
Alice (to Bob) and potentially take over Alice’s secure sessions.
The second goal is to impersonate Bob (to Alice) and also
take over Bob’s secure sessions. By take over, we mean that
after the attack the security bond between the two victims
is broken. We note that, Alice and Bob’ impersonations
are different goals as they require different impersonation
techniques (i.e., master and slave impersonations).

The attacker’s third objective is to establish a man-in-
the-middle position in a secure session between two victims
and requires combining and synchronizing Alice and Bob’s
impersonation attacks. The fourth objective is to establish
unintended and possibly stealthy sessions with Alice or Bob
as an arbitrary device, without taking over a session and
breaking existing security bonds. An unintended session en-
ables the attacker to access a much broader attack surface
than the one exposed in a connection-less scenario.

4.3 Attack Strategy

We now describe our attack strategy using Alice’s imperson-
ation as a reference example and with the help of Figure 3.
Let us assume that Alice is a laptop and Bob is a pair of
headphones and the victims are already paired and they
are running a secure BT session. Since the victims support
CTKD, they are also pairable over BLE, even if the transport
is not currently in use. Charlie sends a BLE pairing request
to Bob pretending to be Aliceand-elaiming-CTKD-support—
sand claiming to support CTKD. The attacker also declares
1o input/output capabilities to trigger unauthenticated JW
association during pairing. This last step does not trigger
the key overwrite countermeasure described in Section 3.1.

Bob, even if running a BT session with Alice, has to answer
to Charlie with a BLE pairing response as Charlie’s message
is compliant with the Bluetooth standard.

Then, Charlie (as Alice) and Bob agree on a BLE pairing
key and, via CTKD, generate a new BT pairing key that
overwrites Alice’s key in Bob’s BT key store. In doing so,
Charlie, wins two prizes with one shot, as he takes over
Alice’s BT and BLE sessions with Bob. In other words, Alice
can no longer connect to Bob as she does not know the
BT and BLE pairing keys (overwritten by the attacker).

Furthermore, Charlie also overwrites other security keys that
are distributed during pairing, including CSRK (signature
key) and IRK (MAC randomization key). We note that the
overwrite trick is transparent to the end user as the standard
does not mandate to notify the user about CTKD, and works
even if Alice and Bob are sharing BT and BLE pairing keys
before the attack takes place.

Following a similar strategy, Charlie can impersonate Bob
to Alice, man-in-the-middle them, and create unintended
sessions as an arbitrary device with a victim. We note that
our attack strategy is effective because the Bluetooth stan-
dard does not enforce important security properties at the
boundary between BT and BLE and does not address all
cross-transport threats in its threat model (see Section 3.3 for
more details). In the remaining of this section, we describe
the technical details of the four BLUR attacks.

4.4 Impersonation Attacks

Master impersonation. Charlie impersonates Alice and
takes over her BT and BLE sessions with Bob as in Figure 4.
Bob is already paired with Alice, and can run a BT session
with her while Alice’s impersonation takes place. Notably,
Bob must be pairable over BT and BLE to support CTKD
from BT and BLE. Charlie takes advantage of that and sends
a BLE pairing request as Alice by using Alice’s Bluetooth
address (ADD4), Just Works (JW) association te-aveid-aser
interaetion-while pairing, his public key (PK¢), and CTKD
support.

As Charlie’s BLE pairing request is standard-compliant,
Bob sends back a BLE pairing response believing that Alice
wants to pair (or re-pair) over BLE using CTKD. Then,

A||ce jm}
_> ‘ i BT Q@

BLE
Charlie as ] B jm}

| S P

Figure 3: Attack strategy. Alice and Bob are paired
over BT and run a secure BT session. Charlie pairs
with Bob as Alice over BLE declaring CTKD sup-
port. Then Charlie agrees upon a BLE pairing key
with Bob, and, via CTKD, tricks Bob into overwrit-
ing Alice’s BT pairing key. As a result, Charlie can
establish BT and BLE sessions with Bob as Alice,
and takes over the real Alice who can no longer con-
nect to Bob. Using a similar strategy, Charlie can
also impersonate Bob to Alice, man-in-the-middle
Alice and Bob, and establish unintended BT and
BLE sessions as an arbitrary device.

vs]
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Charlie and Bob compute Kgpg, derive Kt via CTKD, and
exchange additional BLE key material (e.g., CSRK, IRK)
over a BLE secure session. After the master impersonation
attack is completed Charlie takes over Alice’s BT and BLE
sessions by tricking Bob into overwriting Alice’s BT and BLE
keys with his ones.

