
Response to MR (paper #129)
In this document we summarize the changes that we made to address the
reviewers’s comments for a Major Revision. In particular, in each section we
address a specific comment and tag the relevant reviewer(s). Together with our
MR response document we attach the paper diff.

We thank the reviewers for the opportunity to provide a major revision of our
paper. We have carefully analyzed the reviews and addressed all open issues to
the best of our understanding. We remain open to discuss any further required
changes.

Provide more technical detail on the protocols (Rev. A,B)
We improved Section 3 to provide more technical information about the attacked
protocols. This information enables the reader to verify the attacks presented in
Section 4 and to assess the five cross-transport security problems with CTKD
that we discuss.

In particular, we introduced a new section (Section 3.3) to describe CTKD and
the related Bluetooth protocols in non-adversarial setting with the help of Figure
2. Moreover, we improved Section 3.4 to better explain what are the identified
issues and why those issues are not overlapping between each other. We also
summarize the salient information about the issues in a dedicated table (Table
1).

Provide more technical detail on the reverse engineering
(Rev. D)
We improved Section 5.2 to provide more technical information. In particular, we
explain how we modified the host components (e.g., customized Linux kernel) and
the controller components (e.g., reverse-engineering and runtime modification
of a Bluetooth firmware) and introduced a new figure (Figure 10) to introduce
our custom attack device. All components and modifications will be released as
open-source with the publication of the paper.

Add an in-depth analysis of the causes and fundamental
problems (Rev. B)
We improved Section 3 to better present and analyze the fundamental problems
with CTKD (i.e., the five CTI vulnerabilities). In Section 7.1 we explain what
we highlight the causes of such problems by answering questions such as "Why
were those vulnerabilities there?" and "How should we design cross-transport
mechanisms to avoid such vulnerabilities?"

1



Develop more insights on sound defense strategies (Rev.
A,B,C,D)
We improved Section 7.2 by providing five countermeasures where each one
addresses a specific CTI with a concrete fix. We provided similar countermeasures
when we disclosed the issues to the Bluetooth SIG, but the SIG has not released
any official patch or mitigation yet.

Include responses and status from the responsible disclo-
sure with the Bluetooth SIG (Rev. D)
We updated the last paragraph of the Introduction with the latest information
about the public disclosure articles about the BLUR attacks. In particular, we
disclosed our findings and countermeasures to the Bluetooth SIG in May 2020.
The Bluetooth SIG acknowledged our findings and assigned CVE-2020-15802 to
the BLUR attacks. In September 2020, the Bluetooth SIG released a security
note about our report (without contacting us).

Position the identified issues properly wrt. implementation
vs. specification issues
The presented issues are at the Bluetooth specification level and the Bluetooth
specification does not provide implementation guidelines to address them. While
all the devices that we tested are affected by the presented issues, an imple-
menter can mitigate some issues in a standard-compliant way. For example, a
device might stop being pairable on a transport when is not in use. To better
communicate this message we updated the abstract, the introduction, Section 3,
and the conclusion.

Put the attacks in the context of prior work, including at-
tacks on BT/BLE as well as other protocols, convince the
reader that your literature search was exhaustive, and clar-
ify which steps of the attacks are novel (Rev. B)
In the Introduction we revised the presentation of the attacks in the context of
prior work, in particular regarding requirements to conduct the attack. Unlike
prior work, our attacks do not require the attacker to be present during pair-
ing or secure session establishment. Therefore, our attacks enable Bluetooth
exploitation in new scenarios, in which attacks were not possible before.

Tone down claims and overselling as indicated in the re-
views (Rev. A)
We revised our tone and positioning to more precisely communicate our contri-
bution. In particular, we rewrote our section headers, and several statements in
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the Introduction, Section 3, and the Conclusion with a more appropriate tone
and removed redundant claims.
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BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and
Bluetooth Low Energy

Anonymous Submission #129

Abstract
The Bluetooth standard specifies two incompatible wireless

transports: Bluetooth Classic (BT) for high-throughput ser-
vices and Bluetooth Low Energy (BLE) for very low-power
services.

::::::
Despite

:::
the

::::::::
similarity

:::
in

:::::
name

:::
and

::::
use

::
of

::::::
similar

::::::
security

:::::::::::
mechanisms,

:
BT and BLE have different security ar-

chitectures and threat models, but they use similar security
mechanisms. In particular, pairing enables two devices to es-
tablish a long term key to secure the communication. Two
devices have to pair over BT and BLE to use both transports
securely. Since pairing the same devices two times

::::
twice

is considered “user-unfriendly”, Bluetooth v4.2 introduced
Cross-Transport Key Derivation (CTKD). CTKD allows two
devices to pair once, either over BT or BLE, and generate
both BT and BLE long term keys. Despite CTKD allowing
to cross

:::::::
traversal

::
of the security boundary between BT and

BLE, the security implications of CTKD have not yet been
investigated.

We present the first security analysis of CTKD and identify
five cross-transport issues for BT and BLE

::
at

:::
the

::::::::
Bluetooth

::::::::::
specification

:::::
level. These issues enable, for the first time,

exploitation of both BT and BLE by attacking either trans-
port. Based on the identified issues, we demonstrate four
novel cross-transport attacks resulting in device imperson-
ation, traffic manipulation, and malicious session establish-
ment. We refer to them as BLUR attacks, as they blur the
security boundary between BT and BLE. The BLUR attacks
are standard-compliant and therefore apply to all devices sup-
porting CTKD, regardless of implementationdetails. We suc-
cessfully demonstrate the BLUR attacks on 13 devices with
10 unique Bluetooth chips, and discuss effective countermea-
sures. We disclosed our findings and countermeasures to the
Bluetooth SIG in May 2020.

1 Introduction

Bluetooth is a pervasive wireless technology used by billions
of devices including mobile phones, laptops, headphones, cars,

speakers, medical, and industrial appliances [13]. Bluetooth
is specified in an open standard maintained by the Bluetooth
special interest group (SIG), and the

:
.
:::
The

:
latest version of

the standard is 5.2 [12]. The standard specifies two
:::::::
different,

incompatible wireless transports, Bluetooth Classic (BT) and
Bluetooth Low Energy (BLE). BT is best suited for high-
throughput use cases, such as streaming audio and voice calls,
while BLE is best suited for very low-power use cases such
as localization and monitoring.

As BT and BLE were introduced at different point
:::::
points

in time to address different use cases, the standard maintains
separate security architectures and threat models for BT [12,
p. 947] and BLE [12, p. 1617]. While these security architec-
tures address different threat models, they use similar security
mechanisms, including pairing and secure session establish-
ment. Pairing enables devices to establish a shared long term
key, and secure session establishment enables paired devices
to establish a secure communication channel by negotiating a
session key that is derived from the pairing long term key.

Devices that support both BT and BLE have to pair twice
to use both transports securely. As pairing the same devices
twice is considered “user-unfriendly“, Bluetooth v4.2 (re-
leased in 2014) introduced Cross-Transport Key Derivation
(CTKD)

:
to

:::::::
mitigate

:::
the

:::::::::::::::
“user-unfriendly”

::::::::::
requirement

::
to

:::
pair

::
the

:::::
same

::::::
devices

:::::
twice. After pairing on one transport, CTKD

allows the creation of a second long term key for the other
transport [12, p. 1401]. For example, two devices can pair
over BT, generate the BT long term key, and then run CTKD
to derive the BLE long term key (without having to pair over
BLE). All major Bluetooth software stacks (Apple, Linux,
Android, and Windows) and hardware providers (Cypress,
Intel, Qualcomm, Broadcom, Apple, Sony, and Bose) imple-
ment CTKD. Apple presented CTKD as a core “always on”
Bluetooth feature to improve usability [45].

CTKD is a promising attack target as it crosses the security
boundary between BT and BLE (i.e., when using CTKD,
pairing over one transport automatically provides security
guarantees for both transports). Despite this fact, the security
of CTKD remains unexplored. For example, the standard

1



does not include CTKD in the BT and BLE threat models and
we are not aware of any security analyses of CTKD. So far,
all existing attacks focused exclusively on either transport.

We present the first security analysis of CTKD, uncov-
ering five

::::::::::::::::
standard-compliant

:
security issues. Our issues

are novel because they are
::::
Those

::::::
issues

::::
are

:
the first ex-

amples of cross-transport issues
::::::::::::
vulnerabilities

:
for Blue-

tooth. Based on those issues
:::
our

:::::::
findings, we demonstrate

four cross-transport attacks, enabling impersonation,
:::::
device

::::::::::::
impersonation,

::::::
traffic

:
interception, and manipulation of

traffic between victims
::::
traffic

:::::::::::
manipulation, as well as unin-

tended device sessions. Our attacks are standard-compliant
and are thus effective against all devices that support
CTKD. As we are the first to exploit CTKD and enable
BT and BLE cross-transport exploitation, the attacks are
orthogonal to other

::
are standard-compliant attacks on BT and

BLE [1, 3, 4, 10, 22, 23, 36, 39]
:::
and

:::::
likely

::::::
affect

::
all

:::::::
devices

:::::::::
supporting

::::::
CTKD. We name our attacks BLUR

::::::
BLUR at-

tacks, as
::
by

:::::::::
exploiting

:::::
CTKD

:
they blur the security boundary

of
:::::::
between BT and BLE.

::
In

:::::::
contrast

::
to
::::::::::

previously
::::::::
published

:::::::
attacks

:::
on

:::
BT

::::
and

::::
BLE

:::::::::::::::::::::::::::::
[1, 3, 4, 10, 22, 23, 36, 39, 41, 44, 46],

:::
our

:::::::
attacks

::
do

:::
not

::::::
require

:::
the

:::::::
attacker

::
to

:::
be

:::::::
present

:::::
during

:::::::
pairing

::
or

::::::
secure

::::::
session

::::::::::::
establishment.

::::::::::
Therefore,

:::
our

:::::::
attacks

:::::
have

:::::
lower

::::::::::
requirements

::::
for

:::
the

:::::::
attacker

:::::
while

::::
still

::::::::
breaking

:::
BT

::::
and

::::
BLE

:::::::
security

:::::::::
guarantees.

:

We implement the BLUR attacks using a widely available
Bluetooth development board connected to a laptop running
Linux and developing custom software based on open-source
tools. This makes reproducing the BLUR attacks simple and
affordable. Our evaluation demonstrates that all tested devices
are vulnerable. We will release our tools to the public after the
responsible disclosure process completes. We use our attack
implementation to evaluate 13 devices, with 10 unique Blue-
tooth chips, from the major hardware and software vendors,
e.g., Broadcom, Cambridge Silicon Radio (CSR), Cypress,
Google, Intel, Linux, Qualcomm, and Windows and represent-
ing all Bluetooth versions that support CTKD (i.e., 4.2, 5.0,
and 5.1) and even a device supporting Bluetooth version 4.1
to which CTKD has been backported.

We summarize our contributions as follows:

• We perform the first security analysis of CTKD (Sec-
tion 3), and show that it enables to cross

:::::::
crossing

:
the

security boundary between BT and BLE. We identify
five novel and very serious issues, which enable the first

:::::::
enabling cross-transport attacks between BT and BLE.

• We propose four attacks to exploit the issues in CTKD
(Section 4). Our attacks allow impersonation, intercep-
tion, traffic manipulation, and unintended sessions. We

::
In

::::::
Section

::
5,

:::
we

:
present a low-cost implementation of

the attacks based on a Linux laptop and a Bluetooth
development board.

• We confirm that real-world BT and BLE devices are vul-
nerable to the BLUR attacks by evaluating our attacks on
13 unique devices (Section ??

:
6). We provide mitigation

strategies to address the attacks directly in the Bluetooth
standard. We have

:::::::
concrete

::::::::::::::
countermeasures

::
to
:::

fix
:::
the

::::::::
presented

:::::
issues.

:

:::
We

:::
disclosed our findings and mitigations

:::::::::::::
countermeasures

::
to the Bluetooth SIG in May 2020.

:::
The

::::::::::
Bluetooth

:::::
SIG

:::::::::::::
acknowledged

::::
our

::::::::
findings

:::::
and

:::::::
assigned

::::::::::::::::
CVE-2020-15802

:::
to

::::
the

:::::::
BLUR

::::::::
attacks.

:::
In

:::::::::
September

:::::
2020,

:::
the

::::::::::
Bluetooth

::::
SIG

::::::::
released

::
a

:::::::
security

:::
note

::::::
about

::::
our

:::::
report

:::
at

:
https://www.bluetooth.com/

learn-about-bluetooth/bluetooth-technology/
bluetooth-security/blurtooth/

::::::
(without

::::::::::
contacting

:::
us).

2 Background

We now compare BT and BLE, and introduce CTKD.

2.1 A Comparison of BT and BLE
BT and BLE are two wireless transports specified in the Blue-
tooth standard. These transports are incompatible (i.e., while
they use the same 2.4 GHz band the physical and link lay-
ers are different) and are designed to complement each other.
BT is used for high-throughput and connection-oriented ser-
vices, such as streaming audio and voice. BLE is used for
very low-power and low-throughput services such as local-
ization and monitoring. Typically, high-end devices, such as
laptop

::::::
laptops, smartphones and tablets, provide BT and BLE

(in a single radio chip), while low end devices such as mice,
keyboards and wearables provide either BT or BLE.

BT and BLE have similar security mechanisms but differ-
ent security architectures and threat models. Both transports
provide a pairing mechanism, named Secure Simple Pairing
(SSP), to let two devices establish a long term key. During
pairing, BLE allows negotiating the entropy of the long term
key while BT does not. Both transports provide a secure ses-
sion establishment mechanism to derive a session key from
the long term key and protect the communication. During
session establishment, BT allows negotiating the entropy of
the session key while BLE inherits the entropy of the session
key from the entropy of the long term key.

