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In this document we provide our response to the major revision, a paper diff, and the
updated paper. We thank the reviewers for the opportunity to refine the paper and hope
to have addressed all raised issues as intended. We look forward to continuing to work
with the reviewers.

1 Summary of Changes

• We now describe the CTKD-related key overwrite countermeasure in the standard,
explain that it was introduced with Bluetooth 5.1, demonstrate that is not effective
against the BLUR attacks, and propose effective countermeasures.

• We extended the BLUR attack evaluation to cover all CTKD versions supporting
CTKD (i.e., 4.2, 5.0, 5.1 and 5.2) by buying and successfully exploiting three more
devices. We leverage the evaluation results to explain how the presented attacks are
standard-compliant up to Bluetooth 5.2.

• We improve the description about what is public and what we had to reverse-engineer
in CTKD. We now introduce the issues with CTKD (i.e., CTKD vulnerabilities)
before describing the attacks. We now discuss our CTKD Reverse-engineering
methodology.

• We improved the presentation of the attacks. We now describe how each attack
takes advantage of the presented cross-transport vulnerabilities. We discuss how we
discovered the attack by inference. We improved their positioning with respect to
recent work. We show what is the threat model related to the unintended session
attack.
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• We extended the countermeasure section. We now state that each countermeasure
addresses a specific CTKD issue, and provide a minimal set of countermeasures to
fix all the BLUR attacks. We explain how we evaluated the cross-transport key
tampering countermeasure to stop a BLUR impersonation attack on actual devices.

• We improved the presentation of the attacks by describing how they map to the
CTKD issues, how we discovered them, and what is the threat model related to the
unintended session attacks.

• Other minor changes. We rewrote the Abstract and Introduction to be more concise.
The Background now includes a better explanation about BT and BLE Secure
Connections. To add the requested material, we moved Table 4 and the Lessons
Learned section to the Appendix.

2 Detailed Changes with Answers to Reviewers

2.1 Key downgrade countermeasure in the standard

Concern The reviewers raised a concern about the following countermeasure in the
Bluetooth 5.2 standard “While performing cross-transport key derivation, if the key for
the other transport already exists, then the devices shall not overwrite that existing key
with a key that is weaker in either strength or MITM protection” and asked us to conduct
our attacks on a Bluetooth 5.2 device to check the effectiveness of such countermeasure.

Answer We successfully conducted the BLUR attacks on a Xiaomi Mi 11, which is one
of the few Bluetooth 5.2 smartphones currently available. The BLUR attacks are able to
bypass the quoted countermeasure as the countermeasure is enforcing two requirements
not violated by our key overwrite attacks. In particular, when we overwrite a key we don’t
reduce its strength (entropy) and MitM protection. But, we declare “no input/output
capabilities” with “MitM protection” to trigger pairing with Just Works association.

We also revised the Bluetooth standard changelog and we saw that the quoted coun-
termeasure was introduced with Bluetooth 5.1. To strengthen our argument about the
ineffectiveness of the quoted countermeasure we also successfully tested a Xiaomi Mi 10T
Lite Bluetooth 5.1 smartphone. This adds to the other 5.1 device that we tested in the
past a 7th gen Thinkpad X1 laptop.

To demonstrate the results of our experiments, we’d be happy to share evidence, e.g.,
pcap traces, demonstration videos, or other relevant information that the reviewers deem
necessary. We will release all of this information together the source code of our attack
along with the accepted paper in a public repository.

Regardless of our experimental results, it is not clear why the Bluetooth SIG introduced
a countermeasure targeting only 5.1 and 5.2 devices, instead of introducing a defense that
protects all Bluetooth versions compatible with CTKD.
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Paper update In Section 3.1, we introduce the key overwrite via CTKD countermeasure
present in the standard since version 5.1. Then, we explain that our attacks are not
triggering that countermeasure as they are not violating the strength and MitM protection
requirements that is enforcing, and that we experimentally verified this claim by successfully
attacking devices supporting Bluetooth 5.1 and 5.2.

We also provide a forward pointer to our countermeasures section (Section 7) where we
explain in detail why our attacks are not covered by the countermeasure in the standard
and the need for effective countermeasures. In Section 4.3 we explain how we negotiate
“Just Works” without triggering the countermeasure.

2.2 Standard-compliance of the BLUR attacks

Concern The reviewers asked why we are classifying our attacks as standard-compliant.

Answer We claim that our attacks are standard-compliant as they are exploiting
weaknesses in the specification of CTKD, which is a security mechanisms provided by the
Bluetooth standard. Our claim is supported by experimental evidence, as all devices that
we tested are vulnerable to the BLUR attacks regardless of their hardware and software
details and Bluetooth versions.

Paper update We extended the Evaluation section to cover all Bluetooth versions
supporting CTKD (4.2, 5.0, 5.1, and 5.2) and more devices and chipsets. In particular, we
successfully exploited a Xiaomi Mi 11 (Bluetooth 5.2), a Xiaomi Mi 10T Lite (Bluetooth
5.1) and a Pixel 4 (Bluetooth 5.0). Our updated result, together with the reasoning on how
we bypass the proposed countermeasure from the Bluetooth SIG, significantly strengthen
our claim about standard-compliance.

2.3 Root causes of the attacks

Concern The reviewers asked to describe the attacks’ root causes before the attacks
and to show which root cause maps to which attack and how they are related to the
presented countermeasures. There was also a concern about all the attacks exploiting the
same vulnerability.

Answer We agree that the paper should provide a better transition between the de-
scription of CTKD (Section 3) and the attacks (Section 4) and describe how the issues
map to the attacks.

Paper update We moved the description of the attacks root causes (CTI) in Section
3.3, before the description of the attacks (Section 4). Then, we added a new subsection
(Section 4.6) to explicitly state which CTI vulnerability is exploited in which BLUR
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attack (see Table 1). This subsection should also clarify that the BLUR attacks are taking
advantage of multiple vulnerabilities in the specification of CTKD.

2.4 Reverse-engineering CTKD and attack discovery

Concern The reviewers asked to better explain what we had to reverse-engineer about
CTKD as the standard already provides a complete description about it and there is
a risk of overclaiming the RE contribution. Moreover, they asked to describe our RE
methodology and how we discovered the BLUR attacks.

Answer The Bluetooth standard is describing how to derive keys using CTKD and what
are the preconditions needed use it. However, it is not explaining how CTKD is negotiated
and used over the air from BT and BLE. We agree that the paper lacks a discussion about
our RE methodology and how we discovered the attacks and we are happy to provide
both.

Paper update In Section 3.1 we better explain what is publicly known about CTKD
(e.g., devices’ requirements and version numbers, the CTKD key derivation function, the
key overwrite threat already addressed in the standard). In the first paragraph of Section
3.2, we explicitly say that the standard lacks a description about how CTKD is negotiated
and used and we had to RE these information. Our RE methodology is described in
a dedicated paragraph at the end of Section 3.2 and at the beginning of Section 4 we
describe how we discovered the BLUR attacks.

2.5 Unintended Session Threat Model

Concern The reviewers asked to clarify what is the threat model related to unintended
session attacks and why it is relevant.

Answer We agree that the threat model about the unindented session attacks was not
clear and we updated it to better show why those attacks are relevant and effective.

Paper update We updated the first paragraph of Section 4.5 explaining that an
unintended session attack is valuable because it is stealthy, allows to escalate Bluetooth
privileges, enables to covertly access extra key material (such as BLE key to de anonymize
devices) and increase the probability of reaching vulnerable code on the victim device
(including remote code execution bugs).
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2.6 Countermeasures to the BLUR attacks

Concern The reviewers asked to extend the countermeasure section, to explain which
countermeasure fix which attack, to evaluate them and to comment on possible side effects
and their relation with the ones proposed in the BIAS paper.

Answer We agree with the reviewers and we significantly extended our countermeasure
section. Firstly, we explain why the key overwrite countermeasure in the Bluetooth
standard is not sufficient to fix the BLUR attacks (as the attacks are not violating the
strength and MitM protection requirements enforced by such countermeasure). This key
detail was not explained clearly enough in the earlier version of the paper and we are
happy that the reviewers pointed out this issue.

Paper update We promoted the countermeasure discussion to a full section (Section 7).
We present four countermeasures (C1, C2, C3, C4) explicitly stating that each one addresses
its related CTI issue (e.g., C1 addresses CTI 1). When describing each countermeasure,
we also comment on possible side effects introduced and how to address them. About C2
(align BT and BLE role) we explicitly state that that countermeasure is not proposed in
the BIAS paper. We extend C3 such that it overs both key write and overwrite attacks
via CTKD. Related to the BLUR attacks, we explicitly state that the minimum set of
countermeasures to address them is C3 and C4.

Finally, we better describe how to implement the countermeasures in the Bluetooth
Host, and how we implemented and evaluated a proof-of-concept for C3 to block a BLUR
impersonation attack by disabling write permission on the file containing the BT and BLE
keys on a Linux laptop.

2.7 Comparison with Related Work

Concern The reviewers found our comparison with related work not satisfactory and
asked to clarify why the BLUR attacks are novel compared to prior work.

Answer We updated our discussion around related work to better show why the attacks
are novel and valuable.

Paper update We improved the discussion around Table 4 in Section 8 to address what
is novel and relevant about our attacks with respect to related work. In particular, we
clarify that the BLUR attacks are novel compared to other standard-compliant attacks
because they are the first exploiting CTKD, and the first cross-transport attacks for BT
and BLE. We also clarify their relevance related to the weak precondition needed to
conduct the attacks and their significant impact on the Bluetooth ecosystem even when
the victim devices are using the strongest BT and BLE security modes.
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BLURtooth: Exploiting Cross-Transport Key Derivation in
Bluetooth Classic and Bluetooth Low Energy

Anonymous Author(s)

ABSTRACT

The Bluetooth standard specifies two incompatible wireless
transports: Bluetooth Classic (BT) and Bluetooth Low En-
ergy (BLE). The two transports have different security ar-
chitectures and threat models and provide dedicated pairing
protocols to establish long-term keys

:::
and

::::::
session

:::::::::::
establishment

:::::::
protocols. Traditionally, two devices would have to pair
over BT and BLE to use both securely. But in 2014, Blue-
tooth v4.2 addressed this usability issue by introducing Cross-
Transport Key Derivation (CTKD)for BT and BLE. CTKD
allows establishing BT and BLE pairing keys just by pair-
ing over one transport. Despite the fact that

:::::
While

:
CTKD

crosses the security boundary between BT and BLE, the
Bluetooth standard does not include CTKD in its threat
model and does not provide a complete description of it

::::
little

:::::::::
information

:::
is

:::::
know

:::::
about

:::::::
CTKD

::::::::
internals

::::
and

::
no

:::::
prior

::::
work

::::::::
analyzed

::
its

:::::::
security

::::::::::
implications.

To address these issues
:
In

::::
this

:::::
work, we present a full

characterization
::
the

::::
first

::::::::
complete

:::::::::
description

:
of CTKD ob-

tained via reverse-engineering and a security analysis of CTKD
. Based on our findings we introduce four standard-compliant
attacks on CTKD breaking the strongest

::
by

::::::::
merging

:::
the

:::::::
scattered

::::::::::
information

::::
from

:::
the

:::::::::
Bluetooth

:::::::
standard

::::
and

:::::
results

::::
from

::::::::::::::::
reverse-engineering

:::::::::::
experiments.

:::::
Then,

:::
we

::::::::
perform

:
a

::::::
security

:::::::::
evaluation

::
of
:::::::
CTKD

:::
and

:::::::
uncover

::::
four

:::::
issues

:::
in

::
its

::::::::::
specification

::::
that

:::
can

:::
be

::::
used

::
to

::::
cross

:::
the

:::::::
security

::::::::
boundary

:::::::
between BT and BLEsecurity modes. Our attacks are the
first examples of

:
.
:::
We

::::::::
leverage

:::::
these

:::::
issues

::
to

::::::
design

::::
four

::::::::::::::::
standard-compliant

::::::
attacks

:::::::::
exploiting

::::::
CTKD

::::
and

:::::::
enabling

cross-transport attacks for Bluetooth, as they enable breaking

::::::::
Bluetooth

:::::::::::
exploitation.

:::
The

::::::
attacks

:::::
work

::::
even

:
if
:::
the

::::::::
strongest

::::::
security

::::::::::
mechanism

::
for

:
BT and BLE by targeting just one of

the two. In contrast to prior standard-compliant attacks, our
attacks do not require the attacker to be present when the
victims are paring or establishing secure sessions, and their
effect is persistent. We describe how the attacks can be used
to impersonateand take over any device

::
are

::
in

:::::
place

:::
and

::::
they

::::
allow

::
to

:::::::::::
impersonate, man-in-the-middlesecure sessions, and

establish unintended sessions as an anonymous device
:::
with

:::::::
arbitrary

:::::::
devices. We refer to our attacks as BLUR attacks,

as they blur
:::
blur the security boundary between BT and

BLE. We provide a low-cost implementation of the BLUR
attacks and we successfully evaluate them on 16 devices
with 14 unique Bluetooth chips from popular vendorssuch
as Cypress, Dell, Google, Lenovo, Samsung, and Sony. We
discuss the root causes of the BLUR attacks and present
effective countermeasures to fix them. We disclosed our find-
ings and countermeasures to the Bluetooth SIG in May 2020
and received CVE-2020-15802.

1 INTRODUCTION

Bluetooth is a pervasive wireless technology used by billions
of devices including mobile phones, laptops, headphones, cars,
speakers, medical, and industrial appliances [11]. Bluetooth
is specified in an open standard maintained by the Bluetooth
special interest group (SIG), and its latest version is 5.2 [10].
The standard specifies two transports: Bluetooth Classic
(BT) and Bluetooth Low Energy (BLE). BT is best suited
for connection-oriented and high-throughput use cases, such
as streaming audio and voice calls. While BLE is optimized
for connection-less and very-low-power use cases such as
localization and digital contact-tracing

:::::
fitness

:::::::
tracking

::::
and

:::::
digital

:::::::
contact

::::::
tracing.

The Bluetooth standard defines different security architec-
tures and threat models for BT [10, p. 947] and BLE [10,
p. 1617]. Both transports provide

::::
Each

:::::::::
transport

:::::::
provides

pairing and secure session establishment protocols. Pairing
enables

::::::
results

::
in the establishment of shared long term keys,

:
a
::::::
pairing

::::
key and secure session establishment allows paired

devices to create a secure channel through a (fresh )
::::
fresh

session key derived from the
::::
their

::::::
shared

:
pairing key.

Traditionally, two devices would have to pair over BT
and BLE to securely use both. However, pairing the same
devices two times is considered user-unfriendly. To

::
In

::::
2014,

::
to address this usability issue, Bluetooth v4.2 introduced

Cross-Transport Key Derivation (CTKD)for BT and BLE in
2014. .