Slave impersonation. Charlie impersonates Bob and takes
over his BT and BLE sessions with Alice as in Figure 5.
Alice and Bob have already paired and can run a BLE secure
session while the impersonation takes place. Alice has to
be pairable over BT and BLE to provide CTKD support
from both transports, and Charlie takes advantage of that
by sending a BT pairing request to Alice as Bob using Bob’s
address (ADDg), Just Works (JW), and his public key (PK¢).
Charlie’s paring-pairing request is still standard-compliant
even if Charlie is supposed to be the slave as BT, unlike BLE,
enables a slave to switch to a master role before sending a
pairing request.

Alice answers with a BT pairing response believing that
Bob wants to re-pair over BT, and the two agree on Kgr.
Then, Charlie starts a secure BT session and sends a tun-
neled BLE pairing request to Alice still pretending to be Bob.

Charlie (master) Bob (slave)
< Devices pairable over BLE >

BLE Pairing Request as Alice:
JW, ADD 4, SC, CTKD, PK¢, N¢
BLE Pairing Response:
Assoc, ADDp, SC, CTKD, PKp, Np

Compute Aprp
Derive Kpt

Compute Appp
Derive Kp1

BLE Key Distribution: CSRK¢, IRK«~
BLE Key Distribution: CSRKg, IRKp

Figure 4: BLUR master impersonation attack. Char-
lie sends a BLE pairing request with Alice’s address
(ADD,) including Just Works (JW) associationte
avetd—user—interaetion, CTKD, and his public key
(PKc¢). Bob answers with a BLE pairing response
thinking that he is talking to Alice. The attacker
and the victim agree on Kprg, and derive Kgr, via
CTKD and complete BLE paring-pairing by gener-
ating and distributing more keys over a secure BLE
session. As a result of the master impersonation at-
tack, Charlie tricks Bob into overwriting Alice’s keys
with his ones and takes over Alice who can no longer
connect back to Bob.

Alice (master) Charlie (slave)

< Devices pairable over BT >
BT Pairing Request as Bob:
JW, ADDg, SC, PK¢, N¢

BT Pairing Response:
Assoc, ADD 4, SC, PK4, Ny

Compute Kt Compute Kt

BT CTKD Request as Bob:
CTKD, CSRK¢, IRK¢

BT CTKD Response:
CTKD, CSRK 4, IRK 4

Derive I\’]ﬂ‘]“ Derive /\’m,]q

Figure 5: BLUR slave impersonation attack. Char-
lie sends a BT pairing request with Bob’s address
(ADDg3g) including Just Works (JW) associationte
aveid—user—interaetion, and his public key (PKc).
The pairing request is valid as BT enables to dy-
namically switch from slave to master before send-
ing a pairing request. Alice answers with a BT pair-
ing response believing that she is talking to Bob.
The attacker and the victim establish Kgr, negoti-
ate CTKD and exchange additional keying material
for BLE with a BT CTKD request and response mes-
sages, and derive Kprg. As a result of the slave imper-
sonation attack, Charlie tricks Alice into overwriting
Bob’s keys with his ones and takes over Bob who can
no longer connect back to Alice.

The BLE pairing request includes CTKD support and Char-
lie’s signature and MAC randomization BLE keys (CSRK¢,
IRK¢). Alice answers with a BLE pairing response tunneled
over BT and the two derives Kgp,g via CTKD. Once the slave
impersonation attack is completed, Charlie takes over Bob’s
BT and BLE sessions by tricking Alice into overwriting Bob’s
BT and BLE keys with his ones.

Man-in-the-middle. Charlie can conveniently combine the
described master and slave attacks to launch a cross-transport
man-in-the-middle attack as shown in Figure 6. If Alice and
Bob are running a BLE session, Charlie starts with the slave
impersonation attack presenting to Alice as Bob over BT.
Otherwise, he launches a master impersonation attack by
targeting Bob as Alice over BLE. After the first impersonation
attack, the impersonated victim is taken over and disconnects
from the other victim. Then, Charlie targets the impersonated
victim with a second impersonation attack and establishes a
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) Bob

Alice o &0
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N3 %, = 37
\h Charlie i/
(9358 =X

Figure 6: BLUR man-in-the-middle—MitM attack.
Charlie combines the master and slave imperson-
ation attacks presented so far to establish a man-
in-the-middle position between Alice and Bob both
on BT and BLE.

MitM position between the two victims. As a result, Charlie
controls all BT and BLE secure sessions between Alice and
Bob.

4.5 Unintended Session Attacks

attacker can take advantage of CTKD to estabhsh unin-
tended MMW&WW as
an anonymous devicewd

unintended-sessions;—, This attack is valuable for four main
retend to be any device and does not have to break existin,

bonds. Secondly, the attacker can enumerate and tamper
with all BT and BLE services ﬂmpefﬁed%y%he—webmﬁﬁé

5 i i s—running on the

victim device (including the protected ones) without havin
to impersonate a trusted device. Thirdly, the attacker can

anonymously gain access to extra key material includin

Alice BT Bob g ‘
e
BLE BLE ﬁ ﬂ
Charlie / Q\j
‘/ Always pairable

over BLE

Figure 7: BLUR unintended sessions attack. Charlie
can take advantage of CTKD to establish unintended
BT and BLE session with Bob as a random device
with arbitrary capabilities. The same can happen if
Charlie targets Alice.