BT and BLE support a “Secure Connections” mode
that uses FIPS compliant security primitives such as AES-
CCM for authenticated encryption, ECDH on

:::::::::::
Elliptic-Curve

::::::::::::
Diffie-Hellman

:::::::
(ECDH)

::::
over

:
P-256 for key agreement, mu-

tual authentication procedures for the long term key, and AES-
CMAC for keyed hashing. BT and BLE have similar associ-
ation mechanisms

:::::::::
procedures that can be used to protect the

pairing phase against man-in-the-middle attacks. Two exam-
ples of associations are “Just Works” that provides no pro-
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tection and “Numeric Comparison” that provides protection
against man-in-the-middle attacks by requiring user interac-
tion (e.g., the user has to manually confirm that she sees the
same numeric code on the pairing devices).

BT and BLE define master and slave roles in different ways.
For BT, the master is the connection initiator, the slave is the
connection responder, and roles can be switched. Both master
or slave can request a role switch almost anytime after a radio
link between the two is established. For BLE, master and
slave roles are fixed and switching roles is not supported. The
master acts as the connection initiator (BLE central) and the
slave as the connection responder (BLE peripheral). High-end
BLE devices, such as laptops and smartphones, implement
both master and slave modes and are typically used as the
master, while low-end devices, such as fitness trackers or
smartwatches,

:::::::
typically implement only the slave mode.

2.2 Cross-Transport Key Derivation (CTKD)

Two devices that support BT and BLE have to pair over
BT and over BLE to use both transports securely. Pairing
the same two devices two times is not user-friendly

::::
twice

:
is
::::::::::
considered

::::::::::::::
“user-unfriendly”

:
and the Bluetooth standard

addressed this issue in Bluetooth
::::::
version

:
4.2 (released in

2014) by introducing CTKD
::::::::
introduces

::::::
CTKD

::
to
:::::::

address

:::
this

::::
issue. As shown in Figure 1, CTKD enables two devices

to pair once, either over BT or BLE, and then securely use
both [12, p. 280]. For example, a user can pair a headset and
a laptop over BLE, without putting the headset in BT discov-
erable mode, and then securely connect the headset and the
laptop over BT (without having to pair over BT). It is also
possible to do the initial pairing over BT, and use CTKD to
generate the BLE pairing key.

Before explaining how does CTKDwork,
::::::
CTKD,

:
it
:
is im-

portant to review the differences between pairable (bond-
able) and discoverable states for BT and BLE. If a device
is pairable then is going to accept to pair with other devices,
while

:::::::
pairable

::::
then

:
it
::::
will

:::::
accept

::::::
pairing

:::::::
requests

:::::
from

::::
other

::::::
devices.

::
If
:
if it is discoverable is going to reveal his identity to

other devices . It is widely believed that
::::::::::
discoverable

::
it

:::
will

:::::
reveal

::
its

:::::::
identity

::::
when

:::::
other

::::::
devices

::::
scan

:::
for

::::::
nearby

:::::::
devices.

:::::::
Contrary

::
to

:::::::
popular

:::::
belief,

:
a device is

:::
not required to be

:::
both

discoverable and pairable to be able to pair, however only the
pairable state is required

:::
for

::::::
pairing

:::
but

::
it

::::
only

:::::
needs

:::
to

::
be

:::::::
pairable.

::::
The

:::::
device

::::
that

::::::
initiates

::::::
pairing

::::
only

:::::
needs

::
to
:::::
know

::
the

:::::::
identity

::::::
(MAC

:::::::
address)

::
of

:::
the

:::::::
pairable

:::::
target

::::::
device. For

example, when pairing a laptop with a pair of headphones
over BT, typically only the headphones are discoverable and
pairable and

:::::
while the laptop is only pairable. Hence, it is pos-

sible to pair with a device even if it is not discoverable [43].
The Bluetooth standard specifies the same CTKD func-

tion to derive BT and BLE long term keys. This function
takes as inputs a

::::::
128-bit

:
(16-byte

:
) key and two 4-byte strings

and derives a
::::::
128-bit

:
(16-byte

:
)
:
key using AES-CMAC (see

Figure 1: CTKD overview. CTKD is used by two devices
who paired and share a long term key over BLE to derive a
long term key for BT. CTKD can also be used to derive BLE
pairing keys after two devices paired over BT.

Section 5.3 for CTKD’s internals). What changes between
BT and BLE are the inputs to the CTKD function.

:::::
CTKD

::
for

:
BT derives a BLE long term key (KBLE) from a BT long

term key (KBT) and the strings "tmp2" and "brle". While ,

::::
while

::::::
CTKD

:::
for

:
BLE derives KBT from KBLE and the strings

"tmp1" and "lebr". As the standard defines constant strings
and no fresh nonces as inputs, the CTKD function derives the
same output key when reusing the same input key.

CTKD is widely supported byvendors such as
::::::
broadly

::::::::
supported

:::
by,

::::
e.g.,

:
Apple [45], Google [5], Cypress [15],

Linux [14], Qualcomm [34], and Intel [24]. CTKD is used
in combination

:::::::
combined

:
with “Secure Connections”, that is

a security mode that was introduced to enhance the security
primitives of BT and BLE without affecting their security
mechanisms. For example, “Secure Connections” introduced

::::::::
introduces

:
AES-CCM authenticated-encryption for BT, and

ECDH pairing for BLE.

3 Security Analysis of CTKD

BT and BLE are incompatible wireless technologies with
different security architectures and threat models (see
Section 2.1). CTKD, as shown in Figure 1, improves BT and
BLE usability by allowing two devices to pair once, either
over BT or BLE, and compute the keying material for both
transports without requiring a second pairing (see Section 4).

CTKD is a critical attack target for several reasons.
Firstly, CTKD crosses the security boundary between BT
and BLE. Hence, if CTKD introduces a vulnerability on
one transport, that vulnerability is exploitable for both
BT and BLE. Secondly, CTKDis applicable to “Secure
Connections”, the most secure mode for BT and BLE. Hence,
if CTKD is vulnerable then the attacker can break Bluetooth
“Secure Connections”.

::
To

::::::
analyse

:::
the

:::::::
security

::
of

::::::
CTKD

:::
we

::::::::
introduce

:::
our

::::::
system

::::
and

:::::::
attacker

::::::
models

::::
and

:::
we

:::::::
describe

:::
how

:::::::
CTKD

::
is

::::
used

:::
in

:
a
::::

non
::::::::::

adversarial
::::::
setting.

::::
We

::::
then

::::::::
introduce

::
the

:::::::
security

::::::
issues

:::
that

:::
we

:::::::::
discovered

::::
with

:::::::
CTKD.

:::::
These

:::::::
security

::::::
issues

:::
are

::::
then

::::::::
exploited

:::
by

::::
our

::::::
attacks

::
in

::::::
Section

::
4

:::
and

:::::::::
addressed

::::
with

:::::::
concrete

:::::
fixes

::
in

:::::::
Section

::::
7.2.
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Despite the potential security risks related to CTKD, the
Bluetooth standard does not provide a security analysis
of CTKD and does not include CTKD in the BT and
BLE threat models [12, p. 1401]. We address this concern
by performing the first security analysis of CTKD and
uncovering cross-transport issues. A cross-transport issue
enables an attacker to exploit BT from BLE or BLE from BT.
This category of issues is novel in the context of Bluetooth.
We now introduce our system and attacker models, and then
we describe the identified cross-transport issues using a
reference example.

3.1 System Model
Our system model considers two victims, Alice and Bob,
who want to securely communicate over BT and BLE. Al-
ice and Bob support CTKD and during pairing and session
establishment propose

::::
select

:
the strongest security mecha-

nisms(e.g., SSP:
::::::
Secure

::::::
Simple

::::::
Pairing

::::::
(SSP), “Secure Con-

nections”, and “Numeric Comparison”). Such mechanisms

:
.
:::::
Those

:::::::
security

::::::::::
procedures

:
are expected to protect Alice

and Bob against impersonation, eavesdropping, and man-in-
the-middle attacks on BT and BLE.

:::::::::::
[12, p. 269].

:::::
After

:::::::::
completing

:::::::
pairing, Alice and Bob can run secure sessions

both over BT and
::
/or

:
BLE. Without loss of generality, we

assume that Alice is the BT and BLE master and Bob is
the BT and BLE slave.

::::
Note

::::
that

:::
we

:::::
follow

::::
the

::::::::
Bluetooth

::::::::::
specification

::
of

:::::
using

:::
the

:::::
terms

::::::::::
master/slave

::::::
instead

:::
of

::::
more

::
apt

:::::
terms

::::
like

:::::::::::::
leader/follower.

Regarding the notation, we indicate a BT long term
:::::
pairing

key with KBT, a BT session key with SKBT, a BLE long term

::::::
pairing key with KBLE, and a BLE session key with SKBLE.
We

:::::::::
Moreover,

::
we

:
indicate a Bluetooth address with ADD.

Furthermore, we indicate
:
, a public key with PK, a private key

with SK, a
:::::
shared

:::::::::::::
Diffie-Hellman

:::::
secret

::::
with

::::
DK,

::
a nonce

with N, and a message authentication code with MAC.

3.2 Attacker Model and Goals
Our attacker model considers Charlie, a remote attacker in
Bluetooth range with Alice and Bob. The attacker aims to
compromise the secure BT and BLE sessions between the
victims

:::::::
without

::::::::
tampering

::::
with

::::
their

:::::::
devices. The attacker’s

knowledge is limited to what Alice and Bob advertise over
the air, e.g., full or partial Bluetooth addresses, Bluetooth
names, authentication requirements, IO capabilities, and de-
vice classes.

The attacker does not know long term keys or session keys

:::
any

:::
key

:
shared between Alice and Bob and does not observe

Alice and Bob when
::
is

:::
not

::::::
present

:::::
while they pair or establish

a secure session. Regarding the attacker ’s capabilities, the
attacker

:::::
secure

:::::::
sessions.

::::
The

:::::::
attacker can scan and discover

BT and BLE devices, jam the Bluetooth spectrum, pair over

Figure 2: Cross-transport issues
:::
The

:::::
three

::::::
phases

:::
of

:::
the

:::::
CTKD

::::
life

:::::
cycle:

:::::::::
Discovery (CTI

::
to

::::::::
exchange

:::::::
features)with

:
,
::::::
Pairing

:::
(to

::::
agree

:::
on

:
a
::::::
pairing

::::
key

::::
and,

::::::
through

:
CTKD. We

identify each issue with
:
,
:::::
create

:
a particular phase of

:::::
pairing

:::
key

:::
for

:
the Bluetooth secure connection life-cycle

::::
other

::::::::
transport), but they are all directly

:::
and

:::::::::::::
Communication

:::
(to

:::::::
establish

::::::
secure

:::::::
sessions

::
on

::::
BT

::::
and/or indirectly caused by

the CTKD mechanism
::::
BLE).

BT and BLE using
::::::
channel,

::::
pair

::::
with

:::::
Alice

:::
and

::::
Bob CTKD,

propose weak association mechanisms (e.g., “Just Works”),
and dissect and craft unencrypted Bluetooth packets.

The attacker has four goals. The first goal is to impersonate
Alice (to Bob) and take over Alice’s secure sessions. The
second goal

:::::
intent is to impersonate Bob (to Alice) and take

over Bob’s secure sessions. Master and slave impersonations
are two

:::::
Alice

:::
and

:::::
Bob’

::::::::::::
impersonations

:::
are

:
different goals as

they require different attacks
:::::
attack

:::::::::
techniques

::::
(i.e.,

::::::::
Bluetooth

:::::
master

::::
and

:::::
slave

:::::::::::::
impersonation

:::::::
attacks). The third goal

:::::::
objective

:
is to establish a man-in-the-middle position in a

secure session between Alice and Bob . The third goal
:::
and

requires combining and synchronizing the impersonation at-
tacks on Alice and Bob. The fourth goal is to pair and es-
tablish unintended

:::
and

:::::::
possibly

:::::::
stealthy

:
sessions with Alice

or Bob as an arbitrary device, without breaking their secure
session

::::::
existing

:::::::
pairings

::::
and

::::::
secure

:::::::
sessions

:::::::
between

:::::
Alice

:::
and

::::
Bob.

3.3 CTKD Life Cycle

:::
We

:::::
first

:::::::::::
demonstrate

:::::
the

:::::::
CTKD

:::::
life

::::::
cycle

:::
in

:::
a

::::::::::::
non-adversarial

:::::::
setting

::::
to

:::::
later

:::::::::
highlight

::::
the

:::::::
CTKD

:::::
issues

:::::::
(Section

::::
3.4)

:::
and

:::::::
attacks

:::::::
(Section

:::
4).

:::
The

::::
first

:::::
phase

::
of

:::
the

::::::
CTKD

:::
life

:::::
cycle

::
is
:::::::::
Discovery

:
,
:::
see

::::::
Figure

::
2.

::::::
During

:::::::::
Discovery,

:::::
Alice

::::
and

::::
Bob

::::
find

:::::
each

:::::
other

::::
and

::::::::
exchange

::::
their

:::::::::
capabilities

:::::
(e.g.,

:::::
Alice

:::::
scans

:::::
while

::::
Bob

::
is

:::::::::
advertising

::
his

:::::::::
presence).

::::::
During

::::
this

:::::
phase

:::::
Alice

::::
and

::::
Bob

::::::
declare

:::
BT,

::::
BLE,

:::::
SSP,

:::
and

::::::
Secure

:::::::::::
Connections

:::::::
support.

:::::
Note

::::
that

:::
the

::::::::
Bluetooth

::::::::
standard

::::
does

::::
not

::::::
include

:::::::
CTKD

:::::::
support

::
as

::
a

:::::::
separate

::::::
feature

:::
but

:
it
::
is

::::::::
implicitly

::::::::
activated

::
by

::::::::
declaring

:::
BT,

::::
BLE,

::::
SSP,

::::
and

::::::
Secure

:::::::::::
Connections.