:
CTKD enables to pair two devices once, either on

:::
over

BT or BLE, and negotiate BT and BLE pairing keys with-
out having to pair a second time [10, p. 1401]. For example,
two devices can pair over BLE declaring CTKD support,
agree on a BLE pairing key, and derive a BT pairing key
without using BT. Alternatively, they can use CTKD from
BT to derive BT and BLE pairing keys. All major Bluetooth
software (e.g., Apple, Linux, Android, and Windows) and
hardware providers (e.g., Cypress, Intel, Qualcomm, Broad-
com, Apple, Sony, and Bose) support CTKD. Actually, Apple
presented CTKD as a core and always-on feature to improve
Bluetooth’s usability [43].

Security-wise, CTKD has not received any attention from
the research community and is only partially documented in
the Bluetooth standard . In particular, CTKD is not part
of the Bluetooth threat model and the standard does not
provide a complete description of it

::::::
hastily

::::::::
describes

::::
only

::::
some

:::::::
aspects

::::
and

::::::
threats

:::::::::
associated

:::::
with

::::::
CTKD. On the

other hand, CTKD is a very interesting , yet-unexplored,
attack surface, as it is a standard-compliant

:::::::
security

:
fea-

ture, is used together with the most secure modes of BT and
BLE (i.e., Secure Connections), is

:::::
allows crossing the security

boundary between BT and BLE, and is
::::
even

:
transparent to

the end-user.
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In our
:::
this

:
work, we provide

::::::
present

:
a complete description

of CTKD obtained by merging the scattered and incomplete
information about CTKD

:::::::::::::::
reverse-engineering

:::
key

::::::::::
information

::::::
missing

:
from the Bluetooth standard , and the result of

reverse-engineering experiments conducted with actual devices.
Based on our description, we performed

:::
(i.e.,

::::::
CTKD

::::::::::
negotiation

:::
and

:::::
usage

:::
for

::::
BT

:::
and

::::::
BLE).

:::::
Then,

:::
we

:::::::
perform

:
a security

evaluation of CTKD and we present four novel and standard-compliant
attacks on CTKD. Our attacks are the first examples of
cross-transport exploitation for Bluetooth, as they exploit

:::
and

::
we

:::::::
uncover

::::
four

::::::::::::
cross-transport

:::::
issues

:::::
(CTI)

::::
with

::::::::
CTKD’s

::::::::::
specification.

::::
For

:::::::
example,

::::::
CTKD

::::::
enable

::
to

::::::::::
(over)write

:::
and

::::
steal

::::::
security

::::
keys

::::
and

:::::::::
manipulate

:::
key

:::::::::::::
authentications

:::::
across

BT and BLEonly by targeting one transport.
The attacks are very effective as they can defeat

:::
We

::::::
leverage

:::
the

::::
CTIs

::
to

::::::
design

:::
four

:::::
novel

::::::
attacks

:::::::
abusing

::::::
CTKD

::::::
capable

:
of
::::::::
defeating

:
all BT and BLE security mechanisms including

Secure Simple Pairing (SSP), Secure Connections (SC), and
strong associations. In contrast to prior standard-compliant
attacks [2, 4, 5, 9, 19, 20, 34, 38, 39, 42, 44], our attacks do
not require the attacker to be present during pairing and
secure session establishment and they result in a persistent
compromise of the victims.

Using our attacks we can reach several high-impact goals.
In particular, they

:::
Our

::::::
attacks

:
enable to impersonate and

take over secure sessions from any BTor BLE device,
::::
/BLE

:::::
master

:::
or

::::
slave

::::::
device.

:::::::::
Combining

::::::
master

:::
and

::::
slave

::::::::::::
impersonation

:::
the

:::::::
attacker

:::
can

::::
also man-in-the-middle BT and BLE secure

sessions
:
.
:::::::::::
Furthermore,

:
a
::::
bad

:::::
actor

:::
can

::::::::
establish

::::::
secure,

:::
but

:::::::::
unintended, and establish unintended BT and BLE sessions
with a victim device while remaining anonymousand without
breaking existing security bonds. We name our attacks BLUR
attacks, as they blur the security boundary between BT and
BLE

:::
(by

:::::::::
exploiting

::::::
CTKD).

::
In

:::::::
contrast

::
to

::::
prior

::::::::::::::::
standard-compliant

::::::
attacks

::::::::::::::::::::::::::::::
[2, 4, 5, 9, 19, 20, 34, 38, 39, 42, 44],

:::
our

::::::
attacks

:::
are

:::
the

::::
first

::::::::::::
cross-transport

::::::
attacks

:::
for

::::::::
Bluetooth

::
as

::::
they

:::
can

:::::
break

::::
BT

:::
and

::::
BLE

:::
by

::::::::
targeting

::::
just

:::
one

::
of

:::
the

:::
two

:::
and

:::
the

::::
first

::::::
attacks

:::::::::
exploiting

::::::
CTKD.

:::::::::::
Additionally,

:::
our

::::::
attacks

:::
do

:::
not

:::::::
require

:::
the

:::::::
attacker

:::
to

:::
be

::::::
present

:::::
when

::
a

:::::
victim

::
is
::::::
pairing

:::
or

::::::::::
establishing

::
a
::::::
secure

::::::
session,

::::
and

::::
they

:::::
result

::
in

:
a
:::::::::
persistent

::::::::::
compromise

::
of

:::
the

:::::::
victim.

:::
For

::
a

::::
more

::::::
detailed

::::::::::
comparison

:::
see

:::::::
Section

::
8.

We provide a low-cost implementation of the BLUR at-
tack based on a Linux laptop and a Bluetooth development
board. We show that the BLUR attacks are a real

::::::
effective

and standard-compliant threat by successfully conducting
them on a diverse set of devices. In particular, we use our
implementation to exploit 16 unique devicesemploying .

::::
Our

::
set

:::
of

:::::::::
vulnerable

::::::
devices

:::::::
employ

:
14 unique

::::::
different

:
Blue-

tooth chips from major hardware and software vendors (i.e.,
Broadcom, Cambridge Silicon Radio

:::::
(CSR), Cypress, Google,

Intel, Linux, Qualcomm, and Windows) implementing the
most common

:::::
Intel,

::::::::::
Qualcomm)

::::
and

:::::
covers

:::
all

:
Bluetooth

versions supporting CTKD (i.e., Bluetooth versions 4.1, 4.2,
5.0, and 5.1),

::::
and

::::
5.2)

:::
and

:::::
even

:
a
:::::::::
Bluetooth

:::
4.1

::::::
device

::
to

:::::
which

::::::
CTKD

:::
was

::::::::::
backported.

To concretely address the presented attacks we infer their
root causes by listing four cross-transport issues with the
specification of CTKD. Then, we address those issues

::
We

::::::
address

:::
the

::::::
BLUR

::::::
attacks

::
by

:::::::::
presenting

:::
four

::::::::::::::
countermeasures

::::::::
addressing

::::
the

::::
four

::::::::
presented

:::::
CTIs

:
and the related BLUR

attacksby proposing four effective countermeasures that
::::::
attacks.

:::
Our

::::::::::
mitigations can be implemented at the operating-system

::::::::
operating

::::::
system level (i.e., in the Bluetooth Host) with low

effort. We
:::
also

::::::::
evaluate

::::
one

:::::::::::::
countermeasure

:::::
(i.e.,

::::::
disable

:::
key

::::::::::
overwriting)

:::
by

:::::::::::
implementing

::
it
:::
on

:
a
::::::
Linux

::::::
laptop.

:::
We

:::::::::
responsible

::::::::
disclosed

:::
our

:::::::
findings

:::
to

:::
the

:::::::::
Bluetooth

::::
SIG

::
in

::::
May

::::
2020.

::::
Our

::::::
report

::
is

:::::::
assigned

::::
with

:::::::::::::::
CVE-2020-15802.

::
In

:::::::::
September

::::
2020,

:::
the

:::::::::
Bluetooth

::::
SIG

:::::::
released

:
a
:::::::
security

::::
note

:::::
about

:::
our

::::::
report

::::::::
(without

:::::::::
contacting

:::
us)

:::
at https://www.

bluetooth.com/learn-about-bluetooth/bluetooth-technology/
bluetooth-security/blurtooth/

:
.
:::
We

:
summarize our contribu-

tions as follows:

∙ We
::::::
present

:
a
::::::::
complete

:::::::::
description

::
of

::::::
CTKD

::::::::
combining

:::::
public

:::
and

:
reverse-engineered CTKD and performed

its first security analysis. Based on that,
::::::::::
information.

:::
We

:::::::
perform

:::
the

::::
first

:::::::
security

:::::::::
evaluation

::
of

:::::::
CTKD

:::
and

:::::::
uncover

::::
four

::::::::::::
vulnerabilities

::
in

:::
its

:::::::::::
specification.

::::::
Among

::::::
others,

::::::
CTKD

:::::::
enables

::
to

:::::::::::
adversarially

::::
pair

:::
over

:::::::
unused

::::::::
transports

::::
and

::
to

:::::::
tamper

::::
with

:::
BT

::::
and

::::
BLE

:::::::
security

::::
keys.

:

∙
:::::
Based

::
on

::::
the

::::::::
identified

:::::
issues

:
we design four

:::::
novel

:::
and standard-compliant attacks on CTKD. The attacks
break all

::::::
capable

::
of

:::::::
breaking

:
BT and BLE security

mechanisms including SSP, SC, and strong association,
do not require the attacker to be present while the
victims are pairing and establishing secure sessions,
and their effect is persistent. Moreover,

:::
just

:::
by

:::::::
targeting

:::
one

::
of

:::
the

::::
two.

::::::::::
Compared

::
to

::::::
related

:::::
work,

:
our at-

tacks are the first examples of cross-transport attacks
for Bluetooth as they exploit BT and BLE by targeting
either of the two

::::::::
exploiting

::::::
CTKD

::::
and

:::::
acting

::::::
across

::::::::
transports. Our attacks result in impersonation and
take over of devices, MitM their secure sessions, and
establishment of unintended sessions as an anonymous
device

:::::
enable

::
to

:::::::::::
impersonate,

::::::::::::::::
man-in-the-middle,

:::
and

:::::::
establish

::::::::
unwanted

::::
and

::::::
stealthy

:::::::
sessions

::::
with

::::::::
arbitrary

::::::
devices. We name our attacks BLUR attacks,

::::::
BLUR

::::::
attacks as they blur the security boundary between
BT and BLE.

∙ We present a low-cost implementation of the BLUR
attacks based on a Linux laptop and a Bluetooth
development board. We use our implementation to
confirm that actual devices are vulnerable to the
BLUR attacks by successfully attacking

:::::
attack

:
16

different devices employing 14 unique Bluetooth
chips and covering the majority of

::
all Bluetooth ver-

sions compatible with CTKD (e.g., 4.1, 4.2, 5.0, and
5.1). We discuss four concrete attacks’ root causes
in the specification of CTKD and we provide four
practical countermeasures to fix them.

2

https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/


Anonymous submission #9999 to ACM CCS 2021

∙ We disclosed our findings and countermeasures to
the Bluetooth SIG in May 2020. The Bluetooth SIG
acknowledged them and assigned CVE-2020-15802
to the BLUR attacks . In September 2020, the Bluetooth
SIG released a security note about our report (without
contacting us) at .

:
,
:::
and

:::::
5.2).

:::
Our

:::::::::
evaluation

:::::::::::
demonstrates

::::
that

::::
the

:::::
BLUR

::::::
attacks

:::
are

::::
very

:::::::
effective

:::
and

::::::::::::::::::::
specification-compliant.

::
To

:::::::
address

:::::
them,

:::
we

::::::
discuss

::::
four

:::::::::::::::
countermeasures

::
to

::::::
address

:::
the

::::::::
presented

:::::
issues

::::
and

::::::
attacks

::::::::
affecting

::::::
CTKD.

:

2 BACKGROUND

We now compare the most relevant features of BT and BLE.
To provide precise technical descriptions we follow the Blue-
tooth standard ’s master/slave terminology instead of more
apt terms like leader/follower.

2.1 A Comparison of BT and BLE

BT and BLE are two wireless transports specified in the Blue-
tooth standard. These transports are incompatible (e.g.,they
use different physical layers and link layers) and are designed
to complement each other. BT is used for high-throughput
and connection-oriented services, such as streaming audio and
voice. BLE is used for very low-power and low-throughput
services such as localization and monitoring. High-end de-
vices, such as laptops, smartphones, headsets, and tablets,
provide both BT and BLE, while low end devices such as
mice, keyboards and wearables provide either BT or BLE.

BT and BLE have similar security mechanisms but differ-
ent security architectures and threat models. In particular,
both transports provide a pairing mechanism, named Secure
Simple Pairing (SSP), to let two devices establish a shared
long term key. BLE SSP is performed over the Security Man-
ager Protocol (SMP) [10, p. 1666], while BT SSP uses the
Link Manager Protocol (LMP) [10, p. 568]. During pairing,
BLE allows negotiating the entropy of the long term key
while BT does not. Additionally, BT and BLE provide a
secure session establishment mechanism to establish a secure
communication channel using a session key derived from the
long-term pairing key. During session establishment, BT al-
lows negotiating the entropy of the session key while the BLE
session key inherits the entropy of the associated long term
key.

BT and BLE use the same notion of pairable and dis-
coverable states. If a device is pairable then it will accept
pairing requests from other devices. If it is discoverable it will
reveal its identity when other devices scan for nearby devices.
Contrary to popular belief [41], a device can answer to a
pairing request even if it is not discoverable. For example, if
the user knows the MAC address of her pair of headphones
she can complete BT or BLE pairing from her laptop without
putting the headphones into discoverable mode.

BT and BLE provide a “Secure Connections” mode that
uses FIPS compliant security primitives

::::
which

::::::::
enhances

::::
their

::::::
security

:::::::::
primitives

::::::
without

::::::::
affecting

::::
their

:::::::
security

::::::::::
mechanisms.

::
In

:::::::::
particular,

::::::
Secure

:::::::::::
Connections

:::::::::
mandates

:::
the

::::::
usage

::
of

:::::::::::::
FIPS-compliant

:::::::::
algorithms such as AES-CCMfor authenticated

encryption,
:::::::::::::::
HMAC-SHA-256,

::::
and

:::
the

::::::
ECDH

:::
on

:::
the

:::::
P-256

::::
curve

::::::::::
[10, p. 269]. Furthermore, they provide similar ways

to protect against man-in-the-middle (MitM) attacks dur-
ing the pairing phase defined in the standard as association
procedures. Two examples of associations are Just Works
that provides no MitM protection and Numeric Comparison
that provides protection against a MitM by requiring user
interaction during pairing (e.g., the user has to manually
confirm that she sees the same numeric code on the pairing
devices).