CTI1 CTI2 CTI3 CTI4

Master Impersonation v x v *
Slave Impersonation v v v *
MitM v v v *
Unintended Session v * v x

Table 1: Mapping the BLUR attacks to the CTI
presented in Section 3.3. CTI 1: extended pairing,
CTI 2: role asymmetry, CTI 3: key tampering, and
CTI 4: association manipulation. We use a v'_if a
CTI1 is required to conduct an attack, an ”x” if is

99 3%k 99

not required and an if is only required in specific

cases.

identity resolving keys that de-anonymize BLE devices usin
random addresses. Finally, the attacker can silently reach
more (vulnerable) code including RCE in the pairing and

secure session code, which is unreachable by an untrusted
device.

Let us see how an unintended session attack works in a
scenario where Alice and Bob are already paired and are
running a secure BT session (see Figure 7). As in the im-
personation attack scenario, Alice and Bob must also be
pairable over BLE to support CTKD. Charlie targets Bob
by sending a BLE pairing request using a random Bluetooth
address, CTKD support, and Just Works for association. Bob
answers to Charlie’s request and the two negotiate Kprg, and
derive Kpr via CTKD. Now, Charlie can establish secure but
unintended BT and BLE sessions with Bob without break-
ing Bob’s existing sessions (e.g., with Alice) and by using
an anonymous identity and arbitrary capabilities. Using a
similar strategy, Charlie can reach the same goals targeting
Alice.

4.6 Mapping Attacks to CTIs

Table 1 shows how the BLUR attacks take advantage of

the four cross-transport vulnerabilities that we present in

Section 3.3 in different ways. To cover all possible attack

scenarios, a v_indicates that a CTI is required, an "« if it
9 X

is not required, and an if it is only needed sometimes.
All attacks exploit extended pairability (CTI 1). The slave

impersonation and MitM attacks take advantage of role asymmetries

(CTI2), while some unintended session attacks take advantage
of that. Key tampering (CTI 3) is exploited in all attacks
CTIKD. Association manipulation (CTI 4) is required in the
mechanism but the attacker negotiates Just Works.

5 IMPLEMENTATION

In this section we describe our attack scenario, our imple-
mentation of a custom attack device to perform the BLUR
attacks and our re-implementation of CTKD’s key derivation
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function. We will fully—open-source both the-attack-and-our
GCTFKDkey-derivationfunetionalityimplementations.

5.1 Attack Scenario

Our attack scenario follows the example in Figure 8 and
includes two victims, Alice (master) and Bob (slave). Alice is
represented by a 7th generation ThinkPad X1 laptop and Bob
by a pair of Sony WH-CH700N headphones. The attacker
(Charlie) uses a CYW920819 development board [14] and
a 3rd generation ThinkPad X1 laptop as an attack device.
The implementation of the attack device is presented in
Section 5.2. In our evaluation, presented in Section 6, we use
the same attack scenario to attack other victim devices.

Table 2 summarizes the most relevant features of Alice,
Bob, and Charlie. Alice and Bob have an Intel Bluetooth
chip, while Bob has a Cambridge Silicon Radio (CSR) one.
Alice, Bob, and Charlie support respectively Bluetooth 5.1,
4.1, and 5.0. Alice and Charlie support Secure Connections
both on the Host and the Controller, while Bob only on
the Controller. All devices support BT, BLE, and CTKD.
Regarding pairing association methods, the laptops support
Numeric Comparison, while the headsets only support Just
Works as they lack a display.

5.2 Custom Attack Device

To conduct our attacks we developed a custom attack device
making use of a CYW920819 development board connected
to a Linux laptop (see Figure 9). Both devices BT, BLE, SC,
and CTKD. Using standard laptops, smartphones or dongles
is not sufficient to implement the BLUR attacks, as they
do not allow to modify all device’s identifiers (e.g., BT and
BLE address) and all devices’ capabilities advertised over
the air (e.g., firmware and controller versions). A software-
defined radio (SDR) is also out of scope because there is no
open-source BT/BLE SDR stack currently available.
Instead, with our attack device, we can program our de-
velopment board (Bluetooth Controller) to impersonate any
BT/BLE device, we can patch its closed-source firmware

WH-CH700N
ﬁn Secure BT Session
Alice Bob
(master) X1 3rd gen (slave)

CYw920819

Charlie (attacker)

Figure 8: BLUR Attack Scenario. Alice (master)
is a ThinkPad X1 7th gen, Bob (slave) is a pair
of Sony WH-CH700N headphones and Charlie (at-
tacker) is a CYW920819 board connected via USB to
a ThinkPad X1 3rd gen. Alice and Bob have paired
in absence of Charlie, and are running a secure BT
session.