::::
After

:::::::::
Discovery,

:::::
Alice

::::
and

::::
Bob

::::::
initiate

:::::::
Pairing

:::
that

:::
can

::
be

:::::::::
performed

:::::
either

::::
over

:::
BT

::
or

:::::
BLE.

:::
As

::
a

:::::
result

::
of

::::::
pairing

::::
Alice

::::
and

::::
Bob

::::::::
establish

:
a
:::::
secret

:::::::
pairing

:::
key

:::::
(e.g.,

:
KBLE::

or
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KBT:):::::
using

::::
SSP

::::
with

::::::
Secure

:::::::::::
Connections.

::
In

:::::::::
particular,

:::
this

::::::
pairing

:::::
mode

::::
uses

::::::
ECDH

::
to

::::::::
generate

:
a
::::::
shared

:::::
secret

::::
and

:
a

:::
key

::::::::
derivation

::::::::
function

:::
that

::::::::
generates

::::
the

::::::
pairing

:::
key

:::::
using

::
as

:::::
inputs

:::
the

::::::
shared

::::::
secret,

:::::
Alice

::::
and

::::
Bob’

::::::
ADD,

::::
and

:::
two

::::::
nonces.

:::::
Once

:::::
Alice

::::
and

::::
Bob

::::
share

::
a
::::::
pairing

::::
key,

::::
then

::::
they

:::::::
complete

::
a
::::::::
Bluetooth

::::::::::
association

:::::
phase.

::::::
There

:::
are

:::::::
different

:::::::::
association

::::::::::
mechanism

:::
and

::
in
::::

our
:::::
threat

::::::
model

:::
we

::::::
assume

:::
that

:::::
Alice

::::
and

::::
Bob

::::
use

::
a
::::::
strong

::::::::::
mechanism

:::::
(e.g.,

:::::
Alice

:::
and

::::
Bob

:::::::
generate

:::
the

:::::
same

::::::::
numeric

::::::::
sequence

:::
and

:::
the

::::
user

:::::::
confirms

:::::::
those).

::::
After

::::::::::
association

::
is
::::::::::

completed,
:::::
Alice

::::
and

::::
Bob

::::
run

:::
the

:::::
CTKD

::::
key

::::::::
derivation

::::::::
function

::
to

:::::::
compute

::
a
::::::
second

::::::
pairing

:::
key

:::
for

:::
the

::::::::
transport

::::
that

:::
was

::::
not

::::
used

:::::
while

:::::::
pairing

::::
(e.g.,

:::::
derive KBT ::::

from
:
KBLE::

or
:::
vice

::::::
versa).

::::
The

::::::::
Bluetooth

:::::::
standard

:::::::
provides

:
a
::::::
CTKD

::::::::
function

:::
that

::
is
::::::::::::
deterministic,

::
as

::
it

::::
uses

:
a

::::::
pairing

:::
key

::::
and

:::::::
constant

::::::
strings

::::
(e.g.,

::
"
::::
brle

:
"
::
or

:
"
::::
lebr

::
")

::
as

:::::
inputs

:::::::::::
[12, p. 1401]

:
.
::::::::
Moreover,

:::
the

:::::::::
Bluetooth

:::::::
standard

::::
does

:::
not

::::::
require

::
to

:::::::
exchange

::::
any

:::::
packet

::::
over

:::
the

::
air

::
to

::::::
signal

::::
when

:::::
CTKD

::
is
::::
used

::::
and

:::
the

:::::::
outcome

::
of

:::
its

:::::
usage.

:

::
As

:::::
soon

:::
as

:::::
Alice

::::
and

::::
Bob

::::::::
complete

:::::::
Pairing

::::
they

::::
start

::
the

::::::::::::::
Communication

:::::
phase.

:::::::
During

::::
this

::::::
phase

:::::
Alice

::::
and

:::
Bob

::::::::
establish

::::::
secure

:::::::
sessions

:::::
over

:::
BT

::::::
and/or

:::::
BLE.

:::::
Each

::::::
session

::::::
derives

::
a
::::
fresh

:::::::
session

:::
key

:::::
from

:::
the

::::::::::::
correspondent

::::::
pairing

:::
key

::::
and

::::::
session

:::::::
nonces

::::
(e.g.,

:
SKBT:::::

from
:
KBT:, :::

and
SKBLE:::::

from KBLE :
),

:::
and

::::
uses

:::
the

:::::::
session

:::
key

::
to

:::::::
encrypt

:::
and

:::::::::::::
integrity-protect

:::
the

::::
link

::::
layer

:::::
traffic

::::
with

::::::::::
AES-CCM.

:

3.4 Cross-Transport Issues with CTKD

We now present

:::::
CTKD

::
is
:::
an

:::::::::
interesting

:::::
attack

::::::
surface

:::
for

:::::::
several

:::::::
reasons.

:::::
CTKD

:::::::
crosses

:::
the

:::::::
security

::::::::
boundary

:::::::
between

:::
BT

::::
and

:::::
BLE.

::::::::
Therefore,

::
a
::::::
CTKD

:::::::::::
vulnerability

::
is

:::::::::
exploitable

:::
for

::::
both

:::
BT

:::
and

:::::
BLE.

:::
As

::::::
CTKD

:::::::
bridges

:::
BT

:::
and

:::::
BLE,

:::
an

:::::::
attacker

:::
can

::::::
exploit

:::::
known

::::::::::::
vulnerabilities

:::
on

:::
BT

::
to

::::::
exploit

::::
BLE

:::
and

::::
vice

:::::
versa.

:::
As

::::::
CTKD

::
is
:::

an
:::::::
optional

:::::::
feature

:::
and

::
is
::::::::::

transparent

::
to

:::
the

:::::
user,

::
an

::::::
attack

:::::::::
exploiting

::::::
CTKD

::
is
:::::

hard
::
to

:::::::
detect.

::
As

::::::
CTKD

:::::::
requires

::::::
Secure

:::::::::::
Connections

:::::::
support,

::
an

:::::::
attacker

:::
can

:::::
break

:::
the

::::
most

::::::
secure

:::
BT

::::
and

::::
BLE

::::::
modes

:::
by

:::::::
targeting

::::::
CTKD.

::::::
Despite

:::
the

:::::
listed

:::::::
reasons,

:::
the

::::::::
Bluetooth

:::::::
standard

::::
does

:::
not

::::::
provide

::
a
:::::::
security

:::::::
analysis

::
of

::::::
CTKD

::::
and

::::
does

::::
not

::::::
include

:::::
CTKD

:::
in

::::
the

:::
BT

::::
and

:::::
BLE

:::::
threat

:::::::
models

::::::::::::
[12, p. 1401]

:
.

::
As

::
a
::::::
result,

::::::
CTKD

:::::::
remains

:::
an

::::::::::
unexplored

::::::
attack

::::::
surface

:::
and

::
in

::::
this

::::::
work,

:::
we

::::::
address

::::
this

:::::::
concern

:::
by

::::::::::
performing

::
the

::::
first

:::::::
security

:::::::
analysis

:::
of

::::::
CTKD.

::::
Our

:::::::
analysis

::::::::
uncovers

five cross-transport issues (CTI) that we identified as a
result of our security analysis of CTKD

::::::::::::
cross-transport

:::::
issues

:::::::::::
(summarized

:::
in

:::::
Table

::::
1).

:::
We

:::::
now

:::::::
describe

:::::
each

::::
issue

:::
in

::::::
detail

:::
by

:::::
using

::::
the

:::::::
CTKD

::::
life

::::::
cycle

::::::
phases

::::::::
presented

::
in

:::::::
Section

:::
3.3. The order in which we present

the issues follows the life-cycle of a Bluetooth connection,
with discovery, pairing, and communication phases (see
Figure ??). Section 4 then presents how to leverage the issues

:::
CTI

::::
Name

: ::::
Phase

: :::::::
Summary

:

:
1

::::
Roles

: ::::::::
Discovery

::::
Role

:::::::::
asymmetries

:

:
2

:::
Sec.

:::::
Conn.

::::::::
Discovery

::
No

::::::
Secure

:::::::::
Connections

:

:
3

:::::::::
Association

:::::
Pairing

: ::
No

:::::::
uniform

::::::::
association

:

:
4

:::
Key

::::::
Overw.

:::::
Pairing

: :::::::
Overwrite

::::::
pairing

::::
keys

:
5

:::::
States

::::::
Comm.

::::::
Pairable

::::
over

::
BT

:::
and

::::
BLE

:

Table 1:
::::::::::::
Cross-transport

::::::
issues

:::::::
(CTIs)

::::
with

:::::::
CTKD.

::::
The

:::::
issues

:::
are

:
at
:::
the

:::::::::
Bluetooth

::::::::::
specification

:::::
level.

:::
SC

:::::::::
abbreviates

:::::
Secure

:::::::::::
Connections

:::
and

::::
KO

:::::::::
abbreviates

::::
Key

:::::::::
Overwrite.

for attacks.

CTI 1: Roles
::::::::::
(Discovery) During the discovery

phase
::::::::
Discovery, Alice and Bob can discover each other

:::
and

:::::
trigger

:::::::
Pairing both over BT and BLE. This is a consequence

of CTKD as it enables more ways to pair devices with less
user interaction. Alice, as master, is expected to send pairing
requests over BT or BLE to Bob, and the user expects to pair
Alice and Bob by discovering Bob on Alice’s screen and
sending a pairing request to Bob. However, BT master and
slave roles are not fixed (unlike BLE) and Alice can receive
pairing requests over BT. The attacker can take advantage
of this role asymmetry to impersonate a slave device that is
already trusted by Alice and send a pairing request

:
a
::::::
pairing

::::::
request to Alice over BT even if Alice is expecting to receive
only BT and BLE pairing responses

::::::
pairing

::::::::
responses.

CTI 2: Secure Connections
::::::::::
(Discovery) When

:::::
During

:::::::::
Discovery, Alice and Bob have discovered each other, they
exchange their capabilities before starting the pairing process.
To use CTKD they declare “Secure Connections” support
for the transport used for pairing(BT or BLE). However, the
specification does not specify if CTKD support requires “Se-
cure Connections” support only for the pairing transport or
for both transports

::::
only

:::
for

:::
the

::::::
pairing

::::::::
transport

::
or

:::
for

::::
both

::::::::
transports. From our experiments

:
, we find that CTKD is used

when “Secure Connections” is only supported by the pair-
ing transport. This issue considerably increases the CTKD
attack surface, as an attacker is not limited to target only de-
vices which support BLE and

:::
and BT “Secure Connections”

:::
but

:::
can

::::
also

:::::
target

::::::
devices

::::
that

::::::
support

:::::
BLE

::
or

::
BT

:::::::
“Secure

:::::::::::
Connections”.

CTI 3: Association
::::::::
(Pairing) After exchanging their

capabilities
::::::
During

:::::::
Pairing, Alice and Bob perform the

pairing process.
:::
can

::::
pair

::::::
either

::::
over

:::
BT

:::
or

:::::
BLE.

::::::
While

BT and BLE pairings are fundamentally different but
they provide similar association mechanisms. However, the
choice of the association mechanism is not enforced across
BT and BLE

:::
use

:::::::
different

:::::::::
protocols

::::
they

:::::
both

::::::
include

:::
an
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:::::::::
association

::::::
phase.

:::
The

:::::
issue

::
is

:::
that

::::::
CTKD

:::::
does

:::
not

::::::
enforce

::
the

::::::
chosen

::::::::::
association

::::::::::
mechanism

:::::
across

:::
BT

::::
and

::::
BLE. This

issue can be exploited by the attacker to pair with a weak
association mechanism, such as “Just Works”, on one trans-
port while the other transport expects a strong association
mechanism, such as “Numeric Comparison”. This is espe-
cially dangerous in case of impersonation attacks because
the user is not going to notice an attacker that is (re-)pairing

::::::::
re-pairing using “Just Works” pretending to be a previously
securely paired and trusted device.

CTI 4: States
:::
Key

::::::::::
Overwrite

:::::::::
(Pairing) When

:::::
During

::::::
Pairing,

:
Alice and Bob complete pairing they remain

pairable over BT and BLE and Bob even
::
use

:::::::
CTKD

::
to

:::::
derive

:
a
:::::::

second
::::::
pairing

::::
term

::::
key

:::
for

:::
the

::::::::
transport

:::
not

::::
used

::
for

:::::::
pairing.

::
If

:::::
Alice

:::
and

::::
Bob

::::::
already

::::::
shared

::
a

::::
long

::::
term

:::
key

::
for

:::::
such

:::::::
transport

:
remains discoverableover BLE

::::::
CTKD

:::
will

::::::::
overwrite

:::
the

:::::::
existing

::::::
pairing

:::
key

:
.
::::
This

::
is

:::
an

::::
issue

:::::::
because

::
an

:::::::
attacker

::::
who

:
is
::::::::::::
impersonating

:::::
either

:::::
Alice

::
or

::::
Bob

:::
can

:::
use

:::::
CTKD

::
to
::::::::
overwrite

::::
long

::::
term

:::::
keys.

:::
For

::::::::
example,

:
if
:::::
Alice

:::
and

:::
Bob

:::
are

:::::::
running

::
a
:::::
secure

:::::::
session

::::
over

:::
BT

::::
then

:::
the

:::::::
attacker

:::
can

:::
pair

:::::
with

:::
Bob

::::
over

:::::
BLE

:::::
while

::::::::::::
impersonating

:::::
Alice

:::
and

::::::::
overwrite

:::
the

:::
BT

:::
key

:::
that

::
is
::::::
shared

::
by

:::::
Alice

::::
and

::::
Bob.

::::
CTI

::
5:

:::::
States

::::::::::::::::
(Communication)

::::::
During

:::::::::::::
Communication,

::::
Alice

::::
and

:::
Bob

::::::::
establish

:::::
secure

:::::::
sessions

::::
over

:::
BT

::::::
and/or

:::::
BLE.

