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Abstract—The Bluetooth standard specifies Bluetooth Classic
(BT) and Bluetooth Low Energy (BLE). The two transports
have different security architectures and threat models and
provide dedicated pairing and session establishment protocols.
Traditionally, two devices would have to pair over BT and BLE
to use both securely. But in 2014, Bluetooth v4.2 addressed
this usability issue by introducing Cross-Transport Key Derivation
(CTKD). CTKD allows establishing BT and BLE pairing keys
just by pairing over one transport. While CTKD crosses the
security boundary between BT and BLE, little information is
know about CTKD internals and no prior work analyzed its
security implications.

In this work, we present the first complete description of
CTKD obtained by merging the scattered information from
the Bluetooth standard and results from reverse-engineering
experiments. Then, we perform a security evaluation of CTKD
and uncover four issues in its specification that can be used to
cross the security boundary between BT and BLE. We leverage
these issues to design four standard-compliant attacks on CTKD
enabling to exploit BT from BLE and vice versa. The attacks work
even if the strongest security mechanism for BT and BLE are
in place and they allow to impersonate, man-in-the-middle, and
establish unintended sessions with arbitrary devices. We refer to
our attacks as BLUR attacks, as they blur the security boundary
between BT and BLE. We provide a low-cost implementation of
the BLUR attacks and we successfully evaluate them on 16 devices
with 14 unique Bluetooth chips from popular vendors. We discuss
the attacks’ root causes and present effective countermeasures to
fix them. We disclosed our findings and countermeasures to the
Bluetooth SIG in May 2020 (CVE-2020-15802) and we reported
additional unmitigated issues in May 2021.

I. INTRODUCTION

Bluetooth is a pervasive wireless technology used by billions
of devices including mobile phones, laptops, headphones, cars,
speakers, medical, and industrial appliances [11]. Bluetooth
is specified in an open standard maintained by the Bluetooth
special interest group (SIG), and its latest version is 5.2 [10].
The standard specifies two transports: Bluetooth Classic (BT)
and Bluetooth Low Energy (BLE). BT is best suited for
connection-oriented and high-throughput use cases, such as
streaming audio. BLE is optimized for connection-less and
very-low-power use cases such as HCI, fitness tracking, or
digital contact tracing.

The Bluetooth standard defines different security archi-
tectures and threat models for BT [10, p. 947] and BLE [10,
p. 1617]. Each transport provides a pairing and a secure session
establishment protocol. Pairing results in the establishment of
a long-term pairing key. While secure session establishment
allows paired devices to create a secure channel through a fresh
session key derived from their shared pairing key.

Traditionally, two devices would have to pair over BT
and BLE to securely use both. In 2014 Bluetooth v4.2
introduced Cross-Transport Key Derivation (CTKD) to address
this usability issue. CTKD enables to pair devices once, either
over BT or BLE, and negotiate BT and BLE pairing keys
without having to pair a second time and with no extra user
interaction [10, p. 1401].

Security-wise, CTKD has not received any attention from
the research community and the Bluetooth standard hastily
describes only some aspects and threats associated with CTKD.
On the other hand, CTKD is a very interesting attack surface,
as it is a standard-compliant security feature, is used together
with the most secure modes of BT and BLE (i.e., Secure
Connections), allows crossing the security boundary between
BT and BLE, and is transparent to the end-user.

In this work, we present a complete description of CTKD
obtained by reverse-engineering key information missing from
the Bluetooth standard (i.e., CTKD negotiation and usage for
BT and BLE). Then, we perform a security evaluation and
we uncover four cross-transport issues (CTI) with CTKD’s
specification. For example, CTKD enables to (over)write and
steal security keys.