10

Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N 1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716
Version 5.1 4.1 5.0
Name x7 WH-CH700N x1
ADD Redacted Redacted Redacted
Class 0x1c010c 0x0 0x0
BT SC True Only Controller True
BT AuthReq 0x03 0x02 0x03
BLE SC True True True
BLE AuthReq 0x2d 0x09 0x2d
CTKD True True True
h7 True False True
Role Master Slave Master
10 Display No IO Display
Association Numeric C.  Just Works Numeric C.
Pairable True True True

Table 2: Relevant Bluetooth features for Alice, Bob,
and Charlie. We redact the devices’ Bluetooth ad-
dresses for privacy reasons.

Bluetooth
BlueZ baseband «»))))
Linux HCI Bluetooth
Kernel firmware

Linux laptop (Host) CYW920819 (Controller)

Figure 9: Attack Device Block Diagram. The attack
device is composed of Linux laptop (Host) and a
CYW920819 development board (Controller) con-
nected via USB and communicating using the Host
Controller Interface (HCI) protocol.

to control both BT LMP and BLE LL link layer packets.
Moreover, we can alter the laptop’s BT and BLE kernel and
user-space code to set Bluetooth Host-specific configuration
bits such as negotiating CKTD and Just Works. We now
describe in detail how we modify the attack device’s Host
and Controller components.

Host modifications. For the host, we use standard Linux
tools to configure an Bluetooth interface (e.g., hciconfig),
and to discover and pair with a device (e.g., bluetoothctl,
hcitool and btmgmt). In particular, btmgmt was very useful
as it provides handy low-level commands. For example, it
includes commands to toggle BT, BLE, SC, scanning, and
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advertising. Moreover, it allows to easily send custom pairing
requests on BT and BLE and to set the related association
(e.g., Just Works).

Furthermore, we configured our host to get all link-layer
packets sent and received by the controller. This is handy
as it enables to monitor both HCI and link-layer packets
directly from the host (e.g., using Wireshark). To activate
link-layer packet forwarding, we sent a proprietary Cypress
HCI command from the host to the controller that switches
on an undocumented diagnostic mode in the controller. Then,
we added extra C code to the Linux kernel to parse those
special HCI packets in the host.

Controller modifications. We modified the controller by dy-
namically patching the development board Bluetooth firmware
using a Cypress proprietary mechanisms. To patch the firmware
we had to extract it from the board and statically reverse-
engineer its relevant parts. In particular, to extract the
firmware we used a proprietary HCI command to read and
save a runtime RAM snapshot from the board’s SoC. We use
the memory maps that we extracted from the board’s SDK
to extract the memory segments from the snapshot (e.g.,
ROM, RAM, and the scratchpad). As expected, the firmware
was in the ROM segment and was a stripped ARM binary
containing 16-bit Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM,
RAM, and scratchpad in Ghidra and statically analyzed
them. In our first pass, we isolated the libc functions (e.g.,
malloc and calloc) by looking at the signatures and the code
patterns of the functions that are called the most. Then, we
found the firmware debugging symbols hidden in the board’s
SDK and loaded them into Ghidra. Using these symbols we
isolated functions and data structures relevant to the BLUR
attacks. Then, we wrote ARM Thumb assembly patches to
change their behaviors and we apply those patches at runtime
using internalblue [28], an open-source toolkit to manage
several Bluetooth devices including our board. Our set of
patches allows transforming our board in whatever device we
want by changing its identifiers including addresses, names,
and capabilities,

5.3 CTKD Key Derivation Function

We implemented CTKD’s key derivation function, follow-
ing its specification in the Bluetooth standard [10, p. 1401].
We used our implementation to check that the keys that
we observed during our experiments were correctly derived,
yet, it is not required to conduct the BLUR attacks. Our
implementation is written in Python 3 and uses the PyCA
cryptographic module [7]. We tested it against the CTKD
test vectors in the standard [10, p. 1721]. We now describe
its technical details.

if h7 is supported

{f (f (tmp2, Kpr) , brle)
KprLe = .
otherwise

I (f (Kpr,tmp2) , brle)

We implemented CTKD'’s key derivation for BT deriv-
ing and following the equation above. The key derivation
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computes KprLg using a function f(a,b) that corresponds to
AES-CMAC(key, plaintext). If both pairing devices declare
h7 support, then Kgpg is computed using the equation at the
top otherwise the one at the bottom. h7 is a key conversion
function defined in the Bluetooth standard and is negotiated
during pairing using AuthReq [10, p. 1634].

if h7 is supported

otherwise

K — f(f (tmpl,KpLE),lebr)
f(f (KpLE,tmpl),lebr)

We also implemented CTKD’s key derivation for BLE
deriving and following the equation above. In this case the
derived key is Kpr. The equations’ logic is identical to the one
explained for BT. What changes are the input parameters.