Both BT and BLE use a master-slave medium access
protocol but define the master and slave roles differently. For
BT, the master is the connection initiator, the slave is the
connection responder, and roles can be switched dynamically
by any party after a radio link is established. For BLE, the
master and slave roles are fixed and cannot be switched.
The BLE master (defined as central) acts as the connection
initiator and the BLE slave (defined as peripheral) as the
connection responder. High-end devices, such as laptops and
smartphones, support both BLE master and BLE slave modes
and are typically used as BLE masters, while low-end devices,
such as fitness trackers and smartwatches, support only the
BLE slave mode.

3 SECURITY ANALYSIS OF CTKD

In this section, we present our security analysis of CTKD.
In particular, in Section 3.1 we describe what is publicly
known about CTKD, and in Section 3.2 we complement it
by reverse-engineering how CTKD works in practicefor BT
and BLE. .

:::::::
Finally,

::
in

:::::::
Section

:::
3.3,

:::
we

::::::
present

::::
four

:::::::
security

:::::
issues

::::
with

:::::::
CTKD’s

:::::::::::
specification,

:::::
which

:::
are

::::
the

::::
root

:::::
causes

:
of
::::
the

::::::
BLUR

::::::
attacks

::::::::
presented

::
in

:::::::
Section

::
4.

3.1 Public Information about CTKD

Before the introduction of CTKD, a user had to pair the
same two devices over BT and BLE (i.e., two times) to use
both transports securely. The Bluetooth SIG considered this
procedure user-unfriendly and improved Bluetooth’s usability

::
In

:::::
2014,

:::
the

:::::::::
Bluetooth

::::
SIG

:::::::::
addressed

::::
this

::::::::
usability

::::
issue

::::
with

::::::::
Bluetooth

:::
4.2

:
by introducing CTKDfor Bluetooth 4.2

in 2014.
:
. By using CTKD, two devices, pair only one time

::::
once

:
either over BT or BLE, and then can securely use

both [10, p. 280]. For example, a pair of headsets and a lap-
top can pair over BLE, run CTKD to derive a second pairing
key for BT (without the user having to put the headsets into
BT pairing mode). Alternatively, the devices can pair over
BT and run CTKD to generate the BLE pairing key. In both
scenarios, after pairing once the headsets and the laptop can
start secure sessions over BT and/or BLE.

::::::
CTKD

:
is
:::::::::
employed

::
by

::::::::::
dual-mode

::::::
devices

:::::
which

:::::::
support

:::::
Secure

:::::::::::
Connections

::::::::::
[10, p. 1401].

::::::
Those

::::::
devices

::::::
include

:::::::
laptops,

:::::::
headsets,

:::::::
tablets,

:::::::::::
smartphones,

:::
and

:::::::
speakers

::::
and

::::
their

::::::
version

:
is
::::::
among

:::
4.2,

::::
5.0,

:::
5.1,

:::
5.2.

:::::
From

:::
the

:::::::
Internet

:::
and

:::
our

::::::::::
experiments

::
we

::::
find

::::
that

::::::
CTKD

::
is

::::::::
supported

:::
by

::
all

::::::
major

::::::::
hardware

:::
and

3
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:::::::
software

::::::
vendors

::::::::
including

:::::
Apple

::::
[43],

::::::
Google

:::
[6],

:::::::
Cypress

::::
[13],

:::::
Linux

::::
[12],

:::::::::
Qualcomm

:::::
[32],

:::
and

:::::
Intel

::::
[21].

::::::::
Notably,

:::::
Apple

::::::::
presented

:
it
::
as

::
a

:::
core

::::
and

::::::::
always-on

:::::::::
Bluetooth

::::::
feature

:::::
during

:::::::
WWDC

::::
2019.

:::::::
Stating

::
at

:::
the

:::::
most

:::::
recent

:::::::::
Bluetooth

::::::
market

::::::
update

:::
that

:::
“in

::::
2024

:::
all

:::
our

::::::
mobile

::::::
devices

:::
will

::
be

:::::::::
dual-mode

:::
and

:::::::
support

:::::::
CTKD”

::::
[? ].

The Bluetooth standard specifies that CTKD should be
used only when a device supports Secure Connectionsmode
for that specific transport [10, p. 1401]. Secure Connections
is a security mode that was introduced both for BT and
BLE to enhance their security primitives without affecting
their security mechanisms. In particular, Secure Connections
mandates the usage of FIPS-compliant algorithms such as
AES-CCM, HMAC-SHA-256, and the ECDH on the P-256
curve [10, p. 269]. As a consequence, an attacker who can
break CTKD can break BT and BLE’s strongest security
mode.

The Bluetooth standard also describes how CTKD derives
pairing keys for BT and BLE [10, p. 1658]. CTKD uses the
same

::::::
CTKD

:::::::
specifies

::
a

:::::
single

:
key derivation function for BT

and BLE, and the
::::::
(KDF)

:::::
based

:::
on

:::::::::::
AES-CMAC,

::::::::
regardless

:
of
::::::
which

::::::::
transport

::
is

::::
used

::
to

::::
pair

::::::::::
[10, p. 1658].

::::
The

:
function

takes as inputs a 128-bit (16-byte) key and two 4-byte strings
and derives a 128-bit (16-byte) key. What changes between
BT and BLE are the strings used as inputs. When CTKD
is used to derive a BLE pairing key () from a

:
If

::::::
CTKD

::
is

::::::
started

::::
from

:::::
BLE,

::::
then

:::
the

:
BT pairing key () then the key

is derived using the “tmp2” and “brle” strings. In the other
case, the derivation is performed using the “tmp1” and “lebr”
strings. We note that the CTKD

::::
The key derivation function

is deterministic, as using CTKD on the same input key will
always generate the same output key.

:
,
::::
and

:::
can

::::::::
overwrite

::::::
existing

:::::::
pairing

::::
keys

::::::::
by-design.

::::
The

:::::::::::::
implementation

::::::
details

:
of
::::::::
CTKD’s

:::::
KDF

:::
are

::::::::
presented

::
in

:::::::
Section

:::
5.3.

:

Despite being an optional feature, from the Internet and
our experiments we can conclude that CTKD is supported by
all major hardware and software vendors including Apple [43],
Google [6], Cypress [13], Linux [12], Qualcomm [32], and
Intel [21]. Actually, Apple presented it as a core and always-on
Bluetooth feature during WWDC 2019.

::::
Since

::::::
version

::::
5.1,

:::
the

::::::::
Bluetooth

::::::::
standard

:::::::
addresses

::
a
::::::
specific

:::
key

::::::::
overwrite

:::::
attack

:::
via

::::::
CTKD

::::
with

:::
the

::::::::
following

::::::::
statement:

::::::
“While

:::::::::
performing

:::::::::::::
cross-transport

:::
key

:::::::::
derivation,

::
if

:::
the

:::
key

::
for

:::
the

:::::
other

::::::::
transport

:::::::
already

:::::
exists,

::::
then

:::
the

:::::::
devices

::::
shall

:::
not

::::::::
overwrite

::::
that

:::::::
existing

::::
key

::::
with

::
a
:::
key

:::::
that

::
is

::::::
weaker

::
in

:::::
either

:::::::
strength

:::
or

::::::
MITM

::::::::::
protection”

:::::::::::
[10, p. 1401].

::::
This

:::::
means

::::
that

:::
an

:::::::
attacker

::::::
cannot

::::::::
overwrite

:
a
:::::::
pairing

:::
key

::::
with

::::::
CTKD

:
if
:::
the

::::::::::
overwritten

:::
key

:::
has

::::::
either

:
a
:::::
lower

::::::
entropy

::::
(i.e.,

:::::::
strength)

:::
or

::
a

:::::
lower

:::::
MitM

::::::::::
protection.

::
It

::
is

::::
not

::::
clear

::::
why

::::
such

:::::::::::::
countermeasure

::
is

:::::::
enforced

::::
only

:::
for

:::
5.1

:::
and

:::
5.2

::::::
devices

:::
and

::
is

:::
not

::::::::::
backported

::
to

::
all

::::::
devices

::::::::::
compatible

::::
with

:::::::
CTKD.

:::
The

::::::
attacks

::::
that

:::
we

::::::
present

::
in

::::::
Section

:
4
:::
are

::::::
neither

::::::::
lowering

:::
the

:::
key

:::::::
strength

::
or

:::::
MitM

:::::::::::
requirements

:::::::
enforced

::
by

:::
the

::::::::
standard

:::
and

:::
we

:::::::::::::
experimentally

::::::::
validated

:::
this

::::::
claim

::
by

::::::::::
successfully

Alice (master)

A

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request:
Assoc, ADDA, SC, CTKD, PKA, NA

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

DK = PKB · SKA

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

DK = PKA · SKB

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

BLE Key Distribution: CSRKA, IRKA

BLE Key Distribution: CSRKB, IRKB

Figure 1: CTKD usage during BLE pairing
::::
with

::::::
CTKD. Alice and Bob negotiate SC and CTKD sup-
port during BLE pairing. Then, they compute the
BLE pairing key and from that key, they derive the
BT pairing key via CTKD (without exchanging any
message over BT). Finally, they generate and ex-
change additional keys for BLE including signature
(CSRK) and identity resolving (IRK) keys. After the
protocol is completed Alice and Bob can establish se-
cure sessions both for BT and BLE (without having
to pair over BT).

::::::::
attacking

::
5.1

::::
and

:::
5.2

::::::
devices

::::
(see

::::::
Section

:::::
6.2).

::
In

::::::
Section

::
7,

::
we

::::::
provide

:::
an

::::::::
extended

::::::::
discussion

:::::
about

::::
why

:::
the

:::
key

::::::::
overwrite

:::::::::::::
countermeasure

::
in

:::
the

::::::::
standard

::
is

:::
not

:::::::
effective

:::::::
against

:::
our

::::::
attacks,

::::
and

:::
we

::::::
propose

::::::::
effective

::::::::::::::
countermeasures

::::::
instead.

:

3.2 Reverse Engineered Details of CTKD

The
::::
Since

::::
the

:
Bluetooth standard lacks a section about

CTKD negotiation and usage for BT and BLE, but merely
provides scattered information. Since knowing such information
is essential to perform our security analysis, we reverse-engineered
it.

:::::::::
discussion

:::::
about

::::
how

::::::
CTKD

::
is
:::::::::
negotiated

::::
and

::::
used

:::
we

:::
had

::
to

::::::::::::::
reverse-engineer

:::::
(RE)

::::
these

:::::::
missing

:::::::::::
information.

:
In

this section we provide an high-level summary of the information
that we extracted from our reverse-engineering process

:::::::
describe

:::
how

::::::
CTKD

::::::
works

:::::
when

::::
used

:::::
from

::::
BLE

::::
and

::::
BT,

::::
what

:::
we

:::
had

::
to

::::
RE

:::
and

::::
our

:::
RE

:::::::::::
methodology. To ease our descrip-

tion
:
, we abstract the protocols at a message level , where

each message captures one or more packets sent over the air.
Furthermore,

:::
and

:
we refer to the Bluetooth master as Alice,

and the Bluetooth slave as
:::
and

:::::
slave

::
as

:::::
Alice

:::
and

:
Bob.

4
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CTKD from BLE
:::::
pairing

:::::
with

::::::
CTKD. Figure 1 shows

CTKD during BLE pairing
::::
what

:::::::
happens

:::::
when

::::
two

::::::
devices

::
are

:::::::
pairing

:::
over

:::::
BLE

:::
and

:::::
using

::::::
CTKD

::
to

:::::
derive

::::
also

:::
the

:::
BT

::::::
pairing

:::
key. Alice and Bob are pairable BLE and

:::
over

::::
BLE

:::
and

:::
BT

::::
and

:
discover each other using BLE ’s advertising

and scanning features
:::::::
scanning

:::
and

::::::::::
advertising. Then, Alice

and Bob negotiate specific capabilities using pairing request
and response messages. The messages must contain Secure
Connections

::::
they

:::::::
perform

::::::
pairing

::::
over

:::::
BLE

::::
using

::::
the

::::
SMP

:::::::
protocol.

:::
We

::::::
found

::::
that

::::::
CTKD

::
is

:::::::::
negotiated

:::
by

::::::
setting

::
to

:::
one

:::
the

:::::
Link

::::
Key

:::
flag

:::
of

:::
the

::::::::
Initiator

:::
and

::::::::::
Responder

:::
key

:::::::::
distribution

:::::
SMP

::::
fields

::::::::::::::
[10, p. 1680] and

::::
that

::::
such

:::::::::
negotiation

:
is
::::
not

::::::::
protected.

::::::
Other

::::
than

::::
the

::::
Link

::::
Key

::::
flag

:::
the

::::::
devices

:::::
should

::::
also

:::::::
declare

::::::
Secure

:::::::::::
Connections

:::::::
support

:
(SC) and

CTKD support, together with
:::::
which

::
is

::::
also

::::::::
spoofable.

::::
The

::::
BLE

::::::
pairing

::::::::
messages

::::
also

:::::::
contain an association method

(Assoc), a source BLE address (ADD), a public key (PK),
and a nonce (N). Technically, CTKD support is declared
by setting to one the Link Key bits of the Initiator and
Responder key distribution SMP fields [10, p. 1680].

After exchanging the pairing messages, Alice and Bob

:::
the

::::::
devices

:
compute a Diffie-Hellman shared secret (DH)

using their remote public keys and local private keys (PK).
The shared secret is then

:::
DK)

:::::
using

:::
the

:::::::::
exchanged

::::
PK.

:::
DK

:
is
:
used to compute the BLE pairing key (KBLE) using a

dedicated BLE pairing key derivation function (kdfLE). Then,
Alice and Bob

:::
the

::::::
devices

:
use CTKD’s key derivation func-

tion (ctkd) to derive the BT pairing key (KBT)from the BLE
key and the static strings “tmp1” and “lebr”. Finally, they

:
.
::
To

::::::::
complete

:::::
BLE

:::::::
pairing,

:::::
Alice

::::
and

::::
Bob

:
establish a se-

cure session over BLE and exchange additional keys such
as CSRK , and IRK. Once the protocol is concluded

::::
(e.g.,

:::::
CSRK

::::
and

:::::
IRK).

:::
As

::
a

:::::
result, Alice and Bob can establish

secure sessions over BT and BLE without having to pair over
BT

::::
share KBLE::::

and KBT,::::
but

::::
they

::::
only

::::::
paired

::::
over

::::
BLE.