::
In

:::
our

:::::::::::
experiments,

:::
we

:::::::
observed

::::
that

:::::
Alice

:::
and

::::
Bob

::::::
remain

:::::::
pairable

::::
over

:::
BT

::::
and

::::
BLE.

::::
Bob

::::
also

:::::::
remains

:::::::::::
discoverable

::::
over

::::
BLE. This is not the case without CTKD where a device

is pairable and optionally discoverable only on one transport.
This issue gives the attacker more options to discover and
pair with victim devices. For example, the attacker can pair
on the transport that is not currently in use by Alice and
Bob. Furthermore, in some CTKD use cases one transport is
supposed to be used only for pairing and deriving keys for
the other. Hence, that transport is always in

:
a pairable state

but never used after paring
:::::
pairing. This enables the attacker

to establish unintended malicious sessions on both transports
by pairing on the unused one and forcing CTKD.

CTI 5: Key Overwrite Once Alice and Bob are paired,
they share a long term key, derive a second long term key via
CTKD, and start a secure channel on BT and/or BLE. If Alice
and Bob already shared a long term key for the transport used
by CTKD then CTKD will overwrite the existing key. This
is a serious issue because an attacker who is impersonating
either Alice or Bob can use CTKD to overwrite long term
keys. For example, if Alice and Bob are running a secure
session over BT then the attacker can pair with Bob over BLE
while impersonating Alice and overwrite the BT key that is
shared by Alice and Bob.

Figure 3: BLUR impersonation attack strategy. Charlie pairs
with Bob over

:::
one

:::::::
transport

:::::
(e.g., BLE

:
)
:::
and

::::::::::
(over)writes

:::
the

::::::
pairing

::::
keys

:::
for

:::::
both

::::::::
transports, overwriting

::::::::
including

:
Al-

ice’s key BT
:::::
pairing

::::
key.

4 BLUR Attacks on CTKD

We now design four novel CTKD cross-transport attacks
based on the five cross-transport issues that we discuss in
Section 3.4. Our attacks are

::
We

:::::::
provide the first attacks that

exploit CTKDby ,
:
blurring the security boundary between BT

and BLE. These
:::
Our attacks are standard-compliant and en-

able impersonation, interception, and manipulation of traffic
between victims, as well as unintended sessions with a victim
device. We call our attacks BLUR attacks.

4.1 Master and Slave Impersonation

Figure 3 presents the BLUR impersonation attack strategy
using a slave impersonation attack as a reference example.
Before the attack takes place Alice and Bob (the victims)
are running a secure BT session and they share a BT long
term key (KBT).

::
As

::
a
::::
side

:::::
effect

::
of

:::::::
CTKD,

:::::
Alice

:::
and

::::
Bob

::
are

:::::::
pairable

:::
on

:::::
BLE. Charlie (the attacker), targets the BLE

transport
:::
BLE

:
(which is not used by the victims) and pairs

with Bob over BLE , pretending to be Alice
:
as

::::::
Alice

:::
and

::::::
triggers

:::::::
CTKD,

:::::
while

:::
the

:::
real

:::::
Alice

::
is

:::::::::::::
communicating

::::
with

:::
Bob

::::
over

:::
BT. Because of CTKD, Bob overwrites the BT long

term
::::::
Charlie

:::::
forces

::::
Bob

::
to

::::::::
overwrite

:::
the

:::
BT

:::::::
pairing key that

he established with Alice with the one derived when pairing
with Charlie

::
his

::::
own. As a result, Charlie takes over Alice’s

BT session , and
:::
from

:::::
BLE.

::::
The

::::
real

:
Alice can no longer

connect to Bob as she does not possess the correct KBT.
In the following two paragraphs we describe the technical

details of the BLUR
::::
and

:::
can

::::::
attempt

::
to

::::::
re-pair

::::
with

:::
Bob

::::
only

::::
when

:::::::
Charlie

:::::::::
terminates

:::
his

:::
BT

:::::::
session

::::
with

:::::
Bob.

::::::
Charlie

:::
uses

:::
the

::::::::
described

::::::
attack

::::::
strategy

::
to

:::::::
perform master and slave

impersonation attacks .
::
as

:::::::
follows:

Master impersonation Charlie impersonates Alice (mas-
ter) and takes over her BT secure session with Bob as in
Figure 4. Charlie

:::::::
discovers

::::
Bob

::
as

:::
he

::
is

:::::::
pairable

::::
over

::::
BLE
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Charlie as Alice (master)

C

Bob (slave)

B

BLE Pairing Request:
Just Works, ADDA, PKC , NC

BLE Pairing Response:
ADDB , PKB, NB

DK = PKB · SKC

KBLE = kdf(DK, NC ,
NB, ADDA, ADDB)
KBT = ctkd(KBLE)

DK = PKC · SKB

KBLE = kdf(DK, NC ,
NB, ADDA, ADDB)
KBT = ctkd(KBLE)

Figure 4: Master impersonation attack and takeover. Char-
lie (acting as master) pairs with Bob over BLE, overwriting
Alice’s key.

:::
and

:
sends a BLE pairing request using Alice’s Bluetooth

address (ADDA)and requests to use ,
::::::
Secure

:::::::::::
Connections

::::::
support

:::
(to

::::::
trigger

:::::::
CTKD),

:::
and

:
“Just Works”

:::::::::
association

:
to

avoid user interaction. The
:::::::
Charlie’s

:
BLE pairing request

is standard-compliant because Charlie impersonates a BLE
master and is going to be accepted by Bob who is pairable
over BLE . Bob sends

::::
does

:::
not

::::::
collide

::::
with

:::
the

::::
BT

:::::
traffic

:::::::::
exchanged

::
by

:::::
Alice

::::
and

::::
Bob

::
as

:::
BT

::::
and

::::
BLE

::::
use

:::::::
different

:::::::
physical

:::::
layers

:::
and

::::
link

::::::
layers.

:::
Bob

:::::
sends

:::::::
Charlie a BLE pairing response believing that

Alice wants to pair (or repair
:::::
re-pair) over BLE

::::
using

::::::
CTKD.

Charlie and Bob use the exchanged nonces and public keys to
compute

:::
DK.

:::::
Then

::::
they

:::
use

:::
DK

::::
and

:::
the

:::::::::
exchanged

::::::
nonces

::::
(NC,

::::
NB)

::
to

::::::::
compute

:
KBLE (kdf) and derive

:
.
:::::
Then,

::::
they

:::::
locally

::::::::
compute

:
KBT from KBLE using

:::
the

:
CTKD’s key

derivation functions
::::::
function

:
(ctkd). As a result of the mas-

ter impersonation attack, Charlie forces Bob to overwrite the
BT pairing key that he established with Alice with his BT

::::::
pairing

:::
key,

:::::::::
establishes

::
a

::::
BLE

::::::
pairing key , shares a BLE key

with Bob, and takes over Alice’s BT session. Alice can no
longer establish secure sessions with Bob as, during pairing
with Charlie, Bob overwrote her shared ley.

Slave impersonation Charlie impersonates Bob (slave)
and takes over his BT secure session with Alice as in Fig-
ure 5. Charlie sends a BT pairing request using

::
In

:::
this

::::
case

::::::
Charlie

::::
has

::
to

::::
wait

:::::
until

:::
the

::::::
secure

::::
BT

:::::::
session

:::::::
between

::::
Alice

::::
and

:::::
Bob

::
is

::::::::::
interrupted

:::::
(e.g.,

:::
by

:::::::
running

::
a
::::::
master

:::::::::::
impersonation

::::::
attack

::::::
against

:::::
Bob).

:::::
Then

::::::
Charlie

:::
can

::::::
exploit

:::
role

:::::::::::
asymmetries

::::::::
between

:::
BT

::::
and

::::
BLE

:::
by

:::::::
sending

::
a
:::
BT

::::::
pairing

::::::
request

::
to
:::::

Alice
:::::

who
::
is

:::::::
typically

:::::::::
expecting

::::::
pairing

::::::::
responses

:::::
either

::::
over

:::
BT

:::
or

:::::
BLE.

:::::::
Charlie’s

:::::::
pairing

::::::
request

::::::
include

:::::::
Secure

:::::::::::
Connections

:::::::
support

:::
(to

:::::::
trigger

:::::::
CTKD),

Bob’s Bluetooth address (ADDB) and requests to use “Just

Alice (master)

A

Charlie as Bob (slave)

C

BT Pairing Request:
Just Works, ADDB , PKC , NC

BT Pairing Response:
ADDA, PKA, NA

DK = PKA · SKC

KBT = kdf2(DK, NC ,
NA, ADDA, ADDB)
KBLE = ctkd(KBT)

DK = PKC · SKA

KBT = kdf2(DK, NC ,
NA, ADDA, ADDB)
KBLE = ctkd(KBT)

Figure 5: Slave impersonation attack and takeover. Charlie
(acting as slave) sends a BT pairing request to Alice (master)
as Bob, overwriting Bob’s key.

Figure 6: BLUR man-in-the-middle attack. The attacker uses
the BLUR Impersonation attack against two devices that were
previously paired. The two devices do not detect a change but
Charlie now has access to all traffic.

Works”
:::::::::
association

:
to avoid user interaction. The BT pairing

request is standard-compliant because BT allows a slave to
send a BT pairing request by switching role before pairing is
started.

Alice, who is pairable over BT, sends a BT pairing response
believing that she is talking to Bob (a trusted device)

:::
Bob

:::::
wants

::
to

::::::
re-pair

::::
over

::::
BT

:::::
using

::::::
CTKD. Charlie and Alice

use the exchanged nonces and public keys to compute
::::
DK.

::::
Then

::::
they

:::
use

::::
DK

:::
and

:::
the

:::::::::
exchanged

:::::::
nonces

::
to

:::::
derive

:
KBT

(kdf2), and
:
.
:::::
Then

:::
they

::::::
locally

:
derive KBLE from KBT using

CTKD’s key derivation functions (ctkd). As a result of the
slave impersonation attack, Charlie forces Alice to overwrite
the BT pairing key that she established with Bob with his BT
key, shares a BLE key with Alice, and takes over Bob’s BT
session. Bob cannot re-establish secure sessions with Alice as
he no longer possess the correct paring

:::::::
possesses

:::
the

::::::
correct

::::::
pairing keys.

As summarized in Table 2, the master impersonation at-
tack takes advantage of all the cross-transport issues that we
present in Section 3.4 except CTI 1. In particular, the attacker
takes advantage of non-consistent “Secure Connections” sup-
port (CTI 2), lack of consistency between BT and BLE asso-
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CTI 1 CTI 2 CTI 3 CTI 4 CTI 5
Roles SC

:::
Sec.

:::::
Conn. Association

:::::
Assoc. States

:::
Key

::::::
Overw. KO

::::
States

Master Imp. x X X X X

Slave Imp. X X X x X
:
x

MitM X X X X X

Unin. Sess. x X x
:
x
:

Xx

Table 2: The mapping between
:::::::
Mapping

:
the

::::::::::
requirements

::
of

:::
our

::::
four

::::::
BLUR

::::::
attacks

::
to

:::
the

:::::::::
discovered

:
cross-transport

issues (CTI)identified in Section 3.4 and the four BLUR
attacks discussed in Section 4.We abbreviate “Secure
Connections” with SC, and Key Overwrite with KO.

Alice (master)

A

Charlie (MitM)

C

Bob (slave)

B

Alice and Bob share KBT (BT pairing key)

Impersonation attack as Alice over BLE

KBT overwrit-
ten via CTKD
with KBC

Impersonation attack as Bob over BT

KBT overwrit-
ten via CTKD
with KAC

NA NA

NB ,MACKBC
(NA, NB ,ADDA,ADDB)NB ,MACKAC

(NA, NB ,ADDA,ADDB)

MACKAC
(NA, NB ,ADDA,ADDB) MACKBC

(NA, NB ,ADDA,ADDB)

BT session between Alice and Bob with Charlie in the middle

Figure 7: MitM attack and takeover. Charlie impersonates
Alice as in Figure 4, impersonates Bob as in Figure 5, let the
victims mutually authenticate and then gets access to their
traffic.

ciation methods (CTI 3), more opportunities to pair (CTI 4
:
5),

and key overwriting (CTI 5
:
4). The slave impersonation attack

takes advantage of all CTIs except CTI 4
:
5, including the role

asymmetries between BT and BLE (CTI 1).

4.2 Man-in-the-Middle
Figure 6 presents the high-level description of our BLUR man-
in-the-middle attack. As in the previous section, Alice and
Bob are paired over BT and they run a secure session over BT.
During this attack, Charlie sequentially performs the master
and slave impersonation attacks described in Section 4.1. As
a result, the attacker overwrites Alice and Bob’s BT pairing
keys with known keys, establishes BLE long term keys with
Alice and Bob, and positions himself in the middle to access
all traffic between the victims and to inject valid traffic both
on BT and BLE.

Figure 7 shows the details of the MitM attack. Firstly, Char-

Figure 8: BLUR unintended sessions attack. Charlie sends
a BLE pairing request to Bob (who remains pairable over
BLE due to CTKD) as an unknown device with arbitrary
capabilities. After CTKD completes, Charlie can establish
secure but unintended BT and BLE sessions with Bob without
breaking Bob’s existing pairings and sessions.

lie impersonates Alice to Bob over BLE (as in Figure 4),
overwrites Bob’s BT key with his key (KBC). Secondly, Char-
lie impersonates Bob to Alice over BT as in Figure 5 and
overwrites Alice’s BT key with his key (KAC). Then, Alice
and Bob exchange two nonces (NA, NB) to authenticate the
BT pairing key. Charlie mutually authenticates with Bob and
Alice by using a message authentication code (MAC) function
keyed with the appropriate key and input parameters. Finally,
Alice and Bob establish a secure BT session with Charlie in
the middle, and Charlie gets access to all traffic exchanged
by Alice and Bob and can modify and inject arbitrary valid
traffic between Alice and Bob.