In particular, the computation uses as inputs: Kgrg, “tmpl”,
and “lebr”.

6 EVALUATION

In this section we present how we successfully conducted the
BLUR attacks aﬂd—eﬂi—e&*&lﬂ&ﬁeﬂ—f&*&u&fon 16 dev1ces us-
ing 14 unique Bluetooth chips{see—Fable
%M%M
effective against different device types (e.g., laptops, smart-
phones, headphones, and development boards), manufactur-
ers (e.g., Samsung, Dell, Google, Lenovo, and Sony), operat-
ing systems (e.g., Android, Windows, Linux, and proprietary
OSes), and Bluetooth ehipfirmware (e.g., Broadcom, CSR,
Cypress, Intel, Qualcomm, and Samsung).

6.1 Conducting the Attacks

The BLUR attacks, presented in Section 4, include master
impersonation, slave impersonation, man-in-the-middle, and
unintended session attacks. In the next paragraphs, we de-

scribe how we conducted them-using-our-eustom-each attack
using the attack device described in Section 5.2.

Laptop (master) BLUR impersonation attack. To imper-
sonate the laptop, we patch our attack device to clone the
laptop’s Bluetooth features (ineladinge.g., Bluetooth address,

Bluetooth-name, device class, SCand-CFKD-support)—and

security parameters) Then, we send a BLE pairing request
from the attack device to the headphones declaring CTKD

and Just Works support. The malicious BLE pairing request
is sent using btmgmt’s text-based user interface (TUI). The
headphones accept the pairing request, and the devices agree
on KgLg, derive Kpt via CTKD and establish a secure BLE
session. Then, the headphones terminate the BT session with
the impersonated laptop and establish a secure BT session
with the attack device. The impersonated laptop cannot con-
nect back with the headphones as it does not possess the
correct pairing keys overwritten by the attacker.

Headphones (slave) BLUR impersonation attack. To im-
personate the headphones, we patch our attack device to
clone the headphones’ Bluetooth features. Then, we send
a BT pairing request from the attack device to the laptop
declaring CTKD and Just Works support using btmgmt’s
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Device Chip Bluetooth BLUR Attack
Producer Model oS Producer Model Version  Role  MI/SI MitM  US
Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave v v v
Dell Latitude 7390 Win 10 PRO  Intel 8265 4.2 Slave v v v
Google Pixel 2 Android Qualcomm SDM835 5.0 Slave v v v
Google Pixel 4 Android Qualcomm 702 5.0 Slave v v v
Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave v v v
Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave v v v
Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave v v v
Samsung  Galaxy A51 Android Samsung Exynos 9611 5.0 Slave v v v
Samsung  Galaxy A90 Android Qualcomm SDM855 5.0 Slave v v v
Samsung Galaxy S10 Android Broadcom  BCM4375 5.0 Slave v v v
Samsung Galaxy S10e Android Broadcom  BCM4375 5.0 Slave v v v
Samsung Galaxy S20 Android Broadcom  BCM4375 5.0 Slave v v v
Xiaomi Mi 10T Lite Android Qualcomm 9312 5.1 Slave v v v
Xiaomi Mi 11 Android Qualcomm 10765 5.2 Slave v v v
Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master Vv v v
Sony WH-CH700N Proprietary CSR 12942 4.1t Master Vv v v

7 CTKD was backported by the vendor to Bluetooth 4.1.

Table 3: BLUR attacks evaluation results. The first three columns show the device’s producer, model, and
OS. The next two columns state the Bluetooth chip’s preduee-producer and model. The sixth column tells
the Bluetooth version of the target device. The seventh column indicates the attacker ’s—role{e.gif Slave

Finally;the-The last three columns contain a eheek-mark

thenthe-attacker-isthe slave-and targets-a—master).
Mﬁ/l\‘k (/) if a device is vulnerable to the relevant BLUR attack. W&gfmipmasﬁeﬁ&ﬂdﬁlﬁeﬁﬂpefseﬁaﬁeﬂ

TUI The laptop accepts to pair over BT s-and-the-as a BLE

slave can send a BT pairing request as a master. The devices
agree on Kpr, negetiate-CHD-derive KprLgvia CTKD, and
establish a secure session over BT. The impersonated head-
phones cannot connect to the laptop as they do not own the

correct paring-pairing keys.

BLUR Man-in-the-middle attack. By using euwr—BEUR
implementation—with-two development boards connected to
the same attaek-laptop, we can impersonate the laptop and
the headphones at the same time, and man-in-the-middle
them. In particular, we run the laptop (master) impersonation
attack first, and then the headphone (slave) impersonation
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attack. As a result, the attack device positions itself in the
middle between the victims.