CTKD from BT
::::::
pairing

::::
with

::::::
CTKD. Figure 2 presents

CTKD negotiation during BT pairing
:::
BT

::::::
pairing

::::
with

::::::
CTKD.

Alice and Bob are pairable over BT and
:::
BLE

::::
and

:
discover

each other BT’s inquirymechanisms
::
via

::::
BT

::::::
inquiry. Then,

they exchange pairing request and response messages over
BT to negotiate several BT capabilities (including SC), and to
exchange their BT addresses, keys, and nonces. Unlike CTKD
for BLE, CTKD is not negotiated with the BT pairing messages.
But, Alice and Bob complete the BT pairing process by
computing DH and using

::::
Then,

::::
they

::::::::
compute

:::
DK

:::
and

::::
use it

together with their BT addresses and nonces to compute the
BT pairing key (KBT) through the BT pairing key derivation
function (kdfBT).

Then, CTKD negotiation takes place, as Alice and Bob
establish

::::::
Unlike

::
for

:::::
BLE,

:::
BT

::::::
pairing

::::::::
messages

::
do

:::
not

::::::
include

:
a
::::::
CTKD

::::
flag.

:::::
What

::::::::
happens

::
is

::::
that

:::
the

::::::
devices

:::::
start

:
a se-

cure BT session and exchange two BT messages containing
the CTKD flag and additional security material needed for
BLE such as signature keys (CSRK) and identity resolv-
ing keys (IRK). These two messages are peculiar as they
are formed by BLE pairing packets (SMP pairing request

Alice (master)

A

Bob (slave)

B

Devices pairable over BT

BT Pairing Request:
Assoc, ADDA, SC, PKA, NA

BT Pairing Response:
Assoc, ADDB , SC, PKB, NB

DK = PKB · SKA

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

DK = PKA · SKB

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

BT CTKD Request:
CTKD, CSRKA, IRKA

BT CTKD Response:
CTKD, CSRKB, IRKB

KBLE = ctkd(KBT,
“tmp2”, “brle”)

KBLE = ctkd(KBT,
“tmp2”, “brle”)

Figure 2: CTKD usage during BT pairing
::::
with

::::::
CTKD. Alice and Bob during BT pairing negotiate
SC support. Then, they compute the BT pairing key,
start a secure session over BT and send BT CTKD
messages containing CTKD support and other key-
ing material generated for BLE such as signature
(CSRK) and identity resolving (IRK) keys. Notably,
the CTKD request and response are encoded as BLE
pairing request and response and tunneled over BT.
Afterward, Alice and Bob derive the BLE pairing
key, via CTKD (without exchanging any message
over BLE). After the protocol is completed Alice
and Bob can establish secure sessions both for BT
and BLE (without having to pair over BLE).

and response)
:::::::
encoded

::
as

::::
BLE

:::::
SMP

:::::::
packets

:::
but

:
sent over

BT. This is the first example of BLE tunnelingover BTthat
we observed, and the Bluetooth standard so far lacks any
diagram or description of this behavior

::
We

:::
are

:::
not

::::
sure

::::
why

:::
the

::::::::
Bluetooth

::::::::
standard

:
is
:::
not

:::::::::
describing

::::
such

:::::
”BLE

:::::::::
tunneling”

:::::::
protocol

::
to

::::::::
negotiate

::::::
CTKD

::::
from

::::
BT. Once CTKD is nego-

tiated, Alice and Bob use it to derive the BLE pairing key
(KBLE) from the BT key and the static strings “tmp2” and
“brle”. After the protocol is completed, Alice and Bob can
start BT

:::
RE

::::::::::
methodology.

::
To

:::
RE

:::
the

::::::::::
negotiation

:::
and

:::::
usage

::
of

::::::
CTKD

::
we

::::
used

:
a
::::::
Linux

:::::
laptop

:::::::::
connected

::
to

:
a
:::::::::
dual-mode

::::::::::
development

:::::
board

::
as

::
a
::::
test

::::::
device.

::::
The

::::::
laptop

:::::
runs

::
a

:::::::
patched

:::::
Linux

:::::
kernel

::::::
capable

::
of
::::::
pairing

:::::::::
diagnostic

::::::::
messages

::::
from

:::
the

::::::
board.

:::
The

:::::
board

::::
acts

:::
as

:::
the

::::::
laptop

::::::
fronted

::::
(i.e.,

:::
the

::::::
laptop

::
is

:::
the

5
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:::::::
BT/BLE

:::::
Host

:::::
while

:::
the

:::::
board

::
is
:::
the

::::::::
BT/BLE

::::::::::
Controller),

and
::
is

::::::::
initialized

::
to

::::::
report

::
to

:::
the

::::::
laptop

::
all

::::
sent

:::
and

:::::::
received

::::::::
link-layer

:::::
traffic

:::::
using

::::
HCI

::::::::
diagnostic

:::::::::
messages.

::
To

::::
test

::::::
CTKD

::::
from

:::::
BLE

:::
we

:::
sent

::
a
::::
BLE

:::::::
pairing

::::::
request

::::
from

:::
our

::::
test

::::::
device

:::
to

::
a
::::
pair

::
of
::::::::::
dual-mode

::::::::::
headphones

:::::
(Sony

:::::::::::::
WH-1000XM3)

::::
and

:::
we

:::::::::
monitored

:::
the

::::
HCI

::::
log.

:::
To

::::
check

::::
out

:::::
CTKD

:::::
from

:::
BT

::
we

::::
sent

:
a
::::
BT

::::::
pairing

::::::
request

::::
from

:::
our

:::
test

::::::
device

::
to

:::
an

:::::::
Android

::::::::::
smartphone

::::::
(Pixel

::
2)

:::
and

:::
we

::::::::
monitored

:::
the

:::::
HCI

:::
log.

:::
In

::::
each

::::
case,

:::
we

::::::
tested

::::
that

::
it

:::
was

::::::
possible

:::
to

::::::::
establish

:::
BT

::::
and

:
BLE secure sessions without

having to pair over BLE
::::
after

::::
only

::::::
pairing

::
on

::::
one

:::::::::
transport.

:::::::
Notably,

::::::
CTKD

::::
from

::::
BT

:::
was

::::::::::
particularly

::::::
tricky

::
to

::::::
reverse

::
as

:::
the

::::::
CTKD

::::::::::
negotiation

:::::::
messages

::::
over

::::
BT

:::
are

:::::::
decoded

::
by

::::::::
Wireshark

::::
but

::::::
appear

::
as

::::::::
standard

:::::::
L2CAP

:::::::
messages.

CTKD life cycle. By combining all the information acquired
from public documents, reverse-engineering implementations,
and our experiments, we represent the CTKD life cycle for

3.3 Isolated Issues with CTKD

:::
We

::::::
isolated

:
four

::::::::::::
cross-transport

:::::
issues

:::::
(CTI)

::::
with

:::
the

:::::::::::
specification

:
of
:::::::
CTKD

::::::::
resulting

::::
from

::::::
CTKD

::::::::
bridging

:
BT and BLE in

three phases: Discovery, Initialization, and Communication.
Figure ?? shows the life cycle assuming that Alice is

::::::
without

:::::::
properly

::::::::
enforcing

:::
the

:::::::
security

:::::::::
boundary

:::::::
between

:::
the

:::::
two.

:::
We

:::
now

::::::::
describe

::
in

:::::
detail

::::
each

:::::
CTI.

:::
CTI

:::
1:

:::::::
extended

::::::
pairing.

:::::
CTKD

:::::::::
introduces

:::::
more

::::::
options

::
to

::::
pair

:::
two

:::::::
devices

::
as

:::::::::
dual-mode

:::::::
devices

:::
are

:::::::
pairable

::::
over

:::
BT

:::
and

::::
BLE

:::
all

:::
the

::::
time.

::::
This

::::::
enables

:::
an

:::::::
attacker

::
to

:::::::
(silently)

:::
pair

::::
over

::
a

::::::::
transport

::::
that

::
is

::::::::
currently

::::::
unused.

::::
The

:::::::
attacker

::::
does

:::
not

::::
need

::
to

::::
wait

:::::
until

:
a
::::::
victim

::
is

::
in

::::::::::
discoverable

:::::
mode,

::
as,

:::::::
despite

:::::::
common

::::::
belief,

::
a
:::::::::
Bluetooth

::::::
device

::
in

:::::::
pairable

::::
state

::::::
already

:::::::
accepts

::::::
pairing

::::::::
requests.

:

:::
CTI

:::
2:

::::
role

::::::::::
asymmetry.

:::::
While

:::
BT

::::
and

:::::
BLE

:::::
roles

:::
are

::::::
defined

:::::::::
differently,

::::::
CTKD

:::::
does

:::
not

::::::
enforce

::::::
which

::::
role

:::
was

::::
used

::
to

::::
pair

:::
on

:::::
which

:::::::::
transport.

:::
BT

::::
roles

::::
can

:::
be

:::::::
switched

::::
even

:::::
before

:::::::
pairing,

::::
while

::::
BLE

::::
roles

:::
are

:::::
fixed.

::::
This

::
is

::::::::::
problematic

::::::
because

:::
an

:::::::
attacker

:::
can

:::::::::::
adversarially

::::::
switch

:::
BT

::::
role

:::::
before

::::
using

:::::::
CTKD

::::
and

::::
send

::
a
:::
BT

:::::::
pairing

:::::::
request

::
to

:
a laptop

and Bob a pair of headphones. During Discovery, Alice and
Bob are pairable on the relevant transportand discover each
other. During Initialization, Alice and Bob negotiate SC and
CTKD , use one transport (either BT or BLE) to establish
a pairing key, and then derive a pairing key for the other
transport using CTKD without having to pair a second time.
Finally, during Communication the devices are free to establish

:::::
victim

::::::
which

::::::
expects

::::
BT

::::
and

::::
BLE

:::::::
pairing

:::::::::
responses.

:::
We

:::
note

:::::
that,

::::::
issues

::::
with

::::
role

::::::::::
asymmetry

:::::
have

::::
been

:::::::
already

:::::
proven

::::::::
effective

::
to

::::::
bypass

:::
BT

::::::::::::
authentication

::::::
during

::::::
session

:::::::::::
establishment

:::
[4].

:

:::
CTI

:::
3:

:::
key

::::::::
tampering.

:::::
CTKD

:::::::
enables

::
to

::::::
tamper

:::::
with

::
all

:::
BT

::::::
security

::::
keys

:::::
from

::::
BLE

:::
and

::::
vice

::::
versa

:::::
using

::::
only

:
a
:::::
single

:::
run

::
of

::::
the

::::::
pairing

:::::::::
protocol.

::::
This

::
is
::
a
::::
new

::::
and

::::::::
powerful

:::::
attack

::::::::
primitive

::::
for

:::::::::
Bluetooth.

::::
For

::::::::
example,

:::
an

:::::::
attacker

:::
can

:::
use

::::::
CTKD

:::
to

::::
write

::::
new

:::::::
pairing

::::
keys

:::
for BT and BLE

secure sessions using their shared pairing keys . Each session
uses a fresh session key derived from the pairing key and
session nonces.

:
or

:::::
even

::::::::
overwrite

::::::
trusted

:::::::
pairing

::::
keys

::::
with

:::
her

::::
own.

:::::::::::
Furthermore,

::
by

:::::
using

::::::
CTKD

::::
from

:::
BT

:::
the

:::::::
attacker

:::
can

:::
get

::::::
access

::
to

:::
all

::::
BLE

:::::::
security

::::
keys

::::::::::
distributed

::
as

::::
part

:
of
:::::
BLE

:::::::
pairing

::::::::
including

:::::::
identity

::::::::
resolving

::::
key

::::::
usable

::
to

:::::::::::
de-anonymize

::
a

::::
BLE

::::::
device.

:

CTKD life cycle has three phases: Discovery (to exchange
features), Initialization (to agree on a pairing key and, through
CTKD, create a pairing key for the other transport), and
Communication (to establish secure sessions on BT and/or
BLE).

:::
CTI

:::
4:

:::::::::
association

::::::::::::
manipulation.

::::::
CTKD

::::
does

::::
not

::::
keep

::::
track

::
of
::::::
which

:::::::::
association

::::::::::
mechanism

::::
was

::::
used

:::
as

::::
part

::
of

::::::
pairing

:::
and

:::
the

::::::::::
negotiation

::
of

:::
the

::::::::::
association

::::::
scheme

::
is

:::
not

::::::::
protected.

:::::::
Indeed,

::
an

:::::::
attacker

:::
can

:::
use

::::::
CTKD

:::
to

:::::::::
re-establish

::::::
pairing

::::
keys

:::::
using

:::
an

:::::::::
arbitrary

:::::::::
association

::::::::
scheme.

::::
This

::::::
includes

::
a
::::
weak

:::::::::
association

:::
to

::::
write

::
or

:::::::::
substitute

:::::::::::
authenticated

:::
keys

:::::
with

::::::::::::::
unauthenticated

::::
ones

:::::
(e.g.,

:::
by

:::::::::
re-pairing

:::::
using

:::
Just

::::::::
Works).

::::::::
Recently,

::::::::::
association

::::::::
confusion

:::::::
attacks

::::
have

::::
been

::::::::
proposed

::
for

:::
BT

:::
or

::::
BLE

::::
[39],

::::::
CTKD

::::::
extends

::::
this

::::
issue

:::::
across

:::::::::
transports.

:

4 BLUR ATTACKS VIA CTKD

We now present our threat model and the design of four novel
and standard-compliant attacks for Bluetooth

::
on

::::::
CTKD. Our

attacks are the first samples of cross-transport exploitation
for Bluetooth, as they are capable of exploiting BT and BLE
just by targeting either of the two. Our attacks are stealthy
as CTKD is transparent to the users, and do not require a
strong attacker model as the attacker does not have to be
present when the victims are pairing or establishing a secure
session. As our attacks are blurring the security boundary
between BT and BLE, we name them the BLUR attacks.

:::
The

::::::
attacks

::::
were

:::::::::
discovered

:::
by

:::::::
inference

::::
from

:::
the

:::::::
analysis

::::::::
presented

::
in

:::::::
Section

::
3
::::
and

:::
the

:::::
data

::::::::
collected

::::::
during

:::
our

::::::::::
experiments

::::
with

::::
real

::::::
devices

:::::
(e.g.,

:::
BT

::::
and

::::
BLE

::::
link

::::
layer

:::
and

::::
HCI

::::::::
packets).

4.1 System Model

Our system model considers two victims, Alice and Bob,
who can securely communicate over BT and BLE. The vic-
tims support CTKD, and are using the most secure BT and
BLE modes, namely, SC and strong association (e.g., Nu-
meric Comparison if both have the necessary IO). This setup
should protect the victims against device impersonation, traf-
fic eavesdropping, and active man-in-the-middle attacks on
BT and BLE [10, p. 269]. Without loss of generality, we
assume that Alice is the master and Bob is the slave.