As summarized in Table 2, the BLUR man-in-the-middle
attack is a composition of the master and slave impersonation
BLUR attacks and takes advantage of all the CTI that we
present in Section 3.4.

4.3 Unintended Sessions
Figure 8 presents a BLUR unintended session attack targeting
Bob. In this scenario, Alice and Bob are running a secure
session over BT but they are still pairable over BLE in order
to accept pairing requests with other devices and run CTKD.
Charlie targets Bob (slave) by sending him a paring

:::::
pairing

request over BLE as an unknown device. Charlie can pretend
to be any device having arbitrary capabilities, e.g., Bluetooth
address, Bluetooth name, device class, “Secure Connections”
support, and weak association. Bob, accepts to pair with Char-
lie while continuing his session with Alice. Then, Charlie and
Bob negotiate KBLE, and derive KBT using CTKD. Now, Char-
lie can establish secure but unintended BT and BLE sessions
with Bob without breaking his existing pairings or sessions
with other devices (e.g., with Alice).

Charlie can also establish unintended sessions with Alice
(master). In particular, he can impersonate a BLE slave and
start advertising his presence. Once Alice discovers Charlie,
she can establish a BLE connection with him, and Charlie
can explicitly request to pair using a SMP Security Request
packet [12, p. 1401]. Then, Alice and Charlie compute KBLE,
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X1 7th gen WH-CH700N

Alice
(master)

Bob
(slave)X1 3rd gen

USB

CYW920819

Charlie (attacker)

BTSecure Session

Figure 9:
:::::::
Example BLUR Attack Scenario. Alice (master) is

a ThinkPad X1 7th gen, Bob (slave) is a pair of Sony WH-
CH700N headphones and Charlie (attacker) is a CYW920819
board connected via USB to a ThinkPad X1 3rd gen. Alice
and Bob have paired in absence of Charlie, and are running a
secure BT session.

and derive KBT using CTKD. Now, Charlie can establish se-
cure but unintended BT and BLE sessions with Alice without
breaking her existing pairings or sessions with other devices
(e.g., with Bob). Charlie can take advantage of the unintended
sessions with Alice and Bob in many ways. For example,
he can use the session to drop known exploits such as Blue-
Borne [6], BLEEDINGBIT [7], or SweynTooth [20], new
exploits, and to enumerate and tamper with BT and BLE ser-
vices and characteristics (including the protected ones).

Those attacks are particularly effective when the victims
are using one transport only to pair and derive keys with
CTKD. For example, a Bluetooth speaker only streams music
over BT but is also pairable over BLE to enable users to
discover it without having to put it into BT pairing mode. As
summarized in Table 2 the unintended session BLUR attack
takes advantage of CTI 2 and CTI 4.

5 Implementation

In this section we describe our attack scenario, our attack
device, an implementation of

::::::::::::
implementation

:::
of

::
a

::::::
custom

:::::
attack

::::::
device

::
to

::::::::
perform

:
the BLUR attacks (proposed in

Section 4) using open-source software and off-the-shelf
hardware, an implementation of the CTKD mechanism used
to validate our attacks, and an evaluation of our attacks
on unique devices from different hardware and software
vendors

:::
and

:::
our

:::::::::::::::
re-implementation

::
of

::::::::
CTKD’s

:::
key

::::::::
derivation

:::::::
function. The tools that we developed will be open-
sourcedafter responsible disclosure with the Bluetooth SIG.

:
.

5.1 Attack Scenario
Our attack scenario is presented

::::::
follows

:::
the

::::::::
example in Fig-

ure 9 and includes two victims,
:::::
Alice

:::::::
(master)

::::
and

::::
Bob

::::::
(slave).

::
In

:::::::
Figure

:
9
::::::

Alice
::
is

::::::::::
represented

:::
by a 7th genera-

Figure 10:
:::::
Attack

::::::
Device

::::::
Block

::::::::
Diagram.

:::
The

::::::
attack

:::::
device

:
is
:::::::::

composed
:::

of
::::::
Linux

::::::
laptop

::::::
(Host)

::::
and

::
a

:::::::::::
CYW920819

::::::::::
(Controller)

::::::::
connected

::::
via

::::
USB

::::
and

:::::::::::::
communicating

:::::
using

::
the

:::::
Host

::::::::
Controller

::::::::
Interface

:::::
(HCI)

::::::::
protocol.

tion ThinkPad X1 laptop (Alice, master) and
:::
and

::::
Bob

:::
by a

pair of Sony WH-CH700N headphones(Bob, master). The at-
tacker (Charlie) uses a CYW920819 development board [16]
and a 3rd generation ThinkPad X1 laptop . As in our attack
descriptions in Section 4, the victims have securely paired in
absence of Charlie, and are running a secure BT session. The
evaluation results

::
as

::
an

:::::
attack

:::::::
device.

:::
The

:::::::::::::
implementation

::
of

::
the

::::::
attack

:::::
device

::
is
:
presented in Section 6.2 are obtained by

using
:::
5.2.

::
In

:::
our

:::::::::
evaluation,

:::
we

:::
use

:
the same attack scenario

targeting
:::
with

:
different victim devices.

Table 3 presents the relevant Bluetooth features supported
by Alice and Bob

::
To

::::::::::
understand

::::
the

::::::::::
capabilities

:::
of

:::
the

::::::
victims

:::
and

:::
the

:::::::
attacker

:::
we

:::::::::
summarize

::::
their

:::::
most

::::::::
important

::::::::
Bluetooth

:::::::
features

::
in

:::::
Table

:
3. We note that Bob is capable of

using CTKD over BLE even if he does not support “Secure
Connections” over BT and does not support Bluetooth version
4.2. This confirms the “Secure Connections” cross-transport
issue (CTI 2) that we discussin Section 3.4.

:
.
::::::::::
Furthermore

::
to

::::::
conduct

:::
the

:::::::
attacks

::
we

::::
had

::
to

:::::::
develop

::
an

::::::
attack

::::::
device

:::
that

::::::
enabled

::
us

::
to
:::::::
change

::
all

:::
the

:::::::
features

::
in Table 3also shows the

featuressupported by Charlie, and indicates with an asterisk
(*) the features that we can modify with our implementation
of the BLUR attacks. For example, our implementation
enables to send pairing requests over BT and BLE with with
arbitrary Bluetooth addresses, names, associations, “Secure
Connections” (SC) support, and authentication requirements
(AuthReq).

::::::
Some

:::
of

:::::
those

::::::::
features,

::::
such

:::
as

:::
the

:::::::
version

:::
and

::::::::::
subversion

::::::::
numbers,

::::
are

::::::::::
particularly

::::::::::
challenging

:::
to

::::::
modify

::
as

::::
they

:::::::
require

:::::::
patching

::
a
:::::::::
Bluetooth

:::::::
firmware

::::
that

:
is
::::::::
typically

:::::::::
proprietary

::::
and

:::::::::::
closed-source.

5.2 Custom Attack Device

Our attack device

::
To

::::::::::
implement

:::
the

::::::
BLUR

::::::
attack

::::
we

::::
had

::
to

:::::::
develop

::
a

::::::
custom

:::::
attack

::::::
device.

:::
As

:::
we

:::
can

:::
see

:::::
from

::
its

:::::
block

:::::::
diagram

::
in

::::::
Figure

:::
10,

::::
the

:::::
attack

::::::
device

:
consists of a Linux lap-

top (Bluetooth host ) connected
:::::::::::
implementing

:::
the

::::::::
Bluetooth

:::
host

::::::::::
component

:::::
using

:::::
BlueZ

::::
(i.e.,

::::::::::
user-space)

:::
and

:::
the

:::::
Linux

9



Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress

Subversion 256 12942 256 / 8716*
::::
8716

Version 5.1 4.1 5.0 *

Name x7 WH-CH700N x1*
::
x1

:

ADD Redacted Redacted Redacted*
:::::::
Redacted

Class 0x1c010c 0x0 0x0*
:::
0x0

BT SC True Only Controller True*
:::
True

:

BT AuthReq 0x03 0x02 0x03*
::::
0x03

BLE SC True True True*
:::
True

:

BLE AuthReq 0x2d 0x09 0x2d*
:::
0x2d

CTKD True True True*
:::
True

:

h7 True False True*
:::
True

:

Role Master Slave Master*
:::::

Master

IO Display No IO Display*
::::::
Display

Association “Numeric C.” “Just Works” “Numeric C.” *

Pairable True True True*
:::
True

:

Table 3: Relevant Bluetooth features for Alice, Bob, and
Charlie

:
in

:::
our

::::::::
example

:::::
attack

:::::::
scenario. Alice and Bob sup-

port CTKD even if Bob’s Host does not support BT SC
(BT “Secure Connections”). We redact the devices’ Blue-
tooth addresses for privacy reasons.We append an asterisk
(*) to the attacker’s features that we can modify with our
implementation.

:::::
kernel.

::::
The

::::::
laptop

::
is

::::::::
connected

::::
via

::::
USB

:
to a CYW920819

development board(Bluetooth controller ). We implement our
attack device by developing custom code and tools both for
Linux and the board . Regarding

:
.
::::
The

:::::
board

::::::::::
implements

::
the

:::::::::
Bluetooth

:::::::::
controller

:::::
using

:
a
::::::::

firmware
::::

and
::
a
:::::::::
baseband.

:::
The

::::::
laptop

::::
and

:
the

:::::
board

:::::::
support

::::
BT,

:::::
BLE,

::::
SSP,

::::::
Secure

::::::::::
Connections,

::::
and

::::::
CTKD

::::
and

::::
they

::::::::::::
communicate

:::::
using

:::
the

::::
Host

::::::::
Controller

::::::::
Interface

:::::
(HCI)

::::::::
protocol

::::
over

::::
USB.

:

:::
For

:::
the host, we modify and recompile the Linux kernel

and BlueZ according to our needs. For example, by changing
the kernel we enable parsing of diagnostic messages from
the controller, and by changing BlueZ we can develop
custom user-space management commands for

::::
used

:::::::
standard

:::::
Linux

::::
tools

::
to

::::::::
configure

:::
an

:::::::
interface

:::::
(e.g.,

::::::::::
hciconfig

:
),

:::
and

::
to

:::::::
discover

::::
and

::::
pair

:::::
with

::
a

::::::
device

:::::
(e.g.,

:::::::::::::
bluetoothctl,

:::::::
hcitool

::
and

:::::::
btmgmt

:
).
::
In

:::::::::
particular,

::::::
btmgmt

:::
was

::::
very

:::::
useful

::
as,

::::::
unlike

::::
other

:::::
tools,

::
it

::::::
enables

::
to

::::::
decide

:::
the

::::
type

::
of

::::::
pairing

::::::
request

:::
and

::::::::
declared

::::::::::
association

::::::::::
mechanism.

:::::::::::
Furthermore,

::
we

:::::::
wanted

::
to

:::::
access

:::
the

:::::
traffic

:::::::::
exchanged

::::
over

:::
the

:::
air

::
by

:::
our

:::::
attack

::::::
device.

::::
This

::
is
:::
not

::::::::
available

:::
on

:
a
::::::::
standard

::::::::
Bluetooth

::::::
device.

:::
To

:::::::
achieve

::::
this

::::
goal

::::
we

::::
sent

::
a
::::::::::
proprietary

::::
HCI

::::::::
command

::::
from

::::
the

::::
host

::
to

::::::
enable

:::::::::
diagnostic

:::::
mode

:::
on

:::
the

::::::::
controller.

::::
This

:::::
mode

::::
tells

:::
the

:::::
board

:::
to

::::
copy

:::
all

:::
the

:::
BT

:::
and

::::
BLE

::::::::
link-layer

:::::::
packets

:::
and

::::
send

:::::
them

::::
over

::::
HCI

::
to

:::
the

:::::
host.

:::::
Then,

:::
we

:::::
added

:::::
extra

::
C

::::
code

:::
to

:::
the

:::::
Linux

::::::
kernel

::
to

:::::
parse

::::
those

::::
HCI

:::::::
packets.

::::
With

::::
this

:::::
setup,

::
we

::::
can

::::::
monitor

::::
both

::::
HCI

:::
and

::::::::
link-layer

:::::
traffic

:::::::
directly

::::
from

:::
the

::::
host

::::::
without

::::::::
requiring

:::::::::
over-the-air

:
BT and BLE

::::::
sniffers.

Regarding the controller , we use the
::::::::
Modifying

::
the

::::::::::
controller

:::::::
required

:::
us

:::
to

:::::::
interact

::::::::
directly

:::::
with

:::
the

::::::::::
development

:
board’s proprietary patching mechanism to

modify the Bluetooth firmware according to our needs. For
example, by writing the firmware ’s RAM we can change
the attack device’s features, including the features containing
an asterisk (*)in Table 3. This process required significant
engineering effort as we had to dump the Bluetooth firmware
from the board, reverse-engineer the relevant

::::::::
Bluetooth

::::::::
firmware.

:::
To

::::::
extract

::::
the

::::::::
firmware

:::
we

:::::
used

:
a
::::::::::

proprietary

:::
HCI

:::::::::
command

:::::
from

::::::::
Cypress

:::
to

::::
read

::::
and

:::::
save

::
a

:::::
RAM

:::::::
snapshot

:::::
from

::::
the

:::::::
board’s

:::::
SoC.

::::
We

:::::
took

:::
the

::::::::
snapshot

::::
after

:::
the

::::::::
firmware

::::
was

:::::::::
initialized

::
to

:::::::
acquire

:::
the

::::::::
firmware

::::::
patches

:::::::
applied

::
at

:::::::
runtime.

:::
We

:::
use

::::
the

:::::::
memory

:::::
maps

::::
from

::
the

:::::::
board’s

:::::
SDK

::
to

::::::
extract

::::
the

::::::
various

::::::::
segments

:::::
from

:::
the

:::::::
snapshot

::::::::
including

:::
the

::::::
ROM,

:::
the

::::::
RAM,

:::
and

:::
the

:::::::::
scratchpad

::::::::
segments.