BLUR Unintended sessions attack. For the unintended
session attack, we patched our attack device to look like
an unknown device to the current victim (e.g., unknown
Bluetooth address and name). If the victim is a master, we
run the same steps used in the slave impersonation attack
otherwise we use the master impersonation attack’s steps.
In both cases, the attacker ereates—unwanted—but—trusted
bonds-with-a—vietim-completes pairing using CTKD and can
establish secure sessions over BT and BLE with the victim.

6.2 Evaluation Results

We evaluated the BLUR attacks against 16 unique devices
(employing 14 unicue-different Bluetooth chips) and our re-
sults are summarizec-shown in Table 3. The first six columns
indicate the device’s producer, model name, operating sys-
tem, chip manufacturer, chip model, and Bluetooth version.
The seventh column contams elther Slave if the deviee—vas

5 aeatast—a—sh ackattacker’s role is
slave or Master ﬁ%&éeﬂeeﬂvas—teﬁed—ag&mst—a—maﬁ%ef
ﬂﬂpefseﬁ&ﬂeﬂ—&%&c—kotherwme The table’s last three columns
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contain a eheek—mark—checkmark (v') if a device is vul-
nerable to master or slave impersonation attack (MI/SI),
man-in-the-middle-attack—MitM)MitM, or unintended ses-
sion (US) attack.

From Table 3 we ean-drawseveral-significant-eonelusions:
Firstly-it-shows-confirm that the BLUR attacks are practieat
as-atbstandard-compliant and very effective. All devices that
we tested regardless of their implementation details are vul-

nerable. Seeenddy-thetable-demonstratesthat-all-the Bluetooth
versions-that-we-tested-are-valnerable;-Moreover, all Bluetooth

T IRRARAAARANRSAAAANRAAR

WM@ e., Bluetooth versions
44:4.2,5.0, 5.1, and 5.2) and the attacks are even effective on
older versions of Bluetooth (e.g., 4.1 devices that backported
CIKD).
m&&&fmv%l%mlwmm
Bluetooth standard for 5.1 ——Ffﬂ-&l—l—y——t—h&t—a—b}e%ﬁﬁffﬂﬁ—t—h%

a-deviee—entropy) or MitM protection. This countermeasure
Is not effective against the BLUR attacks as, whenever they
are used to overwrite keys, they are neither downgrading the

M%&MWM@%MWQW@%M&%@H%&B@—G

efdeviee-speeifie-implementation-details—and 5.2 devices [10,
not effective against our attacks, as a BLUR attack neither

7 COUNTERMEASURES

Athentieation—JK =K i' | No-{)P .” Yes
G-

We-now-present-four countermensuresto-mitigate 1o effectively
address the BLUR attacks pfeseﬂ%ed—m%ee%}eﬂé—}&p&meu}&ﬁ

Section 3.1 we discussed the countermeasure proposed b’v
the Bluetooth standard for 5.1 and 5.2 devices that prevents
key overwrite attacks via CTKD when the overwritten key is

weaker either in strength (i.e., Just-Werk)-and-impersonate
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long-termkeys) we now present four countermeasures. Each
countermeasure addresses its related CTI (e.g., CL addresses
CIL1). Then, we describe how to implement them and how
we evaluated one of them on a Linux laptop.

C1: Disable pairing when not needed. To prevent an attacker
from pairing with a device on unused transports, a device
should automatically stop being pairable on a transport that
Is not currently in use. To avoid DoS issues, a device should
also allow a user to manually enable and disable pairing on
a specific transport.

C2: Align BT and BLE roles. To fix role asymmetries
between BT and BLE when using CTKD, a device should
store the rele-that-theremote-deviee-transport and the role
used while pairing and enforce it across re-pairings regardless
of the transport in use. In case of a role mismatch, the device

should abort pairing. We note that the BIAS paper [4] also
takes advantage of role switching but is not proposing role

switch enforcement as a countermeasure.

Enforee-strong-assoctationmechanisms C3: Prevent cross-transport

key tampering. To aligh—association—methods—between—BTF
and-BLE-pairingsprevent cross-transport key overwrites via
CTKD, a device should disable it while pairing if a trusted
pairing key already exists for the other transport. As a result,
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to overwrite a trusted pairing key a user should explicitl
re-pair on that transport. To mitigate cross-transport ke

writes, CTKD should be disabled when two devices, who

already share a pairing key on a transport, re-pair on that
transport with a weaker pairing key (that would be used as
input to CTKD). A key is considered stronger than another
one if its entropy is higher or if is established with a stronger

CJ: Enforce strong association mechanisms. To prevent
an attacker from manipulating the association mechanisms

used when pairing on different transports, a device should
keep track of the strengest-association mechanism used while

pairing either-on-BForBEEfor the first time with a device
and enforce it for subsequent {re-}pairings—re-pairings across

BT and BLE. There is no obvious reason why two devices
which support strong association would want to ever use a

weaker association scheme. If a weaker mechanism than the
one stored is proposed, pairing should be aborted.