Regarding the notation, we indicate a BT pairing key
with KBT, a BT session key with SKBT, a BLE pairing key
with KBLE, a BLE session key with SKBLE. We indicate a
Bluetooth address with ADD, a public key with PK, a private
key with SK, a shared Diffie-Hellman secret with DK, a nonce
with N, and a message authentication code with MAC.
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4.2 Attacker Model and Goals

Our attacker model considers Charlie, a remote attacker who
is in Bluetooth radio range with the victims. The attacker
aims to compromise the secure BT and BLE sessions between
the victims without tampering with their devices. The at-
tacker’s knowledge is limited to what the victims advertise
over the air, e.g., full or partial Bluetooth addresses, Blue-
tooth names, authentication requirements, IO capabilities,
and device classes.

The attacker does not know any BT or BLE key shared
between the victims, does not have to be present when the
victims pair or negotiate a secure session. The attacker can
scan and discover devices, send pairing requests and responses,
use CTKD, propose weak association mechanisms (e.g., Just
Works), and dissect and craft Bluetooth packets.

The attacker has four goals. The first one is to impersonate
Alice (to Bob) and potentially take over Alice’s secure sessions.
The second goal is to impersonate Bob (to Alice) and also
take over Bob’s secure sessions. By take over, we mean that
after the attack the security bond between the two victims
is broken. We note that, Alice and Bob’ impersonations
are different goals as they require different impersonation
techniques (i.e., master and slave impersonations).

The attacker’s third objective is to establish a man-in-
the-middle position in a secure session between two victims
and requires combining and synchronizing Alice and Bob’s
impersonation attacks. The fourth objective is to establish
unintended and possibly stealthy sessions with Alice or Bob
as an arbitrary device, without taking over a session and
breaking existing security bonds. An unintended session en-
ables the attacker to access a much broader attack surface
than the one exposed in a connection-less scenario.

4.3 Attack Strategy

We now describe our attack strategy using Alice’s imperson-
ation as a reference example and with the help of Figure 3.
Let us assume that Alice is a laptop and Bob is a pair of
headphones and the victims are already paired and they
are running a secure BT session. Since the victims support
CTKD, they are also pairable over BLE, even if the transport
is not currently in use. Charlie sends a BLE pairing request
to Bob pretending to be Aliceand claiming CTKD support .

:
,
:::
and

:::::::
claiming

:::
to

::::::
support

:::::::
CTKD.

::::
The

:::::::
attacker

:::
also

:::::::
declares

::
no

:::::::::::
input/output

::::::::::
capabilities

::
to

::::::
trigger

::::::::::::::
unauthenticated

:::
JW

:::::::::
association

::::::
during

:::::::
pairing.

::::
This

::::
last

::::
step

:::::
does

:::
not

::::::
trigger

:::
the

:::
key

::::::::
overwrite

:::::::::::::
countermeasure

::::::::
described

:::
in

::::::
Section

::::
3.1.

Bob, even if running a BT session with Alice, has to answer
to Charlie with a BLE pairing response as Charlie’s message
is compliant with the Bluetooth standard.

Then, Charlie (as Alice) and Bob agree on a BLE pairing
key and, via CTKD, generate a new BT pairing key that
overwrites Alice’s key in Bob’s BT key store. In doing so,
Charlie, wins two prizes with one shot, as he takes over
Alice’s BT and BLE sessions with Bob. In other words, Alice
can no longer connect to Bob as she does not know the
BT and BLE pairing keys (overwritten by the attacker).

Furthermore, Charlie also overwrites other security keys that
are distributed during pairing, including CSRK (signature
key) and IRK (MAC randomization key). We note that the
overwrite trick is transparent to the end user as the standard
does not mandate to notify the user about CTKD, and works
even if Alice and Bob are sharing BT and BLE pairing keys
before the attack takes place.

Following a similar strategy, Charlie can impersonate Bob
to Alice, man-in-the-middle them, and create unintended
sessions as an arbitrary device with a victim. We note that
our attack strategy is effective because the Bluetooth stan-
dard does not enforce important security properties at the
boundary between BT and BLE and does not address all
cross-transport threats in its threat model (see Section 3.3 for
more details). In the remaining of this section, we describe
the technical details of the four BLUR attacks.

4.4 Impersonation Attacks

Master impersonation. Charlie impersonates Alice and
takes over her BT and BLE sessions with Bob as in Figure 4.
Bob is already paired with Alice, and can run a BT session
with her while Alice’s impersonation takes place. Notably,
Bob must be pairable over BT and BLE to support CTKD
from BT and BLE. Charlie takes advantage of that and sends
a BLE pairing request as Alice by using Alice’s Bluetooth
address (ADD𝐴), Just Works (JW) association to avoid user
interaction while pairing, his public key (PK𝐶), and CTKD
support.

As Charlie’s BLE pairing request is standard-compliant,
Bob sends back a BLE pairing response believing that Alice
wants to pair (or re-pair) over BLE using CTKD. Then,

Figure 3: Attack strategy. Alice and Bob are paired
over BT and run a secure BT session. Charlie pairs
with Bob as Alice over BLE declaring CTKD sup-
port. Then Charlie agrees upon a BLE pairing key
with Bob, and, via CTKD, tricks Bob into overwrit-
ing Alice’s BT pairing key. As a result, Charlie can
establish BT and BLE sessions with Bob as Alice,
and takes over the real Alice who can no longer con-
nect to Bob. Using a similar strategy, Charlie can
also impersonate Bob to Alice, man-in-the-middle
Alice and Bob, and establish unintended BT and
BLE sessions as an arbitrary device.
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Charlie and Bob compute KBLE, derive KBT via CTKD, and
exchange additional BLE key material (e.g., CSRK, IRK)
over a BLE secure session. After the master impersonation
attack is completed Charlie takes over Alice’s BT and BLE
sessions by tricking Bob into overwriting Alice’s BT and BLE
keys with his ones.

Slave impersonation. Charlie impersonates Bob and takes
over his BT and BLE sessions with Alice as in Figure 5.
Alice and Bob have already paired and can run a BLE secure
session while the impersonation takes place. Alice has to
be pairable over BT and BLE to provide CTKD support
from both transports, and Charlie takes advantage of that
by sending a BT pairing request to Alice as Bob using Bob’s
address (ADD𝐵), Just Works (JW), and his public key (PK𝐶).
Charlie’s paring

:::::
pairing

:
request is still standard-compliant

even if Charlie is supposed to be the slave as BT, unlike BLE,
enables a slave to switch to a master role before sending a
pairing request.

Alice answers with a BT pairing response believing that
Bob wants to re-pair over BT, and the two agree on KBT.
Then, Charlie starts a secure BT session and sends a tun-
neled BLE pairing request to Alice still pretending to be Bob.

Charlie (master)

C

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request as Alice:
JW, ADDA, SC, CTKD, PKC , NC

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

Compute KBLE

Derive KBT

Compute KBLE

Derive KBT

BLE Key Distribution: CSRKC , IRKC

BLE Key Distribution: CSRKB, IRKB

Figure 4: BLUR master impersonation attack. Char-
lie sends a BLE pairing request with Alice’s address
(ADD𝐴) including Just Works (JW) associationto
avoid user interaction, CTKD, and his public key
(PK𝐶). Bob answers with a BLE pairing response
thinking that he is talking to Alice. The attacker
and the victim agree on KBLE, and derive KBT, via
CTKD and complete BLE paring

:::::::
pairing

:
by gener-

ating and distributing more keys over a secure BLE
session. As a result of the master impersonation at-
tack, Charlie tricks Bob into overwriting Alice’s keys
with his ones and takes over Alice who can no longer
connect back to Bob.

Alice (master)

A

Charlie (slave)

C

Devices pairable over BT

BT Pairing Request as Bob:
JW, ADDB , SC, PKC , NC

BT Pairing Response:
Assoc, ADDA, SC, PKA, NA

Compute KBT Compute KBT

BT CTKD Request as Bob:
CTKD, CSRKC , IRKC

BT CTKD Response:
CTKD, CSRKA, IRKA

Derive KBLE Derive KBLE

Figure 5: BLUR slave impersonation attack. Char-
lie sends a BT pairing request with Bob’s address
(ADD𝐵) including Just Works (JW) associationto
avoid user interaction, and his public key (PK𝐶).
The pairing request is valid as BT enables to dy-
namically switch from slave to master before send-
ing a pairing request. Alice answers with a BT pair-
ing response believing that she is talking to Bob.
The attacker and the victim establish KBT, negoti-
ate CTKD and exchange additional keying material
for BLE with a BT CTKD request and response mes-
sages, and derive KBLE. As a result of the slave imper-
sonation attack, Charlie tricks Alice into overwriting
Bob’s keys with his ones and takes over Bob who can
no longer connect back to Alice.

The BLE pairing request includes CTKD support and Char-
lie’s signature and MAC randomization BLE keys (CSRK𝐶 ,
IRK𝐶). Alice answers with a BLE pairing response tunneled
over BT and the two derives KBLE via CTKD. Once the slave
impersonation attack is completed, Charlie takes over Bob’s
BT and BLE sessions by tricking Alice into overwriting Bob’s
BT and BLE keys with his ones.

Man-in-the-middle. Charlie can conveniently combine the
described master and slave attacks to launch a cross-transport
man-in-the-middle attack as shown in Figure 6. If Alice and
Bob are running a BLE session, Charlie starts with the slave
impersonation attack presenting to Alice as Bob over BT.
Otherwise, he launches a master impersonation attack by
targeting Bob as Alice over BLE. After the first impersonation
attack, the impersonated victim is taken over and disconnects
from the other victim. Then, Charlie targets the impersonated
victim with a second impersonation attack and establishes a
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Figure 6: BLUR man-in-the-middle
:::::
MitM

:
attack.

Charlie combines the master and slave imperson-
ation attacks presented so far to establish a man-
in-the-middle position between Alice and Bob both
on BT and BLE.

MitM position between the two victims. As a result, Charlie
controls all BT and BLE secure sessions between Alice and
Bob.

4.5 Unintended Session Attacks

So far we described how to exploit CTKD to impersonate
any Bluetooth device, however, the attacker can also

:::
The

:::::::
attacker

:::
can

:
take advantage of CTKD to establish unin-

tended BT and BLE sessions with a victim
:::::
secure

:::::::
sessions

:
as

an anonymous devicewith arbitrary capabilities. Unintended
sessions are interesting because they expose a larger attack
surface than a setup where the attacker can only send scanning
or advertising packets to a victim (i.e., when the victim
does not trust the attacker). For example, by establishing
unintended sessions,

:
.
::::
This

::::::
attack

:
is
::::::::
valuable

:::
for

::::
four

::::
main

::::::
reasons.

:::::::
Firstly,

:::
the

::::::
attack

::
is
:::::::
stealthy

:::
as

:::
the

::::::::
attacker

:::
can

::::::
pretend

::
to

:::
be

:::
any

::::::
device

:::
and

::::
does

:::
not

::::
have

:::
to

:::::
break

::::::
existing

:::::
bonds.

:::::::::
Secondly,

:
the attacker can enumerate

:::
and

::::::
tamper

::::
with all BT and BLE services supported by the victim and
exploit a remote code execution vulnerability that would not
have been exploitable without a secure session. Concurrently,
these attacks are more difficult to spot than impersonation
ones as they do not require to take over existing secure bonds
(i.e., they do not require to overwrite keys )

::::::
running

:::
on

:::
the

:::::
victim

::::::
device

::::::::
(including

:::
the

:::::::::
protected

::::
ones)

:::::::
without

::::::
having

::
to

::::::::::
impersonate

::
a
::::::
trusted

:::::::
device.

:::::::
Thirdly,

:::
the

::::::::
attacker

:::
can

:::::::::::
anonymously

::::
gain

::::::
access

::
to

:::::
extra

::::
key

::::::::
material

::::::::
including

Figure 7: BLUR unintended sessions attack. Charlie
can take advantage of CTKD to establish unintended
BT and BLE session with Bob as a random device
with arbitrary capabilities. The same can happen if
Charlie targets Alice.

CTI 1 CTI 2 CTI 3 CTI 4

Master Impersonation ✓ x ✓ *

Slave Impersonation ✓ ✓ ✓ *

MitM ✓ ✓ ✓ *

Unintended Session ✓ * ✓ x

Table 1:
::::::::
Mapping

::::
the

:::::::
BLUR

::::::::
attacks

:::
to

::::
the

:::::
CTI

:::::::::
presented

:::
in

:::::::
Section

:::::
3.3.

::::
CTI

:::
1:

:::::::::
extended

:::::::::
pairing,

::::
CTI

::
2:

:::::
role

:::::::::::
asymmetry,

:::::
CTI

::
3:

::::
key

:::::::::::
tampering,

::::
and

::::
CTI

::
4:
::::::::::::
association

:::::::::::::
manipulation.

::::
We

::::
use

::
a
:
✓

::
if
::
a

::::
CTI

::
is

:::::::::
required

:::
to

::::::::
conduct

:::
an

:::::::
attack,

:::
an

:::::
”x”

::
if

::
is

:::
not

::::::::
required

::::
and

:::
an

::::
”*”

::
if

::
is

::::
only

:::::::::
required

::
in

:::::::
specific

:::::
cases.

::::::
identity

::::::::
resolving

::::
keys

::::
that

:::::::::::
de-anonymize

::::
BLE

:::::::
devices

::::
using

::::::
random

:::::::::
addresses.

:::::::
Finally,

:::
the

::::::::
attacker

:::
can

:::::::
silently

:::::
reach

::::
more

:::::::::::
(vulnerable)

::::
code

::::::::
including

:::::
RCE

:::
in

:::
the

::::::
pairing

::::
and

:::::
secure

::::::
session

:::::
code,

::::::
which

::
is

::::::::::
unreachable

:::
by

:::
an

::::::::
untrusted

:::::
device.

Let us see how an unintended session attack works in a
scenario where Alice and Bob are already paired and are
running a secure BT session (see Figure 7). As in the im-
personation attack scenario, Alice and Bob must also be
pairable over BLE to support CTKD. Charlie targets Bob
by sending a BLE pairing request using a random Bluetooth
address, CTKD support, and Just Works for association. Bob
answers to Charlie’s request and the two negotiate KBLE, and
derive KBT via CTKD. Now, Charlie can establish secure but
unintended BT and BLE sessions with Bob without break-
ing Bob’s existing sessions (e.g., with Alice) and by using
an anonymous identity and arbitrary capabilities. Using a
similar strategy, Charlie can reach the same goals targeting
Alice.