:::
As

:::::::::
expected,

::::
the

::::::::
firmware

::::
was

:::
in

::::
the

:::::
ROM

:::::::
segment

:::
and

::::
was

:
a
::::::::

stripped
:::::
ARM

::::::
binary

:::::::::
containing

:::::
16-bit

::::::
Thumb

::::::::::
instructions.

:

::
To

::::::::::::::
reverse-engineer

:::
the

:::::::::
firmware,

:::
we

::::::
loaded

::::
the

:::::
ROM,

:::::
RAM,

::::
and

::::::::::
scratchpad

::::::::
segments

:::
in

:::::::
Ghidra

:::
(a

::::
free

::::
and

::::::::::
open-source

::::::::::
decompiler

::::
and

:::::::::::::
disassembler).

:::
In

::::
our

::::
first

::::::::::::::::
reverse-engineering

::::
pass

:::
we

::::::
isolated

:::
the

::::
libc

::::::::
functions

::::
(e.g.,

::::::
malloc

:::
and

:::::::
calloc)

:::
by

:::::::
looking

::
at
:::
the

:::::::::
signatures

::::
and

:::
the

::::
code

:::::::
patterns

::
of

:::
the

::::::::
functions

:::
that

:::
are

:::::
called

:::
the

:::::
most.

:::::
Then,

::
we

::::::
found

:::
the

::::::::
firmware

:::::::::
debugging

::::::::
symbols

::
in

:::
the

:::::::
board’s

::::
SDK

::::
and

::::::
loaded

:::::
them

::::
into

:::::::
Ghidra.

::::::
Using

:::
the

:::::::::
debugging

:::::::
symbols

::
we

:::::::
isolated

:
functions and data structures , and write

and test our ARM assembly patches .
Tool Usage ghidra RE the devboard firmware [40]

internalblue Patch devboard firmware [31]wireshark
Monitor HCI, LMP, and SMP hciconfig Configure
HCI interfaces hcitool Scan, connect and enumerate
BLE devices bleah Scan, connect and enumerate
BLEdevices scapy Craft and decode packets [11] pybt
Custom BLEpairing [37] linux414 Modify BLE pairing
capabilities bluez Modify Linux userspace configuration
pybluez Test BT

::::::
relevant

::::
for

:::
the

::::::
BLUR

::::::::
attacks.

:::::
Then,

::
we

::::::
wrote

::::::::
assembly

:::::::
patches

::
to

:::::::
change

::::
their

:::::::::
behaviors

:::
and

::
we

::::::
apply

::::
those

:::::::
patches

::
at
:::::::

runtime
:::::

using
:::::::::::

internalblue
::::
[31]

:
.
::::
Our

:::
set

::
of

:::::::
patches

::::::
allow

:::::::::
modifying

::::::
crucial

::::::::::
capabilities

:::
and

::::::::::
parameters

:::::::::
declared

:::
by

:::::
the

:::::::::
controller

:::::::::
including

::
the

::::::::::
Bluetooth

:::::::
address

:::::
and

::::::
name,

::::::
device

::::::
class,

::::::
Secure

::::::::::
Connections

:::::::
support,

:
and

:::::::::::
authentication

::::::::::::
requirements

:::
(as

:::::
shown

::
in

:::::
Table

:::
3).

5.3 Re-Implementing CTKD

10



Figure 11:
::::::
CTKD

:::::::
function

:::
for

:::
BT

:::::
(top)

:::
and

::::
BLE

:::::::::
(bottom).

:::
The

:::::::::
functions

:::
are

::::
the

:::::
same

:::
but

::::
use

::
a
:::::::::

sequence
::
of

::::
two

::::::::::
AES-CMAC

:::::
with

::::::::
different

:::::
input

:::::::::
quantities.

:::
In

::::
the

::::
first

:::::::::::
AES-CMAC,

:::
the

:::::::
devices

:::
use

::
a
:::::::
constant

:::::
string

:::
as

::::
key

:::
and

::
the

:::::::
pairing

::::
key

::
as

:::::
input

::
if

::::
they

:::::::
support

:::
the

:::
h7

:::::::::
conversion

:::::::
function,

:::::::::
otherwise,

:::::
they

:::::
swap

::::
the

::::
two.

::::
In

:::
the

:::::::
second

:::::::::::
AES-CMAC,

:::
the

::::::
devices

::::
use

:::
the

:::::
MAC

:::::
from

:::
the

:::
first

:::::
stage

::
as

::::
key

::::
and

:
a
::::::::

constant
::::::

string
::
as

::::
the

:::::
input

:::
to

::::::
derive

:::
the

::::::::::::
cross-transport

::::::
pairing

::::
key.

:::
Our

::::::
BLUR

:::::::
attacks

::::::::
leverage

:::::::
CTKD,

::
so

::::
the

::::
first

::::
step

:::
of

:::
our

:::::::::
evaluation

:::::::
requires

:::
to

:::::::
confirm

::::
that

:::
the

:::::::
devices

:::::
under

:::
test

:::::::
support

:::
and

:::::::::
(correctly)

::::::::::
implement

::
it.

:::
As

::::::
CTKD

:::
is

::
an

:::::::
optional

::::::
feature

::::
and

::
it

::
is

:::
not

:::::::::
negotiated

:::::
with

::
a

::::::::
dedicated

::::
flag,

::::
we

:::
can

:::::
only

::::::::
speculate

::::
that

::
a

::::::
device

:::::::
supports

::
it
::

if
::

it

:::::::
declares

::::::
Secure

::::::::::
Connections

:::::::
support

:::
for

:::
BT

:::
and

:
BLEusing

the BlueZ API scapy Configure HCI, manage BT and BLE
sockets bluetoothctl Manage, pair and connect devices

:
.
:::::::::::
Furthermore,

:::::
there

:::
are

:::
no

:::::::::
available

:::::
tools

::
to

::::::
check

:::
the

:::::::::
correctness

::
of

:::
the

::::
keys

:::::::
derived

:::
via

::::::
CTKD.

:

::
To

::::::::
address

:::::::
those

:::::::
issues

:::::
we

:::::::::::::
implemented

::::
the

:::::
CTKD

::::::::::
derivation

:::::::::
function

::::::
based

::::
on

::::
the

::::::::::
Bluetooth

:::::::
standard

::::::::::::
[12, p. 1401]

:
.
:::::

Our
::::::::::::::

implementation
:::::

uses
::::

the

:::::
PyCA

::::::::::::
cryptographic

:::::::
module

::::
[8],

::::
was

:::::::::::
successfully

:::::
tested

::::::
against

:::
the

:::::::::
standard’s

::::
test

:::::::
vectors

::::
and

::::
the

::::::
CTKD

:::::
keys

:::::::
produced

::::::
during

::::
our

::::::
attacks.

:::
To

::::::
enable

::::
other

::::::::::
researchers

::
to

:::::::::
investigate

:::::
CTKD

:::
we

::::
will

::::::::::
open-source

:::
our

::::::::::::::
implementation.

:::
We

::::
now

::::::::
describe

::::
the

::::::
CTKD

::::
key

:::::::::
derivation

::::::::
function

:::::::::::::
implementation

::::::
details.

::::
The

:::::::::
Bluetooth

:::::::
standard

::::::::
specifies

:
a

:::::
single

::::::
CTKD

::::::::
function

::::
(see

::::::
Section

::::
2.2)

::::
that

::
is
:::::

used
::::
with

:::::::
different

::::::::::
parameters

:::
for

:::
BT

::::
and

::::::
BLE.

::::::
Figure

:::
11

::::::
shows

::
the

:::::::
CTKD

:::
key

:::::::::
derivation

::::::::
function

:::
for

:::
BT

:::::
(top)

::::
and

::::
BLE

:::::::
(bottom).

:::::
Both

::::
use

:
a
::::::

chain
::
of

::::
two

:::::::::::
AES-CMAC

::::::
blocks

::
in

:::::::
sequence

:::::
with

::::::::
different

::::
keys

::::
and

::::::
4-byte

::::::::
constant

:::::::
strings.

::::::::::
AES-CMAC

::
is

:
a
::::::::
message

::::::::::::
authentication

::::
code

::::::
(MAC)

:::::
based

::
on

:::
the

:::::
AES

:::::
block

:::::
cipher

:::::
[18].

:::
In

:::::::::
particular,

:::
BT

::::
uses

:
KBT,

:
"
::::
tmp2

:
"
:::
and

:
"
::::
brle

:
"
::::
and

::::::
derives KBLE,

:::::
while

::::
BLE

::::
uses

:
KBLE,

:
"
::::
tmp1

:
"
:::
and

::
"btmgmt

::::
lebrManage, pair and connect devices

Open-source tools used to implement the BLUR attacks.
:
"

:::
and

::::::
derives

:
KBT:

.
Our attack device makes use of several free and

open-source tools to automate the configuration and
management of BT, BLE, and

:
In

::::
the

::::
first

:::::::::::
AES-CMAC,

::
if

::::
both

:::::::
devices

:::::::
support

:::
the

:::
h7

::::::::::
conversion

::::::::
function

:::
in

:::
the

::::::::
Bluetooth

:::::::
standard

::::::::::::
[12, p. 1634],

:::
the

::::
long

:::::
term

:::
key

::
is

::::
used

::
as

:::
key

::::
and

:::
the

:::::
string

::
as

:::::
input,

:::::::::
otherwise,

:::
the

:::::
string

:::::::
(padded

::::
with

::
12

::::::
zeros)

:
is
:::::
used

::
as

:::
key

::::
and

:::
the

::::
long

::::
term

:::
key

::
as

::::::
input.

::
In

:::
the

:::::::
second

:::::::::::
AES-CMAC,

:
the BLUR attacks. Table ??

presents the list of such tools with a brief description of
their usage. Overall, our usage of low-cost hardware and
open-source software will enable other researchers to easily
reproduce the BLUR attacks.

::::::
128-bit

::::::::
(16-byte)

:::::
output

::
of

:::
the

:::
first

:::::::::::
AES-CMAC

::
is

::::
used

::
as

::::
key

:::
and

:::
the

:::::
string

::
as

::::::
input.

:::
The

::::::
128-bit

::::::::
(16-byte)

::::::
output

::
of

:::
the

:::::::
second

:::::::::::
AES-CMAC

::
is

:::
the

::::::
derived

::::
long

::::
term

::::
key.

6 Evaluation

::
In

::::
this

::::::
section

:::
we

:::::::
present

::::
how

::::
we

:::::::::
conducted

:::
the

::::::
BLUR

::::::
attacks

:::
and

::::
our

:::::::::
evaluation

:::::::
results

:::
on

:
13

::::::
unique

:::::::
devices

:::
(see

:::::
Table

:::
4).

::::
The

:::::
tested

:::::::
devices

::::::::
represent

:::::::
popular

::::::
laptops,

::::::
phones,

::::::::::
headphones,

::::
and

::
an

:::::::::
embededd

:::::::
platform.

::::
The

::::::
devices

::
are

::::::
from

::
a
::::::

broad
::::

set
:::

of
::::::
device

:::::::::
producers

::::::::::
(Samsung,

::::
Dell,

:::::::
Google,

:::::::
Lenovo,

::::
and

::::::
Sony),

::::
run

::::::::
different

::::::::
operating

::::::
systems

:::::::::
(Android,

::::::::
Windows,

::::::
Linux,

::::
and

:::::::::
proprietary

::::::
OSes),

:::
use

::::::::
different

:::::::::
Bluetooth

:::::::
chipsets

::::::
(from

::::::::::
Broadcom,

:::::
CSR,

:::::::
Cypress,

:::::
Intel,

:::::::::
Qualcomm,

::::
and

:::::::::
Samsung).

6.1 Realizing the Attacks

The BLUR attacks, presented in Section 4, include mas-
ter impersonation, slave impersonation, man-in-the-middle,
and unintentional session attacks. In the next para-
graphs, we describe how we implemented them based
on our attack device in the attack scenario presented in
Section 5.1

::::::::
conducted

:::::
them

:::::
using

:::
our

:::::::
custom

:::::
attack

::::::
device

::::::::
described

::
in

::::::
Section

:::
5.2.

Laptop (master) impersonation attack To impersonate
the laptop, we configure our attack device to clone the laptop
Bluetooth features, including Bluetooth address, Bluetooth
name, device class, BT and BLE “Secure Connections” sup-
port, and advertised services. We accomplish this task by
patching the attack device’s Bluetooth firmware and config-
uring the attack laptop accordingly. Once the attack device
looks like the impersonated laptop, we ask the headphones to
pair over BLE using “Just Works” and CTKD.

The malicious BLE pairing request is sent using btmgmt’s
text-based user interface (TUI). The headphones accept

::
the

::::::
request to pair over BLE, update the BLE long term key, run
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CTKD for BT, update the BT long term key, and establish a
secure BLE session with the attack device. Then, the head-
phones terminate the BT session with the impersonated laptop
and establish a secure BT session with the attack device. The
impersonated laptop cannot connect back with the headphones
as it does not possess the new BT and BLE long term keys.

Headphones (slave) impersonation attack To imperson-
ate the headphones, we configure our attack device to clone
the headphones Bluetooth features using the same technique
adopted for the laptop impersonation. Once the attack device
looks like the impersonated headphones we ask the laptop to
pair over BT using “Just Works” and CTKD. The malicious
BT pairing request is sent using btmgmt’s TUI. The laptop
accepts to pair over BT, updates the BT long term key, and
runs CTKD for BLE. Then, we establish a secure BT session
with the headphones.

::
To

::::::::
evaluate

:::::::
master

::::
and

::::::
slave

:::::::::::::
impersonation

::::::
attack

::::::::::::
experimentally,

:::
we

::::
used

:::
the

:::::
attack

::::::
device

::::
both

::
as

:::
the

::::::
attacker

:::
and

:::
as

::::
one

:::
of

::::
the

:::::::
victims.