We leverage these vulnerabilities to design four novel cross-
transport attacks. Our attacks enable to impersonate and take
over secure sessions from any BT/BLE master or slave device.
Combining master and slave impersonation the attacker can also
man-in-the-middle BT and BLE secure sessions. Furthermore,
a bad actor can establish secure, but unintended, BT and BLE
sessions with a victim device while remaining anonymous. The
attacks are effective regardless of the usage of the strongest
security mode for BT and BLE including Secure Simple Pairing
(SSP), Secure Connections (SC), and strong associations. We
name our attacks BLUR attacks, as, by exploiting CTKD, they
blur the security boundary between BT and BLE.

In contrast to prior standard-compliant attacks [21], [20],
[35], [39], [9], [2], [5], [4], [43], [45], [40], our attacks are the
first cross-transport attacks as they can break BT and BLE by
targeting just one of the two and the first attacks exploiting
CTKD. Additionally, our attacks do not require the attacker to
be present when a victim is pairing or establishing a secure
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session and they result in a persistent compromise of the victim.
For a more detailed comparison see Section VIII.

We implemented the BLUR attacks using low-cost hardware
and open-source software and we verified their standard-
compliance and large-scale impact. We successfully exploited
16 unique devices employing 14 different Bluetooth chips from
Broadcom, Cambridge Silicon Radio (CSR), Cypress, Intel,
Qualcomm. Our vulnerable device set covers all Bluetooth
versions supporting CTKD (i.e., Bluetooth 4.2, 5.0, 5.1, and
5.2) and even a Bluetooth 4.1 device to which CTKD was
backported.

We address the BLUR attacks by presenting four counter-
measures fixing the four presented CTIs and the related attacks.
Our mitigations can be implemented at the operating system
level with low effort. We also evaluated one countermeasure
(i.e., disable key overwriting) by implementing it on a Linux
laptop.

We responsibly disclosed our findings with the Blue-
tooth SIG two times. In May 2020 we sent our first
report which was tracked with CVE-2020-15802. In
September 2020 the Bluetooth SIG released a secu-
rity note at https://www.bluetooth.com/learn-about-bluetooth/
bluetooth-technology/bluetooth-security/blurtooth/ with some
recommendations to address the attacks. However, as we detail
later in the paper, these recommendations are not stopping the
BLUR attacks. Hence, in May 2021 we provided to the SIG
additional evidence to explain why the BLUR attacks are still
effective on all Bluetooth versions supporting CTKD.

We summarize our contributions as follows:

• We present a complete description of CTKD combining
public and reverse-engineered information. We perform
the first security evaluation of CTKD and uncover
four vulnerabilities in its specification. Among others,
CTKD enables to adversarially pair over unused
transports and to tamper with BT and BLE security
keys.

• Based on the identified issues we propose four novel
and standard-compliant attacks capable of breaking BT
and BLE just by targeting one of the two. Compared
to related work, our attacks are the first exploiting
CTKD and acting across transports. Our attacks en-
able to impersonate, man-in-the-middle, and establish
unwanted and stealthy sessions with arbitrary devices.
We name our attacks BLUR attacks as they blur the
security boundary between BT and BLE.

• We present a low-cost implementation of the BLUR
attacks based on a Linux laptop and a Bluetooth
development board. We use our implementation to
attack 16 different devices employing 14 unique
Bluetooth chips and covering all Bluetooth versions
compatible with CTKD (e.g., 4.2, 5.0, 5.1, and 5.2).
Our evaluation demonstrates that the BLUR attacks are
very effective and specification-compliant. To address
them, we discuss four countermeasures to address the
presented issues and attacks affecting CTKD.

II. BACKGROUND

We now compare the most relevant features of BT and
BLE. To provide precise technical descriptions we follow the
Bluetooth standard’s master/slave terminology instead of more
apt terms like leader/follower.