4.6 Mapping Attacks to CTIs

::::
Table

::
1
::::::
shows

::::
how

::::
the

::::::
BLUR

::::::
attacks

:::::
take

:::::::::
advantage

::
of

:::
the

::::
four

:::::::::::::
cross-transport

::::::::::::
vulnerabilities

::::
that

:::
we

:::::::
present

::
in

::::::
Section

:::
3.3

:::
in

:::::::
different

:::::
ways.

:::
To

:::::
cover

:::
all

:::::::
possible

::::::
attack

::::::::
scenarios,

:
a
:
✓
::::::::
indicates

::::
that

::
a
::::
CTI

::
is

::::::::
required,

::
an

::
”
:
x
:
”

:
if
::
it

:
is
::::
not

:::::::
required,

::::
and

::
an

::
”
:
*
:
”
::
if

:
it
::
is
::::
only

:::::::
needed

:::::::::
sometimes.

:

::
All

:::::::
attacks

::::::
exploit

:::::::
extended

:::::::::
pairability

:::::
(CTI

::
1).

::::
The

::::
slave

:::::::::::
impersonation

::::
and

:::::
MitM

::::::
attacks

::::
take

::::::::
advantage

::
of
::::
role

::::::::::
asymmetries

::::
(CTI

:::
2),

::::
while

:::::
some

:::::::::
unintended

::::::
session

::::::
attacks

::::
take

::::::::
advantage

:
of
:::::
that.

::::
Key

:::::::::
tampering

:::::
(CTI

::
3)
:::
is

::::::::
exploited

::
in

:::
all

::::::
attacks

::
as

:::
the

:::::::
attacker

::::
has

::
to

::::::
either

::::
write

:::
or

::::::::
overwrite

::::
keys

:::::
using

::::::
CTKD.

::::::::::
Association

:::::::::::
manipulation

:::::
(CTI

::
4)

::
is

:::::::
required

::
in

:::
the

:::
first

:::::
three

::::::
attacks

:::::
when

:::
the

:::::
victim

::::::
expects

::
a
:::::
strong

:::::::::
association

:::::::::
mechanism

:::
but

:::
the

::::::::
attacker

::::::::
negotiates

::::
Just

:::::::
Works.

5 IMPLEMENTATION

In this section we describe our attack scenario, our imple-
mentation of a custom attack device to perform the BLUR
attacks and our re-implementation of CTKD’s key derivation

9
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function. We will fully open-source both the attack and our
CTKD key derivation functionality

::::::::::::::
implementations.

5.1 Attack Scenario

Our attack scenario follows the example in Figure 8 and
includes two victims, Alice (master) and Bob (slave). Alice is
represented by a 7th generation ThinkPad X1 laptop and Bob
by a pair of Sony WH-CH700N headphones. The attacker
(Charlie) uses a CYW920819 development board [14] and
a 3rd generation ThinkPad X1 laptop as an attack device.
The implementation of the attack device is presented in
Section 5.2. In our evaluation, presented in Section 6, we use
the same attack scenario to attack other victim devices.

Table 2 summarizes the most relevant features of Alice,
Bob, and Charlie. Alice and Bob have an Intel Bluetooth
chip, while Bob has a Cambridge Silicon Radio (CSR) one.
Alice, Bob, and Charlie support respectively Bluetooth 5.1,
4.1, and 5.0. Alice and Charlie support Secure Connections
both on the Host and the Controller, while Bob only on
the Controller. All devices support BT, BLE, and CTKD.
Regarding pairing association methods, the laptops support
Numeric Comparison, while the headsets only support Just
Works as they lack a display.

5.2 Custom Attack Device

To conduct our attacks we developed a custom attack device
making use of a CYW920819 development board connected
to a Linux laptop (see Figure 9). Both devices BT, BLE, SC,
and CTKD. Using standard laptops, smartphones or dongles
is not sufficient to implement the BLUR attacks, as they
do not allow to modify all device’s identifiers (e.g., BT and
BLE address) and all devices’ capabilities advertised over
the air (e.g., firmware and controller versions). A software-
defined radio (SDR) is also out of scope because there is no
open-source BT/BLE SDR stack currently available.

Instead, with our attack device, we can program our de-
velopment board (Bluetooth Controller) to impersonate any
BT/BLE device, we can patch its closed-source firmware

X1 7th gen WH-CH700N

Alice
(master)

Bob
(slave)X1 3rd gen

USB

CYW920819

Charlie (attacker)

BTSecure Session

Figure 8: BLUR Attack Scenario. Alice (master)
is a ThinkPad X1 7th gen, Bob (slave) is a pair
of Sony WH-CH700N headphones and Charlie (at-
tacker) is a CYW920819 board connected via USB to
a ThinkPad X1 3rd gen. Alice and Bob have paired
in absence of Charlie, and are running a secure BT
session.

Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress

Subversion 256 12942 256 / 8716

Version 5.1 4.1 5.0

Name x7 WH-CH700N x1

ADD Redacted Redacted Redacted

Class 0x1c010c 0x0 0x0

BT SC True Only Controller True

BT AuthReq 0x03 0x02 0x03

BLE SC True True True

BLE AuthReq 0x2d 0x09 0x2d

CTKD True True True

h7 True False True

Role Master Slave Master

IO Display No IO Display

Association Numeric C. Just Works Numeric C.

Pairable True True True

Table 2: Relevant Bluetooth features for Alice, Bob,
and Charlie. We redact the devices’ Bluetooth ad-
dresses for privacy reasons.

Figure 9: Attack Device Block Diagram. The attack
device is composed of Linux laptop (Host) and a
CYW920819 development board (Controller) con-
nected via USB and communicating using the Host
Controller Interface (HCI) protocol.

to control both BT LMP and BLE LL link layer packets.
Moreover, we can alter the laptop’s BT and BLE kernel and
user-space code to set Bluetooth Host-specific configuration
bits such as negotiating CKTD and Just Works. We now
describe in detail how we modify the attack device’s Host
and Controller components.

Host modifications. For the host, we use standard Linux
tools to configure an Bluetooth interface (e.g., hciconfig),
and to discover and pair with a device (e.g., bluetoothctl,
hcitool and btmgmt). In particular, btmgmt was very useful
as it provides handy low-level commands. For example, it
includes commands to toggle BT, BLE, SC, scanning, and

10
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advertising. Moreover, it allows to easily send custom pairing
requests on BT and BLE and to set the related association
(e.g., Just Works).

Furthermore, we configured our host to get all link-layer
packets sent and received by the controller. This is handy
as it enables to monitor both HCI and link-layer packets
directly from the host (e.g., using Wireshark). To activate
link-layer packet forwarding, we sent a proprietary Cypress
HCI command from the host to the controller that switches
on an undocumented diagnostic mode in the controller. Then,
we added extra C code to the Linux kernel to parse those
special HCI packets in the host.

Controller modifications. We modified the controller by dy-
namically patching the development board Bluetooth firmware
using a Cypress proprietary mechanisms. To patch the firmware
we had to extract it from the board and statically reverse-
engineer its relevant parts. In particular, to extract the
firmware we used a proprietary HCI command to read and
save a runtime RAM snapshot from the board’s SoC. We use
the memory maps that we extracted from the board’s SDK
to extract the memory segments from the snapshot (e.g.,
ROM, RAM, and the scratchpad). As expected, the firmware
was in the ROM segment and was a stripped ARM binary
containing 16-bit Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM,
RAM, and scratchpad in Ghidra and statically analyzed
them. In our first pass, we isolated the libc functions (e.g.,
malloc and calloc) by looking at the signatures and the code
patterns of the functions that are called the most. Then, we
found the firmware debugging symbols hidden in the board’s
SDK and loaded them into Ghidra. Using these symbols we
isolated functions and data structures relevant to the BLUR
attacks. Then, we wrote ARM Thumb assembly patches to
change their behaviors and we apply those patches at runtime
using internalblue [28], an open-source toolkit to manage
several Bluetooth devices including our board. Our set of
patches allows transforming our board in whatever device we
want by changing its identifiers including addresses, names,
and capabilities,

5.3 CTKD Key Derivation Function

We implemented CTKD’s key derivation function, follow-
ing its specification in the Bluetooth standard [10, p. 1401].
We used our implementation to check that the keys that
we observed during our experiments were correctly derived,
yet, it is not required to conduct the BLUR attacks. Our
implementation is written in Python 3 and uses the PyCA
cryptographic module [7]. We tested it against the CTKD
test vectors in the standard [10, p. 1721]. We now describe
its technical details.

𝐾𝐵𝐿𝐸 =

{︃
𝑓 (𝑓 (𝑡𝑚𝑝2,𝐾𝐵𝑇 ) , 𝑏𝑟𝑙𝑒) if h7 is supported

𝑓 (𝑓 (𝐾𝐵𝑇 , 𝑡𝑚𝑝2) , 𝑏𝑟𝑙𝑒) otherwise

We implemented CTKD’s key derivation for BT deriv-
ing and following the equation above. The key derivation

computes KBLE using a function f(𝑎, 𝑏) that corresponds to
AES-CMAC(𝑘𝑒𝑦, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡). If both pairing devices declare
h7 support, then KBLE is computed using the equation at the
top otherwise the one at the bottom. h7 is a key conversion
function defined in the Bluetooth standard and is negotiated
during pairing using AuthReq [10, p. 1634].

𝐾𝐵𝑇 =

{︃
𝑓 (𝑓 (𝑡𝑚𝑝1,𝐾𝐵𝐿𝐸) , 𝑙𝑒𝑏𝑟) if h7 is supported

𝑓 (𝑓 (𝐾𝐵𝐿𝐸 , 𝑡𝑚𝑝1) , 𝑙𝑒𝑏𝑟) otherwise

We also implemented CTKD’s key derivation for BLE
deriving and following the equation above. In this case the
derived key is KBT. The equations’ logic is identical to the one
explained for BT. What changes are the input parameters.
In particular, the computation uses as inputs: KBLE, “tmp1”,
and “lebr”.

6 EVALUATION

In this section we present how we
:::::::::
successfully

:
conducted the

BLUR attacks and our evaluation results on 16 devices us-
ing 14 unique Bluetooth chips(see Table 3). Our evaluation
exploit

:
.
::::
Our

::::::
results

:::::::
confirm

:::::
that

:::
the

::::::
BLUR

:::::::
attacks

:::
are

:::::::
effective

::::::
against

:
different device types (e.g., laptops, smart-

phones, headphones, and development boards), manufactur-
ers (e.g., Samsung, Dell, Google, Lenovo, and Sony), operat-
ing systems (e.g., Android, Windows, Linux, and proprietary
OSes), and Bluetooth chip

:::::::
firmware

:
(e.g., Broadcom, CSR,

Cypress, Intel, Qualcomm, and Samsung).

6.1 Conducting the Attacks

The BLUR attacks, presented in Section 4, include master
impersonation, slave impersonation, man-in-the-middle, and
unintended session attacks. In the next paragraphs, we de-
scribe how we conducted them using our custom

::::
each

:::::
attack

::::
using

:::
the

:
attack device described in Section 5.2.

Laptop (master) BLUR impersonation attack. To imper-
sonate the laptop, we patch our attack device to clone the
laptop’s Bluetooth features (including

:::
e.g.,

:
Bluetooth address,

Bluetooth name, device class, SC, and CTKD support) .
:::
and

::::::
security

:::::::::::
parameters) Then, we send a BLE pairing request

from the attack device to the headphones declaring CTKD
and Just Works support. The malicious BLE pairing request
is sent using btmgmt’s text-based user interface (TUI). The
headphones accept the pairing request, and the devices agree
on KBLE, derive KBT via CTKD and establish a secure BLE
session. Then, the headphones terminate the BT session with
the impersonated laptop and establish a secure BT session
with the attack device. The impersonated laptop cannot con-
nect back with the headphones as it does not possess the
correct pairing keys overwritten by the attacker.

Headphones (slave) BLUR impersonation attack. To im-
personate the headphones, we patch our attack device to
clone the headphones’ Bluetooth features. Then, we send
a BT pairing request from the attack device to the laptop
declaring CTKD and Just Works support using btmgmt’s
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Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave ✓ ✓ ✓

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave ✓ ✓ ✓

Google Pixel 2 Android Qualcomm SDM835 5.0 Slave ✓ ✓ ✓

Google Pixel 4 Android Qualcomm 702 5.0 Slave ✓ ✓ ✓

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave ✓ ✓ ✓

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave ✓ ✓ ✓

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave ✓ ✓ ✓

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave ✓ ✓ ✓

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Slave ✓ ✓ ✓

Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Slave ✓ ✓ ✓

Xiaomi Mi 10T Lite Android Qualcomm 9312 5.1 Slave ✓ ✓ ✓

Xiaomi Mi 11 Android Qualcomm 10765 5.2 Slave ✓ ✓ ✓

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master ✓ ✓ ✓

Sony WH-CH700N Proprietary CSR 12942 4.1† Master ✓ ✓ ✓

† CTKD was backported by the vendor to Bluetooth 4.1.

Table 3: BLUR attacks evaluation results. The first three columns show the device’s producer, model, and
OS. The next two columns state the Bluetooth chip’s produce

::::::::
producer

:
and model. The sixth column tells

the Bluetooth version of the target device. The seventh column indicates the attacker ’s role(e.g., if Slave
then the attacker is the slave and targets a master). Finally, the

:::
The

:
last three columns contain a check mark

::::::::::
checkmark (✓) if a device is vulnerable to the relevant BLUR attack.We group master and slave impersonation

attacks in the same column (MI/SI) as each victim can only have one role. All the devices that we tested are
vulnerable.

TUI. The laptop accepts to pair over BT , and the
:
as

::
a
::::
BLE

::::
slave

:::
can

::::
send

::
a

:::
BT

::::::
pairing

::::::
request

:::
as

:
a
::::::
master.

::::
The

:
devices

agree on KBT, negotiate CTKD, derive KBLEvia CTKD, and
establish a secure session over BT. The impersonated head-
phones cannot connect to the laptop as they do not own the
correct paring

::::::
pairing keys.

To optimize the evaluation of the master and slave impersonation
attacks, we used the attack device both as the attacker and
the impersonated victim. For example, in a master impersonation
attack we pair the attack device with the slave victim device,
we disconnect them, we “forget” the victim device on the
attack device and we run the master impersonation attack
from the attack device. This setup is efficient because it
allows us to quickly test many slave victims. For the slave
impersonation, we use the same procedure to test our master
victims.

BLUR Man-in-the-middle attack. By using our BLUR
implementation with two development boards connected to
the same attack laptop, we can impersonate the laptop and
the headphones at the same time, and man-in-the-middle
them. In particular, we run the laptop (master) impersonation
attack first, and then the headphone (slave) impersonation

attack. As a result, the attack device positions itself in the
middle between the victims.