Dieable CTHD A s, CTD allows {over)weit
seetirity keys neross The four countermeasures not only address
the four CTIs but they also stop the BLUR attacks. In
particular, C3 prevents impersonation and MitM as the attacker
will not be able to write and overwrite key across transports

but only target separately BT and BLE. To fixzkey-everwrites
B R R

e . BT ahoula o prE
pairing-key-that-was-seenrely-establishedinthepast—stop the
unintended sessions attacks C1 is also needed as the attacker
should not be able to pair with CTKD on unused transports.
€2 and C4 help to mitigate the attacks by providing more
defense-in-depth but they are not strictly required.

from—pairing—with—a—vietim—devieein—unexpeeted—ways—=a

a i in—tab
deviceshotld-antomatically stop-being pairable-Our countermeasurdsose-atta o

can be implemented in the Bluetooth Host component (i.e.,
device’s main O8). G2, C3; and C4 can be realized by keeping
track of metadata that is already exchanged during the pairing

rotocol (e.g., device role, association) and aborting the protocol
when needed. CL can be implemented with a_timer which
disables pairability on a transport that—is—net-eurrently—in
use—For—example—a—pair—ofheadphones—who—arerunning
< Q Q 3 1 Q al
frecenTe messonTover EBIIE‘““; N la]ptef’ ”he‘ﬂf, *.*?E aﬂs”f*
headphones-in-pairing-mode—when not needed and a simple
user interface to monitor and switch on/off pairability for
BT and BLE.

To verify the effectiveness of C3 we implemented a C3
proof-of-concept and tested it using a Linux laptop. We
paired our laptop with the victim device using CTKD and we
deleted the pairing data on the victim device and then used it
as the attacker device. Then, to disable CTKD on the laptop,
we unset the write permission bit in the folder and the file

storing the pairing keys. Then we ran the impersonation
attack from the attack device and the attack failed as the
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OS was preventing the Bluetooth Host from (over)writin.

‘ - v .

sesbilitshould - b CPKD . heed

&f&%heﬁfst—efess-&&ﬂﬁpeft—&%&ek&{mgeﬁﬂgbe%ﬂéﬁnd

TFhe-Bhietooth-Bluetooth provides a royalty-free and widely-
available cable replacement technology [18]. Bluetooth stan-
dard compliant attacks are particularly dangerous as all
Bluetooth devices are affected, regardless of version numbers
or implementation details. Such standard-compliant attacks
have appeared since the first versions of Bluetooth [22, 27].
Standard-compliant attacks on BT include attacks on legacy
pairing [37], secure simple pairing (SSP) [9, 19, 38], Bluetooth
association [20, 39], key negotiation [2], and authentication
procedures [4, 26, 40]. Standard-compliant attacks on BLE
include attacks on legacy pairing [34], key negotiation [5],
SSP [9, 44], reconnections [42], and GATT [23]. Compared
to the mentioned attacks that target either BT or BLE,
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the BLUR attacks are the first standard-compliant attacks
targeting the intersection between BT and BLE.

We have seen attacks targeting specific implementation
flaws on BT [35] and BLE [17, 36]. As our BLUR attacks
target the specification level, they are effective regardless
of the implementation details. Several surveys on BT and
BLE security were published [15, 29, 31] but neither of those
surveys nor the Bluetooth standard considers CTKD as a
threat. We here demonstrate that CTKD is a serious threat
and must be included in the threat model.

Cross-transport attacks were exploited for proximity tech-
nologies using Bluetooth and Wi-FI. Two prominent examples
are attacks on Apple ZeroConf [8] and Google Nearby Con-
nections [3]. Our BLUR attacks are the first cross-transport
attacks for BT and BLE.

The cryptographic primitives used by Bluetooth have
been extensively analyzed. For example, the Ey cipher used
by BT was investigated [16] and it is considered relatively
weak [31]. SAFER+, used for authentication, was analyzed
as well [25]. BT and BLE “Secure Connections” use the
AES-CCM authenticated-encryption cipher. AES-CCM was
extensively analyzed [24, 33] and it is FIPS-compliant. Our
BLUR attacks target key negotiation and not cryptographic
primitives, and are effective even with perfectly secure cryp-
tographic primitives.

As can be seen from Table 4, compared to other standard-com liar[lt

attacks, the BLUR attacks are novel and are enabling impactful
attack scenarios. The BLUR attacks are the first cross-transport

attacks for Bluetooth and are the first attacks exploiting
CTKD. In terms of impact. the BLUR attacks require a
weak attacker model as the attacker does not have to observe
previous pairing and secure sessions between the victim. On
top of that, they break even the most secure BT and BLE
mode (i.c., SSP, LESC, SC. and strong association) and their
effect is persistent.