A. A Comparison of BT and BLE

BT and BLE are two wireless transports specified in the
Bluetooth standard. These transports are incompatible (e.g.,they
use different physical layers and link layers) and are designed
to complement each other. BT is used for high-throughput and
connection-oriented services, such as streaming audio and voice,
while BLE is optimized for very low-power and low-throughput
services such as fitness tracking and digital contact tracing.
High-end devices, such as laptops, smartphones, headsets, and
tablets, provide both BT and BLE, while low-end devices such
as mice, keyboards and wearables provide either BT or BLE.

BT and BLE have similar security mechanisms but different
security architectures and threat models. Both transports provide
a pairing mechanism, named Secure Simple Pairing (SSP), to
let two devices establish a long-term pairing key. BLE SSP is
performed over the Security Manager Protocol (SMP) [10,
p. 1666], while BT SSP uses the Link Manager Protocol
(LMP) [10, p. 568]. During pairing, BLE allows negotiating the
entropy of the pairing key while BT does not. Additionally, BT
and BLE provide a secure session establishment mechanism
to establish a secure communication channel using a session
key derived from a pairing key. During session establishment,
BT allows negotiating the entropy of the session key while the
BLE session key inherits the entropy of the associated pairing
key.

BT and BLE use the same notion of pairable and discov-
erable states. If a device is pairable then it accepts pairing
requests from other devices. If it is discoverable it reveals
its identity when scanned by other devices. Notably, a device
answers to a pairing request even if it is not discoverable [42].
For example, if the user knows the Bluetooth address of her pair
of headphones she can complete BT or BLE pairing with her
smartphone without putting the headphones into discoverable
mode.

BT and BLE provide a “Secure Connections” mode which
enhances their security primitives without affecting their secu-
rity mechanisms. In particular, Secure Connections mandates
the usage of FIPS-compliant algorithms such as AES-CCM,
HMAC-SHA-256, and the ECDH on the P-256 curve [10,
p. 269]. Furthermore, BT and BLE employ similar association
mechanisms to authenticate pairing. Two examples of associa-
tions are Just Works that does not protect against MitM attack
but requires no user interaction. Numeric Comparison instead
protects against MitM attacks by forcing the user to confirm
that she sees the same numeric code on the pairing devices’
screens.

Both BT and BLE use a master-slave medium access
protocol but define the master and slave roles differently. For
BT, the master is the connection initiator, the slave is the
connection responder, and roles can be switched dynamically
by any party after a radio link is established. For BLE, the
master and slave roles are fixed and cannot be switched. The
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BLE master (defined as central) acts as the connection initiator
and the BLE slave (defined as peripheral) as the connection
responder. High-end devices, such as laptops and smartphones,
support both BLE master and BLE slave modes and are typically
used as BLE masters, while low-end devices, such as fitness
trackers and smartwatches, support only the BLE slave mode.

III. SECURITY ANALYSIS OF CTKD

In this section, we present our security analysis of CTKD.
In particular, in Section III-A we describe what is publicly
known about CTKD, in Section III-B we complement it by
reverse-engineering how CTKD works in practice. Finally, in
Section III-C, we present four security issues with CTKD’s
specification, which are the root causes of the BLUR attacks.
The attacks’ implementation is described in Section V, while
their evaluation is detailed in Section VI.

A. Public Information about CTKD

CTKD is a feature provided by the Bluetooth standard to
improve the usability of BT and BLE. Before the introduction
of CTKD, a user had to pair devices separately over BT and
BLE before being able to use both transports securely. While
with CTKD, introduced in 2014 with Bluetooth version 4.2,
two devices, can pair once either over BT or BLE, derive a
pairing key for each transport and establish BT and BLE secure
sessions [10, p. 280].

CTKD is supported by all major hardware and software
Bluetooth vendors. The list of vendors includes Apple [44],
Google [6], Cypress [14], Linux [13], Qualcomm [33], and
Intel [22]. Notably, Apple presented it as a core and always-on
Bluetooth feature during WWDC 2019.