:::::
For

::::::::
example,

::
in

:::
a

::::::
master

:::::::::::
impersonation

::::::
attack

::::
we

::::
pair

:::
the

::::::
attack

::::::
device

:::::
with

:::
the

::::
slave

::::::
victim

:::::::
device,

:::
we

:::::::::
disconnect

:::::
them,

:::
we

::::::::
“forget”

:::
the

:::::
victim

::::::
device

:::
on

:::
the

::::::
attack

::::::
device

:::
and

:::
we

::::
run

:::
the

::::::
master

:::::::::::
impersonation

::::::
attack

:::::
from

:::
the

:::::
attack

:::::::
device.

::::
This

:::::
setup

::
is

:::::::
efficient,

:::::::
because

::
it
::::::
allows

:::
us

::
to
:::::::

quickly
::::

test
:::::
many

:::::
slave

::::::
victims.

::::
For

::::
the

:::::
slave

:::::::::::::
impersonation,

:::
we

::::
use

::::
the

:::::
same

::::::::
procedure

:::
and

:::::::
quickly

:::
test

:::::
many

::::::
master

:::::::
victims.

Man-in-the-middle attack By using our BLUR implemen-
tation with two development boards connected to the same
attack laptop, we can impersonate the laptop and the head-
phones at the same time, and man-in-the-middle them. In
particular, we run the laptop (master) impersonation attack
first, and then the headphone (slave) impersonation attack.
As a result, the attack device positions itself in the middle
between the victims.

:
If
:::

a
::::::

victim
:::::::

device
:::

is
::::::::::

vulnerable
:::

to
::::

the
::::::

master
:::

or

::::
slave

::::::::::::
impersonation

:::::::
attack,

::::
then

::
is

::::
also

:::::::::
vulnerable

:::
to

:::
the

:::::::::::::::
man-in-the-middle

::::::
attack,

::
as

:::
the

:::::
latter

:::::::
requires

:
a
:::::::::
vulnerable

:::::
master

::::::
device

:::
and

::
a
:::::::::
vulnerable

::::
slave

::::::
device.

:

Unintended sessions attack To perform the unintended
sessions attacks, we configure the attack device to imperson-
ate an arbitrary device with arbitrary services over BT and
BLE. Then we send a malicious pairing request to the head-
phones over BLE and one to the laptop over BT. Both pairing
requests declare support for CTKD and “Just Works”. The
attack device establishes new BT and BLE keys both with
the headphones and the laptop and starts unintended sessions
with both over BT and BLE.

The Bluetooth standard does not provide a reference
implementation for the key derivation function used by
CTKD, and provides limited documentation about its

design [12, p. 1401]. We decided to implement it in
Python 3 using the PyCA cryptographic module [8] and
we successfully tested our implementation against the test
vectors in the standard. We used our implementation to
validate the BT and BLE keys derived using CTKD while
performing our attacks and the code will be open-sourced.
We now describe the CTKD key derivation function
implementation details.

CTKD key derivation function for BT (top) and BLE
(bottom).

As explained in Section 2.2, the Bluetooth standard
specifies a single CTKD function that is used with different
parameters for BT and BLE. Figure 11 shows the CTKD key
derivation function for BT (top) and BLE (bottom). Both
use a chain of two AES-CMAC blocks in sequence with
different keys and 4-byte constant strings. AES-CMAC is a
message authentication code (MAC) based on the AES block
cipher [18]. In particular, BT uses , "tmp2" and "brle" and
derives , while BLE uses , "tmp1" and "lebr" and derives .

In the first AES-CMAC, if both devices support the h7
algorithm, the long term key is used as key and the string
as input, otherwise, the string (padded with 12 zeros) is
used as key and the long term key as input. In the second
AES-CMAC, the 16-byte output of the first AES-CMAC is
used as key and the string as input. The 16-byte output of the
second AES-CMAC is the derived long term key.

With our attack implementation (Section 6.1), we are
capable of conducting all four BLUR attacks. We used the
attack device both as the attacker and as one of the victims.
For example, in a master impersonation attack we pair the
attack device with the slave victim device, we disconnect
them, we “forget” the victim device on the attack device
and we run the master impersonation attack from the attack
device. This setup is practical because it allows us to quickly
test many slave victims. For the slave impersonation, we use
the same procedure and quickly test many master victims.

If a victim device is vulnerable to the master or
slave impersonation attack then is also vulnerable to the
man-in-the-middle attack, as the latter requires a vulnerable
master device and a vulnerable slave device. Regarding the
unintended session attack, we test

::
We

:::
test

:
this attack by con-

necting the target victim to a third device and then by trying to
establish unintended sessions with the victim as an arbitrary
device over the transport that is not used by the legitimate
connection. For example, if the victim is a pair of headphones
that is connected with a laptop over BT then we run the unin-
tended session attacker over BLE.

6.2 Evaluation Results

We evaluated the BLUR attacks on 13 devices, and
:::
the

:::::
results

::
are

:::::::::::
summarized

::
in Table 4shows our evaluation results. The

first six columns indicate the device producer, device model,
OS, chip manufacturer, chip model, and supported Bluetooth
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Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave X X X

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave X X X

Google Pixel 2 Android Qualcomm SDM835 5.0 Slave X X X

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave X X X

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave X X X

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave X X X

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave X X X

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Slave X X X

Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Slave X X X

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master X X X

Sony WH-CH700N Proprietary CSR 12942 4.1† Master X X X

† CTKD functionality was backported by the vendor to Bluetooth 4.1 for this device.

Table 4: BLUR attacks evaluation results. The last three columns contain a checkmark (X) if a device is vulnerable to the master
Impersonation

::::::::::::
impersonation attack (MI), slave impersonation attack (SI), man-in-the-middle attack (MitM), or unintended

session (US) attack. If the victim’s role is slave then we test it
:::
the

:::::
victim

:
against a master impersonation attack

:::::
(Role

:
=
:::::::
Master),

otherwise, we test it against
:
a slave impersonation attack

::::
(Role

::
=

::::::
Slave), and we group the attacks in one column (MI/SI column).

As shown by the last three columns, all the tested 13 devices (10 unique Bluetooth chips) are vulnerable to the
::
all relevant BLUR

attacks.

version. The seventh column indicates the attacker role. The
last three columns contain a checkmark (X) if a device is
vulnerable to the master Impersonation

:::::::::::
impersonation

:
attack

(MI), slave impersonation attack (SI), man-in-the-middle at-
tack (MitM), or unintended session (US) attack. The master
and slave impersonation attacks are grouped in one column
(MI/SI column). If the victim’s role is slave then we test it
against a master impersonation attack, otherwise, we test it
against a slave impersonation attack. As shown by the last
three columns, all the 13 devices (10 unique Bluetooth chips)
that we tested are vulnerable to the

::
all relevant BLUR attacks.

Our list of vulnerable devices is from a broad set
of device producers (Samsung, Dell, Google, Lenovo, and
Sony), operating system producers (Android, Windows,
Linux, and proprietary OSes), and Bluetooth chip producers
(Broadcom, CSR, Cypress, Intel, Qualcomm, and Samsung).
Our

::
As

:::
we

::::::
tested

::
a
:::::
wide

:::::
range

:::
of

:::::::
devices

:::
that

:::::
were

:::
all

:::::::::
vulnerable,

:::
our

:
evaluation demonstrates that the BLUR at-

tacks are practical, standard-compliant, and affects
:::::
affect all

the Bluetooth versions that support CTKD(i.e., Bluetooth
versions ≥ 4.2). As the BLUR attacks are standard-compliant,
potentially all standard-compliant devices supporting CTKD
are also vulnerable. Based on our evaluation, we suggest

:::
that

the Bluetooth SIG to fix the issues that we uncover in CTKD
and we provide our set of countermeasures for the Bluetooth

standard in Section 7.2.

7 Discussion

We now discuss the lessons learned , and our set of counter-
measures to mitigate the BLUR attacks.

7.1 Lessons Learned
One key lesson

::::
There

:::
are

:::::::
several

::::::
lessons

:
that we learned

while analyzing CTKD and designing, implementing and

:::::::::
developing

:::
the

:::::
BLUR

:::::::
attacks.

::
In

:::
this

:::::::
section

::
we

::::::
report

::::
those

::::::
lessons

:
evaluating the BLUR attacksis that designers of

security mechanisms must be careful when bridging
:
.
::
In

:::
this

::::::
section

::
we

::::::
report

::::
those

::::::
lessons

::
as
::::
they

:::
are

:::::
useful

:::
for

:::::::
protocol

::::::::
designers

::::
who

:::
are

::::::
dealing

::::
with

:::::::::::::
cross-transport

:::::::
features

:::
and

:::::
related

:::::::
security

::::::
issues.

:

::::::::::::::
Cross-transport

::::::::::::
mechanisms

:::::
need

:::
a

::::::::::::::
cross-transport

:::::
threat

::::::
model

:::::::
Security

:::::::::::
mechanisms,

::::
such

:::
as

:::::::
CTKD,

:::
that

::::
cross

:::
the

:::::::
security

::::::::
boundary

:::::::
between

::::
two

:
technologies with

different security architectures and threat models such as BT
and BLE. As demonstrated in this work, such a combination
can introduce

:::::
threat

::::::
models

::::::
should

::
be

:::::::
designed

:::::
using

:
a
:
cross-

transport issues that can be exploited on a large scale.
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Another key lesson that we learned is that isolating
cross-transport issues is challenging, as such issues manifest
at the security boundary between the affected transports
and usually they are not part of

:::::
threat

::::::
model.

::::
For

:::::::
example,

::
the

::::::::::
Bluetooth

:::::::
standard

:::::::
should

::::::::
consider

::::
that

:::
an

:::::::
attacker

:::::
might

:::
try

::
to

:::::::
exploit

:::
BT

:::::
from

:::::
BLE

::::
via

::::::
CTKD

::::
and

::::
vice

:::::
versa.

::::::::::::
Unfortunately,

::
at
:

the
::::
time

::
of

:::::::
writing,

:::
the

:::::::::
Bluetooth

:::::::
standard

:::::
lacks

::
a
:::::::::::::

cross-transport
:

threat model. Separate
security analyses of the affected transport are insufficient
to discover cross-transport issues . Such issues require a
security analysis that considers both transports and related
threat models at the same time. In particular, the analysis
must take into account an attacker with cross-transport
capabilities,

:::
The

::::
lack

::
of

:
a
:::::
threat

::::::
model

:::::
(along

::::
with

::
a

::::::
security

:::::::
analysis)

::
is
:::
the

:::::
main

::::::
reason

::::
why

:::
we

:::::
were

::::
able

::
to

:::::::
uncover

:::::
severe

:::::
issues

::::
with

:::::::
CTKD.

::::::
Similar

:::::::
security

:::::::::::
mechanisms

::::
with

::::::::
different

::::::
threat

::::::
models

::
do

::::
not

:::::::
provide

::::
the

:::::
same

::::::::
security

::::::::::
guarantees

::
BT

::::
and

::::
BLE

::::
both

::::::
provide

::::
their

:::::::
version

::
of

::::::
pairing

:::
and

::::::
secure

::::::
session

:::::::::::
establishment.

:::::
One

:::::
might

:::::
think

::::
that

:::::::
pairing

::::
over

:::
BT

::::
and

:::
then

:::::::::::
establishing

::
a

::::::
secure

::::::
session

:::::
over

::::
BLE

::::::::
provides

:::
the

::::
same

:::::::
security

:::::::::
guarantees

::
of

::::::
pairing

::::
over

:::
BT

:::
and

::::::::::
establishing

:
a
::::::
secure

::::::
session

:::::
over

:::::
BLE.

::::::::
However,

::::
this

::
is

:::
not

::::
the

::::
case,

::
as

:::::
those

::::::::::
mechanisms

:::
are

::::::
similar

:::
but

::::
not

:::::
equal

:::
and

::::
they

:::
are

:::::::
designed

::::
with

::::::::
different

:::::
threat

::::::
models

::
in

:::::
mind.

::::::
Mixing

:::::
those

:::::::::
procedures

:::::::
actually

:::::::
enables

:::::
more

:::::
ways

::
to

::::::
attack

:::
BT

::::
and

::::
BLE

:
(e.g., an attacker who can take advantage of weak

mechanisms on one transport to exploit both
:::
the

::::::
BLUR

:::::::
attacks).

::::::::
Properly

:::::::::
weighting

::::::::
usability

::::::::
against

::::::::
security

:::::::
benefits

:
is
::::

key
::::::
CTKD

::::
was

:::::::::
introduced

:::
to

:::::::
improve

::::
BT

::::
and

::::
BLE

:::::::
usability.

:::
In
::::::

light
::
of

::::
the

:::::::::
presented

::::::
issues

::::
and

:::::::
attacks,

::
we

::::::::
learned

::::
that

::::
the

::::::::
usability

:::::::
benefits

::::::::::
introduced

:::::
with

:::::
CTKD

::::
are

:::
not

::::::::
balancing

::::
the

:::::::
security

:::::
issues

::::::::::
introduced

::
by

::::::
CTKD.

::::
We

:::::
agree

::::
that

:::::::
no-one

:::::
wants

:::
to

:::
use

:::::::::::
complicated

::::::
security

:::::::::::
mechanisms,

:::
but

:::
the

::::::::
Bluetooth

:::::::
standard

::::::
should

::::
have

:::::::::
introduced

:
a
::::::
secure

:::
and

::::::
usable

:::::
CTKD

::::::::::
mechanism.

7.2 Countermeasures

We now present our
:
a
:

set of countermeasures for the
BLUR attacks. We recommend addressing the BLUR attack
at the Bluetooth standard level, as the BLUR attacks are
standard-compliant.