9 CONCLUSION

In this work we examine CTKD, a usability feature in the
Bluetooth standard that has, until now, not been scrutinized
for security issues by the research community. We develop
four attacks that take advantage of CTKD to exploit both
BT and BLE. Our attacks are the first examples of cross-
transport attacks on Bluetooth, they are standard-compliant,
and effective against the most secure BT and BLE modes
(i-e., Secure Connections and Secure Connections Only). Our
attacks are the first ones that achieve a persistent compromise
of the devices, i.e., it leaves the devices in a compromised
state even when the attacker is no longer present. In contrast
to other prior standard-compliant attacks (i.e., attacks that
also are not targeting implementation bugs), our attacks are
not limited to the pairing phase. That means we can execute
the attack on any device at any time, without forcing a new
pairing event.

With our BLUR attacks we reach four significant goals.
We achieve impersonation and take-over for both the master
and slave devices; man-in-the-middle on secure sessions in
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the most secure mode (Secure Connections); and establishing
unintended sessions as an anonymous device. Collectively our
attacks are called BLUR attacks as they blur the security
boundary between BT and BLE.

To demonstrate the practicality of the BLUR attacks, we
presented a low-cost implementation based on cheap readily
available hardware (a laptop, and a Bluetooth development
board) and open-source software (Linux, and internalblue).
‘We also describe solutions to the main technical challenges we
faced during development, including low-level modifications
of a Bluetooth firmware.

We use our implementation to experimentally confirm that
CTKD-compatible devices (using 14 unique Bluetooth chips)
are vulnerable in practice. Our attacks are successful on
all the devices we tested which shows that this is a serious
problem in practice. We end the paper by discussing the
feasibility of various low-cost, host-based countermeasures
that prevent the attacks at the cost of some usability. We
followed a responsible disclosure process and notified the
Bluetooth SIG of our findings, resulting in CVE-2020-15802,
and we intend to release our attack implementation as an
open source project.
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10 APPENDIX
Lessons Learned

In this section we list the main lessons that we learned in

the hope that they will be useful for protocol designers who
are dealing with cross-transport security mechanisms.

Cross-transport specification and modeling. Security mechanisms
that cross the security boundary between two technologies
should be well-specified and tested against a comprehensive
cross-transport threat model. On the contrary, the Bluetooth
standard provides an incomplete specification for CTKD and
only discusses some cherry-picked cross-transport threats.

should be designed such that the mechanisms trusted at
the boundary between the two transport (i.e., BT and BLE
pairing) have the same threat model and provides the same
security guarantees. This is not the case for Bluetooth as BT
and BLE use different pairing protocols. link layer mechanisms,

and threat models.

Usabdlity vs. Jecurity. CTKD was introduced to improve
Bluetooth’s usability, but, in light of the presented attacks,
the usability benefits are not balancing the security issues
deriving from CTKD. Indeed, it is paramount to find a good
balance between usability and security and not overweight

the former.
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Attack

Year Paper Target Phase CIAK SC/SCO Persistent Note
Attacks on BT

2016 Albazrqaoe et al. [1] Standard Any ©000 X - BlueEar Sniffer

2017  Seri et al. [35] Impl. Pairing @@@O NA v BlueBorne

2018 Sun et al. [38] Standard Pairing @©@@O v - Passkey (MitM)

2018 Biham et al. [9] Impl. Pairing ©@@0© NA v Fixed Coordinate Invalid Curve

2019 Antonioli et al. [2] Standard Pairing @@©O v - KNOB (MitM)

2020 Antonioli et al. [4] Standard Pairing @©@@O v - BIAS

2021 Tschirschnitz et al. [39] Standard Pairing @@@O v - Method Confusion (MitM)
Attacks on BLE

2016 Jasek et al. [23] Standard NA ©O00 x - Black Hat

2019 Seri et al. [36] Impl. NA 0000 NA v Bleedingbit

2020 Zhang et al. [44] Standard Pairing ©OO©O v - MitM (SCO)

2020 Wu et al. [42] Standard Session OO@O v - BLESA

2020 Garbelini et al. [17] Impl. Any 0000 NA - SweynTooth fuzzer
Attacks on both BLE and BT

2019 Ossmann et al. [30] Standard NA ©O000 X - Ubertooth sniffer

2020 Antonioli et al. [5] Standard Pairing @@©O v - Downgrade (MitM)

2021 This work Standard Any 0000 v v BLUR (cross-transport)

Table 4: Overview of recent attacks on Bluetooth and BLE. C = Data Confidentiality, I = Data Integrity, A
= Device Authentication, K = Key disclosure. No (O) Partially (©), Yes (®).
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