To use CTKD, a device requires specific capabilities. A
device must be dual-mode (i.e., support both BT and BLE), has
to support Secure Connections (introduced in Section II) and
a Bluetooth version among 4.2, 5.0, 5.1, and 5.2. Examples
of devices supporting CTKD are laptops, tablets, smartphones,
headsets, speakers, and high-end wearable devices. The number
of those devices is steadily growing as dual-mode devices are
replacing single-mode ones [12].

CTKD specifies a unique key derivation function (KDF)
regardless of which transport is used to pair [10, p. 1658].
The function takes as inputs a 128-bit (16-byte) key and two
4-byte strings and derives a 128-bit (16-byte) key. If CTKD
is started from BLE, then the BT pairing key is derived using
the “tmp2” and “brle” strings. In the other case, the derivation
is performed using the “tmp1” and “lebr” strings. The key
derivation function is deterministic, as using CTKD on the
same input key will always generate the same output key. Our
implementation of KDF is discussed in Section V-C.

Since version 5.1, the Bluetooth standard addresses a
specific key overwrite attack via CTKD with the following
statement: “While performing cross-transport key derivation, if
the key for the other transport already exists, then the devices
shall not overwrite that existing key with a key that is weaker in
either strength or MITM protection” [10, p. 1401]. This means
that an attacker cannot overwrite a pairing key with CTKD if
the overwritten key has either a lower entropy (i.e., strength)
or a lower MitM protection. We note that the attacker can still

Alice (master)

A

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request:
Assoc, ADDA, SC, CTKD, PKA, NA

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

DK = PKB · SKA

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

DK = PKA · SKB

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

BLE Key Distribution: CSRKA, IRKA

BLE Key Distribution: CSRKB, IRKB

Fig. 1: BLE pairing with CTKD. Alice and Bob negotiate SC
and CTKD support during BLE pairing. Then, they compute the
BLE pairing key and from that key, they derive the BT pairing
key via CTKD (without exchanging any message over BT).
Finally, they generate and exchange additional keys for BLE
including signature (CSRK) and identity resolving (IRK) keys.
After the protocol is completed Alice and Bob can establish
secure sessions both for BT and BLE (without having to pair
over BT).

overwrite keys with equal strength and MitM protection. It is
not clear why such countermeasure is enforced only on 5.1
and 5.2 devices and is not backported to all devices compatible
with CTKD.

The quoted countermeasure is not effective against the
key overwrite attack presented in Section IV as the attack
is neither lowering the key entropy (i.e., strength) nor the
MitM requirements. We experimentally validated this claim by
performing our key downgrade attack on Bluetooth 5.1 and 5.2
devices (see Section VI-B for an extended discussion).

B. Reverse Engineered Details of CTKD

The Bluetooth standard lacks a discussion about how CTKD
is negotiated and used for BT and BLE. We had to reverse-
engineer (RE) these details to perform our security analysis.
In this section, we summarize what we reversed about CTKD
negotiation and usage. To ease our description, we abstract
the protocols at a message level and we refer to the Bluetooth
master and slave as Alice and Bob. Finally, we also detail our
RE methodology.

a) BLE pairing with CTKD: Figure 1 shows what
happens when two devices are pairing over BLE and using
CTKD to derive also the BT pairing key. Alice and Bob are
pairable over BLE and BT and discover each other using
BLE scanning and advertising. Then, they perform pairing
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Alice (master)

A

Bob (slave)

B

Devices pairable over BT

BT Pairing Request:
Assoc, ADDA, SC, PKA, NA

BT Pairing Response:
Assoc, ADDB , SC, PKB, NB

DK = PKB · SKA

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

DK = PKA · SKB

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

BT CTKD Request:
CTKD, CSRKA, IRKA

BT CTKD Response:
CTKD, CSRKB, IRKB

KBLE = ctkd(KBT,
“tmp2”, “brle”)

KBLE = ctkd(KBT,
“tmp2”, “brle”)