BLUR Unintended sessions attack. For the unintended
session attack, we patched our attack device to look like
an unknown device to the current victim

::::
(e.g.,

::::::::
unknown

::::::::
Bluetooth

:::::::
address

:::
and

::::::
name). If the victim is a master, we

run the same steps used in the slave impersonation attack
otherwise we use the master impersonation attack’s steps.
In both cases, the attacker creates unwanted but trusted
bonds with a victim

:::::::
completes

:::::::
pairing

::::
using

:::::::
CTKD and can

establish secure sessions over BT and BLE with the victim.

6.2 Evaluation Results

We evaluated the BLUR attacks against 16 unique devices
(employing 14 unique

:::::::
different Bluetooth chips) and our re-

sults are summarized
:::::
shown

:
in Table 3. The first six columns

indicate the device’s producer, model name, operating sys-
tem, chip manufacturer, chip model, and Bluetooth version.
The seventh column contains either Slave if the device was
tested against a slaveimpersonation attack

::::::::
attacker’s

:::
role

::
is

::::
slave, or Master if the device was tested against a master
impersonation attack

::::::::
otherwise. The table’s last three columns
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contain a check mark
:::::::::
checkmark

:
(✓) if a device is vul-

nerable to master or slave impersonation attack (MI/SI),
man-in-the-middle attack (MitM)

:::::
MitM, or unintended ses-

sion (US) attack.
From Table 3 we can draw several significant conclusions.

Firstly, it shows
::::::
confirm

:
that the BLUR attacks are practical

as all
:::::::::::::::
standard-compliant

::::
and

::::
very

:::::::
effective.

:::
All

:
devices that

we tested
::::::::
regardless

::
of

:::::
their

:::::::::::::
implementation

::::::
details are vul-

nerable. Secondly, the table demonstrates that all the Bluetooth
versions that we tested are vulnerable,

::::::::
Moreover,

::
all

::::::::
Bluetooth

::::::
versions

::::::::::
supporting

:::::
CTKD

:::
are

:::::::
affected

:
(i.e., Bluetooth versions

4.1, 4.2, 5.0,
:::
5.1, and

:::
5.2)

::::
and

:::
the

::::::
attacks

:::
are

::::
even

:::::::
effective

::
on

::::
older

:::::::
versions

::
of

::::::::
Bluetooth

:::::
(e.g.,

:::
4.1

::::::
devices

::::
that

:::::::::
backported

:::::::
CTKD).

:::::::
Another

::::::::
significant

:::::::::
conclusion

::::
that

:::
we

:::
can

:::::
draw

::::
from

:::
our

::::::::
evaluation

::
is
::::
that

::::
the

:::
key

::::::::
overwrite

::::::::::::::
countermeasure

::
in

:::
the

::::::::
Bluetooth

::::::::
standard

:::
for 5.1 . Finally, the table confirms that

the BLUR attacks are standard-compliant as they work regardless
of device-specific implementation details.

:::
and

:::
5.2

::::::
devices

::::::::::::
[10, p. 1401] is

:::
not

:::::::
effective

::::::
against

::::
our

:::::::
attacks,

::
as

:
a
::::::
BLUR

::::::
attack

::::::
neither

:::::
lowers

:::
key

:::::::
strength

:::
nor

:::
the

:::::
MitM

:::::::::
protection

::
of

:::
the

:::::::::
overwritten

::::::
pairing

:::
key.

:

7 COUNTERMEASURES

In this section, we describe issues affecting CTKD’s specification
that we extrapolated from the BLUR attacks. These issues
are standard-compliant and represent the root causes of the
BLUR attacks. Furthermore, we propose effective countermeasures
to address the BLUR attacks. Finally, we discuss the main
lessons learned.

We isolated cross-transport issues (CTI) with the specification
of CTKD. All CTI are related to the cross-transport nature
of CTKD, i.e., the fact that CTKD bridges BT and BLE
security domains without properly enforcing certain aspects.
We now describe each of them in detail.

CTI 1: Role Asymmetry. BT and BLE define their master
and slave roles differently. In particular, BT enables to switch
roles dynamically on demand, while for BLE the roles are
fixed. The attacker takes advantage of this CTI by acting
as a master for BT and a slave for BLE. For example, in
the slave impersonation attack, the attacker can send a BT
pairing request, when the victim would expect to receive only
BT responses.

CTI 2: Association Asymmetry. The Bluetooth standard
does not mandate to enforce the same association mechanism
for BT and BLE. An attacker can take advantage of this issue
to use a weak association method on one transport when the
other is expecting to use a stronger association mechanisms.
For example, in the master impersonation attack even if
the victims have paired over BT with strong association,
the attacker can pair over BLE with weak association

:
In

::::::
Section

:::
3.1

:::
we

::::::::
discussed

::::
the

:::::::::::::
countermeasure

::::::::
proposed

:::
by

:::
the

::::::::
Bluetooth

::::::::
standard

:::
for

::
5.1

::::
and

:::
5.2

::::::
devices

::::
that

:::::::
prevents

:::
key

::::::::
overwrite

::::::
attacks

:::
via

::::::
CTKD

:::::
when

:::
the

:::::::::
overwritten

:::
key

::
is

::::::
weaker

:::::
either

::
in

:::::::
strength

:
(i.e., Just Work) and impersonate

a device.
:::::::
entropy)

:::
or

:::::
MitM

:::::::::
protection.

::::
This

:::::::::::::
countermeasure

:
is
::::
not

:::::::
effective

::::::
against

:::
the

::::::
BLUR

::::::
attacks

:::
as,

::::::::
whenever

::::
they

::
are

:::::
used

::
to

::::::::
overwrite

::::
keys,

::::
they

:::
are

::::::
neither

:::::::::::
downgrading

:::
the

:::::::
strength

::
of

:::
nor

:::
the

:::::
MitM

:::::::::
protection

::
of

:::
the

::::::::::
overwritten

::::
key.

CTI 3: Key (Over)write. With CTKD the Bluetooth standard
introduces a new attack primitive, that is, cross-transport
key (over)writing. The attacker can use such primitive to
overwrite trusted pairing keysand distribute new BT and
BLE keys. All the presented attacks take advantage of this
issue.

CTI 4: Pairing States. With CTKD the Bluetooth standard
enables more ways to pair devices. The attacker can take
advantage of this issue to target the transport not currently
in use by the victims. For example, in the master impersonation
attack, the attacker sends a pairing request over BLE while
the victims are using BT.

Overview of recent attacks on Bluetooth and BLE. C
= Data Confidentiality, I = Data Integrity, A = Device
Authentication, K = Key disclosure. No () Partially (), Yes
().

We now present four countermeasures to mitigate
:::
To

::::::::
effectively

::::::
address the BLUR attacks presented in Section 4. In particular,
the first three mitigations defeat the BLUR impersonation
and MitM-attacks, while the unintended session attacks are
prevented by deploying the fourth mitigation. The countermeasures
are also addressing the CTI issues described

:::
and

::::
their

::::
root

:::::
causes

:::::
(CTI

::::::::
presented in Section 3.3, and can be implemented

on the device’s Bluetooth Host (OS)by storing and checking
metadata about its state and list of trusted devices. We
argue that the Bluetooth Host is the natural place to store
this new metadata in addition to other metadata such as
long term keys

:
)
::
we

::::
now

::::::
present

::::
four

:::::::::::::::
countermeasures.

::::
Each

:::::::::::::
countermeasure

::::::::
addresses

::
its

::::::
related

::::
CTI

::::
(e.g.,

:::
C1

::::::::
addresses

:::
CTI

:::
1).

:::::
Then,

:::
we

:::::::
describe

::::
how

::
to

:::::::::
implement

:::::
them

:::
and

::::
how

::
we

::::::::
evaluated

::::
one

::
of

:::::
them

::
on

::
a

:::::
Linux

::::::
laptop.

:

:::
C1:

::::::
Disable

::::::
pairing

:::::
when

:::
not

:::::
needed.

::
To

::::::
prevent

:::
an

:::::::
attacker

::::
from

::::::
pairing

:::::
with

:
a
::::::
device

:::
on

::::::
unused

::::::::::
transports,

:
a
::::::
device

:::::
should

::::::::::::
automatically

::::
stop

:::::
being

::::::
pairable

:::
on

:
a
::::::::
transport

::::
that

:
is
:::
not

::::::::
currently

:::
in

:::
use.

:::
To

:::::
avoid

::::
DoS

:::::
issues,

::
a
:::::
device

::::::
should

:::
also

:::::
allow

:
a
::::
user

:::
to

::::::::
manually

::::::
enable

:::
and

::::::
disable

:::::::
pairing

::
on

:
a
::::::
specific

:::::::::
transport.

:::
C2:

:
Align BT and BLE roles. To fix role asymmetries

between BT and BLE
::::
when

:::::
using

::::::
CTKD, a device should

store the role that the remote device
::::::::
transport

:::
and

::::
the

:::
role

used while pairing and enforce it across re-pairings
::::::::
regardless

:
of
::::
the

::::::::
transport

::
in

:::
use. In case of a role mismatch, the device

should abort pairing.
::
We

:::::
note

::::
that

:::
the

:::::
BIAS

:::::
paper

::::::
[4] also

::::
takes

:::::::::
advantage

::
of

::::
role

::::::::
switching

::::
but

::
is

:::
not

:::::::::
proposing

:::
role

:::::
switch

::::::::::
enforcement

:::
as

:
a
::::::::::::::
countermeasure.

:

Enforce strong association mechanisms
:::
C3:

::::::
Prevent

:::::::::::::
cross-transport

:::
key

:::::::::
tampering. To align association methods between BT

and BLE pairings
::::::
prevent

:::::::::::::
cross-transport

:::
key

:::::::::
overwrites

:::
via

::::::
CTKD,

::
a

:::::
device

::::::
should

::::::
disable

::
it
:::::
while

::::::
pairing

::
if
::
a
::::::
trusted

::::::
pairing

:::
key

::::::
already

:::::
exists

:::
for

:::
the

::::
other

:::::::::
transport.

:::
As

:
a
:::::
result,

13



Anonymous submission #9999 to ACM CCS 2021

::
to

::::::::
overwrite

::
a

::::::
trusted

:::::::
pairing

:::
key

::
a
::::
user

::::::
should

::::::::
explicitly

:::::
re-pair

:::
on

::::
that

:::::::::
transport.

:::
To

::::::::
mitigate

:::::::::::::
cross-transport

:::
key

:::::
writes,

:::::::
CTKD

::::::
should

:::
be

:::::::
disabled

:::::
when

::::
two

:::::::
devices,

::::
who

::::::
already

:::::
share

::
a

::::::
pairing

:::
key

:::
on

::
a

::::::::
transport,

:::::::
re-pair

::
on

::::
that

::::::::
transport

::::
with

:
a
::::::
weaker

:::::::
pairing

:::
key

:::::
(that

:::::
would

:::
be

::::
used

::
as

::::
input

:::
to

:::::::
CTKD).

::
A

:::
key

::
is

:::::::::
considered

:::::::
stronger

:::::
than

::::::
another

:::
one

:
if
:::
its

::::::
entropy

::
is
::::::
higher

::
or

::
if

:
is
::::::::::
established

::::
with

:
a
:::::::
stronger

:::::::::
association

::::::::::
mechanism.

:::
C4:

:::::::
Enforce

::::::
strong

:::::::::
association

:::::::::::
mechanisms.

::
To

:::::::
prevent

::
an

:::::::
attacker

:::::
from

:::::::::::
manipulating

:::
the

::::::::::
association

::::::::::
mechanisms

::::
used

:::::
when

::::::
pairing

:::
on

:::::::
different

:::::::::
transports, a device should

keep track of the strongest association mechanism used while
pairing either on BT or BLE

::
for

:::
the

::::
first

::::
time

::::
with

::
a

:::::
device

and enforce it for subsequent (re-)pairings.
:::::::::
re-pairings

:::::
across

:::
BT

:::
and

:::::
BLE.

::::::
There

::
is

::
no

:::::::
obvious

::::::
reason

::::
why

::::
two

::::::
devices

:::::
which

:::::::
support

:::::
strong

::::::::::
association

:::::
would

:::::
want

::
to

::::
ever

::::
use

:
a

::::::
weaker

:::::::::
association

:::::::
scheme. If a weaker mechanism than the

one stored is proposed, pairing should be aborted.

Disable CTKD key overwrites. CTKD allows (over)writing
security keys across

:::
The

::::
four

:::::::::::::
countermeasures

::::
not

:::
only

:::::::
address

:::
the

::::
four

:::::
CTIs

::::
but

::::
they

::::
also

:::::
stop

:::
the

::::::
BLUR

::::::::
attacks.

::
In

::::::::
particular,

:::
C3

:::::::
prevents

::::::::::::
impersonation

::::
and

:::::
MitM

::
as

:::
the

:::::::
attacker

:::
will

:::
not

:::
be

:::
able

:::
to

::::
write

::::
and

::::::::
overwrite

:::
key

:::::
across

:::::::::
transports

:::
but

::::
only

:::::
target

:::::::::
separately BT and BLE. To fix key overwrites

via CTKD, a device should disallow to update a trusted
key via CTKD when a paired device wants to re-pair. For
example, re-pairing over BT should not overwrite a BLE
pairing key that was securely established in the past.

:::
stop

:::
the

:::::::::
unintended

:::::::
sessions

::::::
attacks

:::
C1

:
is
::::
also

::::::
needed

::
as

:::
the

:::::::
attacker

:::::
should

:::
not

:::
be

::::
able

::
to

::::
pair

::::
with

::::::
CTKD

::
on

::::::
unused

::::::::::
transports.

::
C2

::::
and

:::
C4

::::
help

::
to

::::::::
mitigate

:::
the

:::::::
attacks

::
by

:::::::::
providing

::::
more

:::::::::::::
defense-in-depth

::::
but

::::
they

:::
are

:::
not

::::::
strictly

::::::::
required.

:

Disable pairing when not needed. To prevent an attacker
from pairing with a victim device in unexpected ways, a
device should automatically stop being pairable

:::
Our

::::::::::::::
countermeasures

:::
can

::
be

:::::::::::
implemented

::
in
::::
the

::::::::
Bluetooth

:::::
Host

:::::::::
component

::::
(i.e.,

::::::
device’s

:::::
main

::::
OS).

:::
C2,

:::
C3,

::::
and

::
C4

:::
can

:::
be

::::::
realized

:::
by

::::::
keeping

::::
track

::
of

::::::::
metadata

::::
that

:
is
:::::::
already

:::::::::
exchanged

:::::
during

:::
the

::::::
pairing

:::::::
protocol

::::
(e.g.,

:::::
device

::::
role,

::::::::::
association)

::::
and

:::::::
aborting

:::
the

:::::::
protocol

::::
when

:::::::
needed.