::
to

::::::
address

:::
all

::::
the

:::
five

:::::::::::::
cross-transport

:::::
issues

:::::
(CTI)

::::
that

:::
we

:::::::
present

::
in

:::::::
Section

::::
3.4.

:
Our counter-

measures can be implemented in the
::::::
device’s

:
Bluetooth

Host (implemented in the deviceOS) by storing
:::
i.e.,

:::::::
device’s

::::
OS),

::
by

::::::
storing

::::
and

:::::::
checking

:
extra metadata about a trusted

Bluetooth device and by using available HCI commands and
events

::
its

::::
state

:::
and

::::::
trusted

::::::
remote

:::::::
devices.

Disable CTKD key overwrites
:::::
Align

::::
BT

::::
and

::::
BLE

:::::
roles

::::
(CTI

:::
1) CTKD allows to write and overwrite BT long

term keys from BLE and BLE long term keys from BT.
This enables an attacker to impersonate a device and take
over her existing session on one transport by attacking the
other

:::
The

::::::
BLUR

::::::
attacks

::::
take

:::::::::
advantage

::
of

:::
BT

:::
and

:::::
BLE

:::
role

::::::::::
asymmetries

::
to

:::
act

::
as

::
a
:::
BT

::::::
master

:::::
while

:::::
being

:
a
::::
BLE

:::::
slave.

To fix this issue, a device should disallow key overwrites with
CTKD when a paired device wants to re-pair. For example,
re-pairing over BT should not overwrite a BLE long term
key that was securely established in the past. When a device
has lost a long term key for a transport (e.g., device reset),
it should explicitly re-pair on that transport

::::
store

:::
the

::::
role

:::
that

::
the

:::::::
remote

::::::
device

::::
used

:::::
while

::::::
pairing

::::
and

:::::::
enforce

::
it

:::::
across

:::::::::
re-pairings.

:::
In

::::
case

::
of

::
a
::::
role

:::::::::
mismatch,

:::
the

::::::
device

::::::
should

::::
abort

:::::::
pairing.

:::::::
Enforce

::::::
Secure

:::::::::::
Connections

:::::
(CTI

::
2)

::
In

:::
our

::::::::::
experiments,

::
we

::::
can

:::
use

::::::
CTKD

::::
with

:::
the

::::::::::::
WH-CH700N

::::::::::
headphones

::::
even

:
if
::::

they
:::::

only
:::::::
support

:::::::
“Secure

:::::::::::
Connections”

::::
for

:::::
BLE.

::::
This

:::::
should

::::
not

::::::
happen

:::
as

:::::::
CTKD

::::::
should

:::
be

::::
used

:::::
only

:::::
when

::::::
“Secure

::::::::::::
Connections”

::
is

:::::::
provided

:::
by

::::
both

:::
BT

:::
and

:::::
BLE

:::
and

:
a
::::::
device

:::::
should

:::::::
enforce

:::
this

::::::::
condition

::::::
before

::::::
running

::::::
CKTD

:::
and

::::
abort

::::::
CTKD

::
if
::::
this

::::::::
condition

:
is
:::
not

::::
met.

Enforce strong association mechanisms
::::
(CTI

::
3) BT and

BLE do not protect the negotiation of the association mecha-
nism and CTKD allows two devices to use different associ-
ation mechanisms on different transports when pairing and
re-pairing. The BLUR attack exploits this fact to re-pair with
a victim device using “Just Works” even if the victim sup-
ports “Numeric Comparison”. To fix this issue, a

:
A
:
device

should keep track of which BT and BLE keys are established
using CTKD, record the

:::
the

:::::::
remotes’

:
strongest association

mechanism used while pairing and enforce it for subsequent
(re-)pairings.

Enforce Secure ConnectionsIn our experiments, we can
use CTKD with the WH-CH700N headphones even
if they only support “Secure Connections” for BLE
::::::
Disable

:::::::
CTKD

::::
key

::::::::::
overwrites

:::::
(CTI

:::
4)

:::::
CTKD

::::::
allows

:::::::::::
(over)writing

:::
BT

::::
long

::::
term

:::::
keys

::::
from

:::::
BLE

:::
and

::::
vice

::::::
versa.

::::
This

::::::
enables

:::
an

:::::::
attacker

::
to

:::::::::::
impersonate

::
a

::::::
device

:::
and

::::
take

:::
over

::::
her

:::::::
existing

::::::
session

:::
on

::::
one

:::::::
transport

:::
by

::::::::
attacking

:::
the

::::
other. This should not happen as CTKD should be used only
when “Secure Connections” is supported on both BT and
BLE. To fix this issue, a device should enforce that “Secure
Connections” is supported on

::::::
disallow

::::
key

:::::::::
overwrites

::::
with

:::::
CTKD

:::::
when

::
a
::::::
paired

:::::
device

::::::
wants

::
to

::::::
re-pair.

::::
For

:::::::
example,

::::::::
re-pairing

::::
over

:::
BT

:::::::
should

:::
not

::::::::
overwrite

::
a
::::
BLE

:::::
long

::::
term

:::
key

:::
that

::::
was

:::::::
securely

::::::::::
established

::
in

:::
the

::::
past.

:::::
When

::
a

:::::
device

:::
has

:::
lost

:
a
:::::
long

::::
term

:::
key

:::
for

:
a
::::::::
transport

::::
(e.g.,

::::::
device

::::::
reset),

:
it

:::::
should

::::::::
explicitly

::::::
re-pair

:::
on

:::
that

::::::::
transport.

:
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::::::
Disable

::::::::
pairable

:::::
state

:::::
when

:::
not

:::::::
needed

:::::
(CTI

::
5)

::
In

:::
our

:::::::::
experiment

:::
we

::::::::
confirmed

::::
that

:
a
:::::
device

:::::
might

::::::
remain

:::::::
pairable

:::
over

:
BT and BLE before running CTKD and raise an error if

this is not the case.

CTKD Notifications CTKD is transparent to end-users
and is specified in the standard as an optional feature.
We exploit those facts to improve the stealthiness of our
attacks. Given that CTKD is

::::
even

::::
after

::
it

:::
has

::::::
paired

:::
and

::
is

::::::::::::
communicating

:::::
with

:
a
:::::::

remote
::::::
device.

:::::
This

::
is

::::::::::
problematic

::
as

::
an

:::::::
attacker

::::
can

:::::
target

:::
the

::::::::
transport

::::
that

::
is

:::
not

::::::::
currently

::::
used

::
by

::::
the

::::
two

::::::
devices

:::
to

::::::
launch

:::
the

::::::
BLUR

:::::::
attacks.

:::
To

::::::
address

:::
this

::::::
issue, a security-critical feature we believe that

it should not be considered optional, and a device should
notify the user every time the feature is used

:::::::::::
automatically

:::
stop

::::::
being

:::::::
pairable

:::
on

::
a

:::::::
transport

::::
that

::
is
::::

not
::::::::
currently

::
in

:::
use. For example, the device should notify the user when
she is re-pairing with a trusted device and is using CTKD
to overwrite a long term key

:
a

:::
pair

:::
of

::::::::::
headphones

::::
who

:::
are

::::::
running

::
a
::::::
secure

::::::
session

::::
over

:::
BT

:::::
with

:
a
::::::
laptop

::::::
should

:::
not

::::::
answer

::::::
pairing

:::::::
requests

::::
over

:::::
BLE

:::::
unless

:::
the

::::
user

::::::::
explicitly

:::::
renters

:::::::
pairing

:::::
mode.

8 Related Work

Bluetooth
:::
The

::::::::::
Bluetooth

::::::::
provides

:::
a

:::::::::::
royalty-free

::::
and

:::::::::::::
widely-available

:::::::
cable

::::::::::::
replacement

::::::::::
technology

::::::
[21]

:
.
:::::::::
Bluetooth

:
standard compliant attacks are particularly

dangerous as all Bluetooth devices are affected, regardless of
version numbers or implementation details. Such standard-
compliant attacks have appeared since the first versions
of Bluetooth [25, 30]. Standard-compliant attacks on BT
include attacks on legacy pairing [38], secure simple pairing
(SSP) [10, 22, 39], Bluetooth association [23]

::::::
[23, 41], key

negotiation [1], and authentication procedures [3, 29, 42].
Standard-compliant attacks on BLE include attacks on
legacy pairing [36], key negotiation [4], SSP [10],

::::::
[10, 46]

:
,
:::::::::::
reconnections

:::::
[44]

:
, and GATT [26]

:
.
:
Compared to the

mentioned attacks that target either BT or BLE, the BLUR
attacks are the first standard-compliant attacks targeting the
intersection between BT and BLE.

We have seen attacks targeting specific implementation
flaws on BT [6] and BLE [7, 20]. As our BLUR attacks target
the specification level, they are effective regardless of the im-
plementation details. Several surveys on BT and BLE security
were published [17, 32, 33] but none

::::::
neither of those surveys

(and
:::
nor

:
the Bluetooth standard ) is considering

:::::::
considers

CTKD as a threat. We here demonstrate that CTKD is a seri-
ous threat and must be included in the threat model.

Cross-transport attacks were exploited for proximity tech-
nologies using Bluetooth and Wi-FI. Two prominent examples
are attacks on Apple ZeroConf [9] and Google Nearby Con-
nections [2]. Our BLUR attacks are the first cross-transport

attacks for BT and BLE.
The cryptographic primitives used by Bluetooth have been

extensively analyzed. For example, the E0 cipher used by
BT was investigated [19] and it is considered relatively
weak [33]. SAFER+, used for authentication, was analyzed
as well [28]. BT and BLE “Secure Connections” use the
AES-CCM authenticated-encryption cipher. AES-CCM was
extensively analyzed [27, 35] and it is FIPS compliant. Our
BLUR attacks target key negotiation and not cryptographic
primitives, and are effective even with perfectly secure cryp-
tographic primitives.

9 Conclusion

In this work, we
::
We

:
present the first security analyses

::::::
analysis

:
of CTKD and identify

::::
novel

::::::::::::::::
standard-compliant

:::
and

cross-transport issues and attacks against BT and BLE.
:::
Our

::::::
attacks

:::::
show

:::
that

:
CTKD enables an attacker to cross the

security boundary between BT and BLE. These wireless
transports have different security architectures and threat
models. Despite this fact, the Bluetooth standard does not
include CTKD in the

::
In

:::::::
contrast

::
to

::::::::::
previously

::::::::
published

::::::
attacks

::
on

:::
the

:::::::::
individual

:::
BT

:::
and

::::
BLE

:::::::::
transports,

:::
our

::::::
attacks

::
on

::::::
CTKD

:::
do

:::
not

:::::::
require

:::
the

:::::::
attacker

::
to

:::
be

::::::
present

::::::
during

::::::
pairing

::
or

::::::
secure

:::::::
session

:::::::::::::
establishment.

:::
As

::
a
::::::
result,

:::
our

::::::
attacks

::::
have

:::::
lower

:::::::::::
requirements

:::
for

:::
the

:::::::
attacker

:::::
while

::::
still

:::::::
allowing

::
to

:::::
break BT and BLE threat models and the security

implications of CTKD are not well understood
::::::
security

:::::::::
guarantees.

We identify five cross-transport issues related to roles

::::
(CTI

::
1), “Secure Connections” , association, device states,

and key overwrite . Using the
::::
(CTI

:::
2),

:::::::::
association

:::::
(CTI

::
3),

::::
key

:::::::::
overwrite

:::::
(CTI

:::
4),

::::
and

:::::::
pairing

::::::
states

:::::
(CTI

::::
5).

:::::
Based

:::
on

:::::
those

:
issues, we design and implement novel

cross-transport
:::::::
develop attacks against BT and BLE enabling

impersonation
:::::::::::::
impersonations, traffic manipulation, and mali-

cious session establishment. Our standard-compliant attacks
exploit BT and BLE just by targeting one of the two. We
name our attacks BLUR attacks as they blur the security
boundary between BT and BLE.

We provide and discuss a low-cost implementation of the
BLUR attacks using off-the-shelf hardware and open-source
software. To demonstrate that our attacks are practical, we
use our implementation to successfully attack

::::::::::
successfully

::::::
exploit 13 devices from different hardware and software man-
ufacturers. Our devices range across all the Bluetooth versions
supporting CTKD (version

::::
e.g.,

:::::::
versions

:
greater or equal

to 4.2) and also a
:::::::

version
::
of

:
Bluetooth 4.1 . As the BLUR

attacks are standard-compliant, all devices supporting CTKD
are potentially vulnerable

::::
with

:::::::::
backported

::::::
CTKD

:::::::
features.

We sketch a set of countermeasures to address the BLUR
attack directly in

:::
We

:::::::
discuss

::::::
several

:::::::
lessons

::::
that

::::
we

:::::::
learned

:::::
(e.g.,

:::
the

:::::::::
importance

:::
of

::
a
::::::::::::::

cross-transport
:::::
threat

:::::::
model)

:::::
and

:::
the
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:::::
major

::::::::
technical

:::::::::
challenges

::::
that

::::
we

:::::
faced

:::::
(e.g.,

::::::::
low-level

:::::::::::
modifications

:::
of

:
a
:::::::::

Bluetooth
::::::::::

firmware).
::::
We

::::::
present

::::
five

:::::::::::::
countermeasures

:::
to
::::::::

mitigate
::::

the
:::::::

BLUR
::::::::

attacks.
:::::

Each

:::::::::::::
countermeasure

::::::::
addresses

::
a
:::::::
specific

::::::::::::
cross-transport

:::::
with

:
a

:::::::
concrete

:::
fix

:::
that

::::
can

::
be

:::::::::::
implemented

::
at

:
the Bluetooth stan-

dard . The countermeasures require to keep additional state
about paired devices. We have disclosed our findings and our

::::
level.

::::
We

::::::::::
responsibly

::::::::
disclosed

:::
our

:::::::::::::
vulnerabilities,

::::::
attacks,

:::
and countermeasures to the Bluetooth SIGin May 2020.

:
.

::::::
=10000

:
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