Fig. 2: BT pairing with CTKD. Alice and Bob during BT pairing
negotiate SC support. Then, they compute the BT pairing key,
start a secure session over BT and send BT CTKD messages
containing CTKD support and other keying material generated
for BLE such as signature (CSRK) and identity resolving (IRK)
keys. Notably, the CTKD request and response are encoded
as BLE pairing request and response and tunneled over BT.
Afterward, Alice and Bob derive the BLE pairing key, via
CTKD (without exchanging any message over BLE). After
the protocol is completed Alice and Bob can establish secure
sessions both for BT and BLE (without having to pair over
BLE).

over BLE using the SMP protocol. We found that CTKD is
negotiated by setting to one the Link Key flag of the Initiator
and Responder key distribution SMP fields [10, p. 1680] and
that such negotiation is not protected. Other than the Link Key
flag the devices should also declare Secure Connections support
(SC) which is also spoofable. The BLE pairing messages also
contain an association method (Assoc), a source BLE address
(ADD), a public key (PK), and a nonce (N).

After exchanging the pairing messages, the devices compute
a Diffie-Hellman shared secret (DK) using the exchanged PK.
DK is used to compute the BLE pairing key (KBLE) using
BLE pairing key derivation function (kdfLE). Then, the devices
use CTKD’s key derivation function (ctkd) to derive the BT
pairing key (KBT). To complete BLE pairing, Alice and Bob
establish a secure session over BLE and exchange additional
keys (e.g., CSRK and IRK). As a result, Alice and Bob share
KBLE and KBT, but they only paired over BLE.

b) BT pairing with CTKD: Figure 2 presents BT pairing
with CTKD. Alice and Bob are pairable over BT and BLE
and discover each other via BT inquiry. Then, they exchange

pairing request and response messages over BT to negotiate
several BT capabilities (including SC), and to exchange their
BT addresses, keys, and nonces. Then, they compute DK and
use it together with their BT addresses and nonces to compute
the BT pairing key (KBT) through the BT pairing key derivation
function (kdfBT).

Unlike for BLE, BT pairing messages do not include a
CTKD flag. What happens is that the devices start a secure
BT session and exchange two messages containing the CTKD
flag and additional security material needed for BLE such as
signature keys (CSRK) and identity resolving keys (IRK). These
two messages are peculiar as they are encoded as BLE SMP
packets but sent over BT. We are not sure why the Bluetooth
standard is not describing such ”BLE tunneling” protocol to
negotiate CTKD from BT. Once CTKD is negotiated, Alice
and Bob use it to derive the BLE pairing key (KBLE) from the
BT key and the static strings “tmp2” and “brle”.

c) RE methodology: To RE the negotiation and usage
of CTKD we used a Linux laptop connected to a dual-mode
development board as a test device. The laptop runs a patched
Linux kernel capable of pairing diagnostic messages from the
board. The board acts as the laptop fronted (i.e., the laptop is
the BT/BLE Host while the board is the BT/BLE Controller),
and is initialized to report to the laptop all sent and received
link-layer traffic using HCI diagnostic messages.

To test CTKD from BLE we sent a BLE pairing request
from our test device to a pair of dual-mode headphones (Sony
WH-1000XM3) and we monitored the HCI log. To check out
CTKD from BT we sent a BT pairing request from our test
device to an Android smartphone (Pixel 2) and we monitored
the HCI log. In each case, we tested that it was possible to
establish BT and BLE secure sessions after only pairing on one
transport. Notably, CTKD from BT was particularly tricky to
reverse as the CTKD negotiation messages over BT are decoded
by Wireshark but appear as standard L2CAP messages.