:::
C1

::::
can

::
be

::::::::::::
implemented

::::
with

::
a

:::::
timer

:::::
which

::::::
disables

:::::::::
pairability

:
on a transport that is not currently in

use. For example, a pair of headphones who are running
a secure session over BT with a laptop should not answer
pairing requests over BLE unless the user explicitly set the
headphones in pairing mode.

::::
when

:::
not

::::::
needed

::::
and

:
a
::::::
simple

:::
user

::::::::
interface

::
to
::::::::
monitor

:::
and

::::::
switch

::::::
on/off

:::::::::
pairability

:::
for

:::
BT

:::
and

:::::
BLE.

:

::
To

::::::
verify

:::
the

:::::::::::
effectiveness

::
of

:::
C3

:::
we

:::::::::::
implemented

::
a
:::
C3

:::::::::::::
proof-of-concept

::::
and

::::::
tested

::
it
:::::
using

::
a
::::::
Linux

:::::::
laptop.

:::
We

:::::
paired

:::
our

::::::
laptop

::::
with

:::
the

:::::
victim

::::::
device

::::
using

::::::
CTKD

::::
and

::
we

::::::
deleted

:::
the

::::::
pairing

::::
data

::
on

:::
the

::::::
victim

:::::
device

::::
and

::::
then

::::
used

:
it

::
as

:::
the

:::::::
attacker

::::::
device.

:::::
Then,

::
to

::::::
disable

::::::
CTKD

::
on

:::
the

::::::
laptop,

::
we

:::::
unset

:::
the

:::::
write

::::::::::
permission

::
bit

:::
in

:::
the

:::::
folder

::::
and

:::
the

:::
file

::::::
storing

:::
the

:::::::
pairing

:::::
keys.

:::::
Then

:::
we

:::
ran

::::
the

::::::::::::
impersonation

:::::
attack

:::::
from

:::
the

::::::
attack

:::::
device

::::
and

::::
the

:::::
attack

:::::
failed

:::
as

:::
the

::
OS

::::
was

::::::::::
preventing

:::
the

:::::::::
Bluetooth

::::
Host

:::::
from

:::::::::::
(over)writing

:::
new

::::::
pairing

:::::
keys.

:

There are several lessons that we learned while analyzing
CTKD and developing the BLUR attacks. We report them
in the hope that they will be useful for protocol designers
who are dealing with cross-transport features and related
security issues.

Cross-transport mechanisms need a cross-transport threat
model. Security mechanisms that cross the security boundary
between two technologies should be designed and tested against
a cross-transport threat model. For example, the Bluetooth
standard should include in its threat model an attacker who
wants to exploit BT from BLE and vice versa, rather than
considering only attackers focused either on BT or BLE.

Security mechanisms used to cross a security boundary
should provide the same security guarantees. Cross-transport
mechanisms should be designed such that the mechanisms
used to cross the security boundary provides the same security
guarantees in the same threat model. Currently, this is not
the case for Bluetooth as CTKD uses BT and BLE pairings
to cross the security boundary and pairing over BT is different
than pairing over BLE.

Usability should not outweigh security. CTKD was introduced
to improve Bluetooth’s usability, but, in light of the presented
attacks, the usability benefits are not balancing the security
issues also introduced with CTKD. Indeed, it is paramount
to weight security and usability before introducing a critical
security feature, especially if it allows crossing a security
boundary.

8 RELATED WORK

We summarize the positioning of our attacks compared to
to related work in Table 4, and provide additional details on
those attacks in the following. In general, the BLUR attacks
are the first cross-transport attacks (targeting both BT and
BLE), are standard-compliant (i.e., expected to work on any
device that supports CTKD), can be executed outside the
victims’ initial pairing phase, provide comprehensive compromise
of the security properties, break the most secure Bluetooth
modes (secure connections), and provide persistent compromise
of the victims.

The Bluetooth
::::::::
Bluetooth

:
provides a royalty-free and widely-

available cable replacement technology [18]. Bluetooth stan-
dard compliant attacks are particularly dangerous as all
Bluetooth devices are affected, regardless of version numbers
or implementation details. Such standard-compliant attacks
have appeared since the first versions of Bluetooth [22, 27].
Standard-compliant attacks on BT include attacks on legacy
pairing [37], secure simple pairing (SSP) [9, 19, 38], Bluetooth
association [20, 39], key negotiation [2], and authentication
procedures [4, 26, 40]. Standard-compliant attacks on BLE
include attacks on legacy pairing [34], key negotiation [5],
SSP [9, 44], reconnections [42], and GATT [23]. Compared
to the mentioned attacks that target either BT or BLE,
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the BLUR attacks are the first standard-compliant attacks
targeting the intersection between BT and BLE.

We have seen attacks targeting specific implementation
flaws on BT [35] and BLE [17, 36]. As our BLUR attacks
target the specification level, they are effective regardless
of the implementation details. Several surveys on BT and
BLE security were published [15, 29, 31] but neither of those
surveys nor the Bluetooth standard considers CTKD as a
threat. We here demonstrate that CTKD is a serious threat
and must be included in the threat model.

Cross-transport attacks were exploited for proximity tech-
nologies using Bluetooth andWi-FI. Two prominent examples
are attacks on Apple ZeroConf [8] and Google Nearby Con-
nections [3]. Our BLUR attacks are the first cross-transport
attacks for BT and BLE.

The cryptographic primitives used by Bluetooth have
been extensively analyzed. For example, the 𝐸0 cipher used
by BT was investigated [16] and it is considered relatively
weak [31]. SAFER+, used for authentication, was analyzed
as well [25]. BT and BLE “Secure Connections” use the
AES-CCM authenticated-encryption cipher. AES-CCM was
extensively analyzed [24, 33] and it is FIPS-compliant. Our
BLUR attacks target key negotiation and not cryptographic
primitives, and are effective even with perfectly secure cryp-
tographic primitives.

::
As

:::
can

:::
be

:::
seen

:::::
from

::::
Table

::
4,
:::::::::
compared

::
to

::::
other

::::::::::::::::
standard-compliant

::::::
attacks,

:::
the

::::::
BLUR

::::::
attacks

:::
are

:::::
novel

:::
and

:::
are

:::::::
enabling

::::::::
impactful

:::::
attack

::::::::
scenarios.

::::
The

:::::
BLUR

:::::::
attacks

::
are

:::
the

::::
first

:::::::::::::
cross-transport

::::::
attacks

:::
for

:::::::::
Bluetooth

::::
and

:::
are

::::
the

::::
first

::::::
attacks

:::::::::
exploiting

::::::
CTKD.

:::
In

:::::
terms

:::
of

:::::::
impact,

:::
the

::::::
BLUR

:::::::
attacks

::::::
require

::
a

::::
weak

:::::::
attacker

:::::
model

::
as

:::
the

:::::::
attacker

::::
does

::::
not

::::
have

::
to

::::::
observe

:::::::
previous

::::::
pairing

::::
and

:::::
secure

:::::::
sessions

:::::::
between

:::
the

::::::
victim.

:::
On

:::
top

::
of

::::
that,

:::::
they

:::::
break

::::
even

:::
the

:::::
most

::::::
secure

:::
BT

::::
and

::::
BLE

::::
mode

::::
(i.e.,

:::::
SSP,

:::::
LESC,

::::
SC,

:::
and

::::::
strong

::::::::::
association)

:::
and

::::
their

::::
effect

::
is
:::::::::
persistent.

:

9 CONCLUSION

In this work we examine CTKD, a usability feature in the
Bluetooth standard that has, until now, not been scrutinized
for security issues by the research community. We develop
four attacks that take advantage of CTKD to exploit both
BT and BLE. Our attacks are the first examples of cross-
transport attacks on Bluetooth, they are standard-compliant,
and effective against the most secure BT and BLE modes
(i.e., Secure Connections and Secure Connections Only). Our
attacks are the first ones that achieve a persistent compromise
of the devices, i.e., it leaves the devices in a compromised
state even when the attacker is no longer present. In contrast
to other prior standard-compliant attacks (i.e., attacks that
also are not targeting implementation bugs), our attacks are
not limited to the pairing phase. That means we can execute
the attack on any device at any time, without forcing a new
pairing event.

With our BLUR attacks we reach four significant goals.
We achieve impersonation and take-over for both the master
and slave devices; man-in-the-middle on secure sessions in

the most secure mode (Secure Connections); and establishing
unintended sessions as an anonymous device. Collectively our
attacks are called BLUR attacks as they blur the security
boundary between BT and BLE.

To demonstrate the practicality of the BLUR attacks, we
presented a low-cost implementation based on cheap readily
available hardware (a laptop, and a Bluetooth development
board) and open-source software (Linux, and internalblue).
We also describe solutions to the main technical challenges we
faced during development, including low-level modifications
of a Bluetooth firmware.

We use our implementation to experimentally confirm that
CTKD-compatible devices (using 14 unique Bluetooth chips)
are vulnerable in practice. Our attacks are successful on
all the devices we tested which shows that this is a serious
problem in practice. We end the paper by discussing the
feasibility of various low-cost, host-based countermeasures
that prevent the attacks at the cost of some usability. We
followed a responsible disclosure process and notified the
Bluetooth SIG of our findings, resulting in CVE-2020-15802,
and we intend to release our attack implementation as an
open source project.
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10 APPENDIX

::::::::
Lessons

::::::::::
Learned

::
In

:::
this

:::::::
section

:::
we

:::
list

:::
the

:::::
main

::::::
lessons

::::
that

:::
we

:::::::
learned

::
in

:::
the

::::
hope

::::
that

::::
they

::::
will

::
be

:::::
useful

:::
for

:::::::
protocol

::::::::
designers

::::
who

::
are

:::::::
dealing

::::
with

:::::::::::::
cross-transport

:::::::
security

::::::::::
mechanisms.

:

::::::::::::
Cross-transport

:::::::::::
specification

:::
and

:::::::
modeling.

::::::
Security

::::::::::
mechanisms

:::
that

:::::
cross

:::
the

:::::::
security

:::::::::
boundary

:::::::
between

::::
two

::::::::::
technologies

:::::
should

:::
be

:::::::::::
well-specified

::::
and

:::::
tested

::::::
against

::
a
::::::::::::
comprehensive

::::::::::::
cross-transport

:::::
threat

::::::
model.

:::
On

:::
the

::::::::
contrary,

:::
the

::::::::
Bluetooth

:::::::
standard

:::::::
provides

:::
an

:::::::::
incomplete

::::::::::
specification

:::
for

::::::
CTKD

:::
and

:::
only

::::::::
discusses

:::::
some

:::::::::::
cherry-picked

:::::::::::::
cross-transport

:::::::
threats.

::::::::::::
Cross-transport

:::::::
security

:::::::::
guarantees.

:::::::::::::
Cross-transport

::::::::::
mechanisms

:::::
should

:::
be

::::::::
designed

::::
such

:::::
that

:::
the

:::::::::::
mechanisms

:::::::
trusted

::
at

:::
the

::::::::
boundary

:::::::
between

:::
the

::::
two

::::::::
transport

::::
(i.e.,

:::
BT

::::
and

::::
BLE

::::::
pairing)

:::::
have

:::
the

::::
same

::::::
threat

::::::
model

:::
and

:::::::
provides

::::
the

::::
same

::::::
security

::::::::::
guarantees.

::::
This

::
is

:::
not

:::
the

::::
case

::
for

:::::::::
Bluetooth

::
as

:::
BT

:::
and

::::
BLE

:::
use

:::::::
different

::::::
pairing

:::::::::
protocols,

:::
link

::::
layer

:::::::::::
mechanisms,

:::
and

::::::
threat

::::::
models.

:

:::::::
Usability

:::
vs.

:::::::
Security.

::::::
CTKD

::::
was

:::::::::
introduced

::
to

:::::::
improve

:::::::::
Bluetooth’s

::::::::
usability,

::::
but,

::
in
:::::
light

::
of

:::
the

:::::::::
presented

::::::
attacks,

:::
the

:::::::
usability

:::::::
benefits

::::
are

:::
not

::::::::
balancing

::::
the

:::::::
security

:::::
issues

:::::::
deriving

::::
from

::::::
CTKD.

:::::::
Indeed,

::
it

:
is
::::::::::
paramount

::
to

:::
find

::
a
::::
good

::::::
balance

:::::::
between

::::::::
usability

::::
and

:::::::
security

::::
and

:::
not

:::::::::
overweight

:::
the

::::::
former.

:
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Attack

Year Paper Target Phase C I AK SC/SCO Persistent Note

Attacks on BT
2016 Albazrqaoe et al. [1] Standard Any G#### x - BlueEar Sniffer
2017 Seri et al. [35] Impl. Pairing    # NA ✓ BlueBorne
2018 Sun et al. [38] Standard Pairing    # ✓ - Passkey (MitM)
2018 Biham et al. [9] Impl. Pairing    G# NA ✓ Fixed Coordinate Invalid Curve
2019 Antonioli et al. [2] Standard Pairing   G## ✓ - KNOB (MitM)
2020 Antonioli et al. [4] Standard Pairing    # ✓ - BIAS
2021 Tschirschnitz et al. [39] Standard Pairing    # ✓ - Method Confusion (MitM)

Attacks on BLE
2016 Jasek et al. [23] Standard NA G#### x - Black Hat
2019 Seri et al. [36] Impl. NA #G#G## NA ✓ Bleedingbit
2020 Zhang et al. [44] Standard Pairing G#G#G## ✓ - MitM (SCO)
2020 Wu et al. [42] Standard Session ## # ✓ - BLESA
2020 Garbelini et al. [17] Impl. Any G#G#G## NA - SweynTooth fuzzer

Attacks on both BLE and BT
2019 Ossmann et al. [30] Standard NA G#### x - Ubertooth sniffer
2020 Antonioli et al. [5] Standard Pairing   G## ✓ - Downgrade (MitM)
2021 This work Standard Any    G# ✓ ✓ BLUR (cross-transport)

Table 4:
:::::::::
Overview

::
of

:::::::
recent

:::::::
attacks

:::
on

::::::::::
Bluetooth

::::
and

::::::
BLE.

::
C

::
=

::::::
Data

:::::::::::::::
Confidentiality,

:
I
::
=

::::::
Data

:::::::::
Integrity,

::
A

::
=

:::::::
Device

:::::::::::::::
Authentication,

::
K

:::
=

::::
Key

:::::::::::
disclosure.

:::
No

:
(#

:
)
:::::::::
Partially

:
(G#

:
),

::::
Yes

:
( 

:
).
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