C. Isolated Issues with CTKD

We isolated four cross-transport issues (CTI) with the
specification of CTKD resulting from CTKD bridging BT and
BLE without properly enforcing the security boundary between
the two. We now describe in detail each CTI.

a) CTI 1: extended pairing: CTKD introduces more
options to pair two devices as dual-mode devices are pairable
over BT and BLE all the time. This enables an attacker to
(silently) pair over a transport that is currently unused. The
attacker does not need to wait until a victim is in discoverable
mode, as, despite common belief, a Bluetooth device in pairable
state already accepts pairing requests.

b) CTI 2: role asymmetry: While BT and BLE roles
are defined differently, CTKD does not enforce which role was
used to pair on which transport. BT roles can be switched even
before pairing, while BLE roles are fixed. This is problematic
because an attacker can adversarially switch BT role before
using CTKD and send a BT pairing request to a victim which
expects BT and BLE pairing responses. We note that, issues
with role asymmetry have been already proven effective to
bypass BT authentication during session establishment [4].
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c) CTI 3: key tampering: CTKD enables to tamper with
all BT security keys from BLE and vice versa using only a
single run of the pairing protocol. This is a new and powerful
attack primitive for Bluetooth. For example, an attacker can
use CTKD to write new pairing keys for BT and BLE or
even overwrite trusted pairing keys with her own. Furthermore,
by using CTKD from BT the attacker can get access to all
BLE security keys distributed as part of BLE pairing including
identity resolving key usable to de-anonymize a BLE device.

d) CTI 4: association manipulation: CTKD does not
keep track of which association mechanism was used as part
of pairing and the negotiation of the association scheme is not
protected. Indeed, an attacker can use CTKD to re-establish
pairing keys using an arbitrary association scheme. This
includes a weak association to write or substitute authenticated
keys with unauthenticated ones (e.g., by re-pairing using Just
Works). Recently, association confusion attacks have been
proposed for BT or BLE [40], CTKD extends this issue across
transports.

IV. BLUR ATTACKS VIA CTKD

We now present our threat model and the design of four
novel and standard-compliant attacks on CTKD. Our attacks are
the first samples of cross-transport exploitation for Bluetooth,
as they are capable of exploiting BT and BLE just by targeting
either of the two. Our attacks are stealthy as CTKD is
transparent to the users, and do not require a strong attacker
model as the attacker does not have to be present when the
victims are pairing or establishing a secure session. As our
attacks are blurring the security boundary between BT and
BLE, we name them BLUR attacks.

The attacks were discovered by inference from the analysis
presented in Section III and the data collected during our
experiments with real devices (e.g., BT and BLE link layer
and HCI packets).

A. System Model

Our system model considers two victims, Alice and Bob,
who can securely communicate over BT and BLE. The
victims support CTKD, and are using the most secure BT
and BLE modes, namely, SC and strong association (e.g.,
Numeric Comparison if both have the necessary IO). This
setup should protect the victims against device impersonation,
traffic eavesdropping, and active man-in-the-middle attacks on
BT and BLE [10, p. 269]. Without loss of generality, we assume
that Alice is the master and Bob is the slave.

Regarding the notation, we indicate a BT pairing key with
KBT, a BT session key with SKBT, a BLE pairing key with
KBLE, a BLE session key with SKBLE. We indicate a Bluetooth
address with ADD, a public key with PK, a private key with
SK, a shared Diffie-Hellman secret with DK, a nonce with N,
and a message authentication code with MAC.

B. Attacker Model and Goals

Our attacker model considers Charlie, a remote attacker
who is in Bluetooth radio range with the victims. The attacker
aims to compromise the secure BT and BLE sessions between
the victims without tampering with their devices. The attacker’s

Fig. 3: Attack strategy. Alice and Bob are paired over BT and
run a secure BT session. Charlie pairs with Bob as Alice over
BLE declaring CTKD support. Then Charlie agrees upon a
BLE pairing key with Bob, and, via CTKD, tricks Bob into
overwriting Alice’s BT pairing key. As a result, Charlie can
establish BT and BLE sessions with Bob as Alice, and takes
over the real Alice who can no longer connect to Bob. Using
a similar strategy, Charlie can also impersonate Bob to Alice,
man-in-the-middle Alice and Bob, and establish unintended BT
and BLE sessions as an arbitrary device.

knowledge is limited to what the victims advertise over the
air, e.g., full or partial Bluetooth addresses, Bluetooth names,
authentication requirements, IO capabilities, and device classes.

The attacker does not know any BT or BLE key shared
between the victims, does not have to be present when the
victims pair or negotiate a secure session. The attacker can
scan and discover devices, send pairing requests and responses,
use CTKD, propose weak association mechanisms (e.g., Just
Works), and dissect and craft Bluetooth packets.

The attacker has four goals. The first one is to impersonate
Alice (to Bob) and potentially take over Alice’s secure sessions.
The second goal is to impersonate Bob (to Alice) and also take
over Bob’s secure sessions. By take over, we mean that after
the attack the security bond between the two victims is broken.
We note that, Alice and Bob’ impersonations are different goals
as they require different impersonation techniques (i.e., master
and slave impersonations).

The attacker’s third objective is to establish a man-in-
the-middle position in a secure session between two victims
and requires combining and synchronizing Alice and Bob’s
impersonation attacks. The fourth objective is to establish
unintended and possibly stealthy sessions with Alice or Bob as
an arbitrary device, without taking over a session and breaking
existing security bonds. An unintended session enables the
attacker to access a much broader attack surface than the one
exposed in a connection-less scenario.

C. Attack Strategy

We now describe our attack strategy using Alice’s imper-
sonation as a reference example and with the help of Figure 3.
Let us assume that Alice is a laptop and Bob is a pair of
headphones and the victims are already paired and they are
running a secure BT session. Since the victims support CTKD,
they are also pairable over BLE, even if the transport is not
currently in use. Charlie sends a BLE pairing request to Bob
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pretending to be Alice, and claiming to support CTKD. The
attacker also declares no input/output capabilities to trigger
unauthenticated JW association during pairing. This last step
does not trigger the key overwrite countermeasure described
in Section III-A.

Bob, even if running a BT session with Alice, has to answer
to Charlie with a BLE pairing response as Charlie’s message
is compliant with the Bluetooth standard. Then, Charlie (as
Alice) and Bob agree on a BLE pairing key and, via CTKD,
generate a new BT pairing key that overwrites Alice’s key in
Bob’s BT key store. In doing so, Charlie, wins two prizes with
one shot, as he takes over Alice’s BT and BLE sessions with
Bob. In other words, Alice can no longer connect to Bob as
she does not know the BT and BLE pairing keys (overwritten
by the attacker). Furthermore, Charlie also overwrites other
security keys that are distributed during pairing, including
CSRK (signature key) and IRK (MAC randomization key). We
note that the overwrite trick is transparent to the end user as
the standard does not mandate to notify the user about CTKD,
and works even if Alice and Bob are sharing BT and BLE
pairing keys before the attack takes place.

Following a similar strategy, Charlie can impersonate Bob to
Alice, man-in-the-middle them, and create unintended sessions
as an arbitrary device with a victim. We note that our attack
strategy is effective because the Bluetooth standard does not
enforce important security properties at the boundary between
BT and BLE and does not address all cross-transport threats
in its threat model (see Section III-C for more details). In the
remaining of this section, we describe the technical details of
the four BLUR attacks.

D. Impersonation Attacks

a) Master impersonation: Charlie impersonates Alice
and takes over her BT and BLE sessions with Bob as in Figure 4.
Bob is already paired with Alice, and can run a BT session
with her while Alice’s impersonation takes place. Notably, Bob
must be pairable over BT and BLE to support CTKD from BT
and BLE. Charlie takes advantage of that and sends a BLE
pairing request as Alice by using Alice’s Bluetooth address
(ADDA), Just Works (JW) association while pairing, his public
key (PKC), and CTKD support.

As Charlie’s BLE pairing request is standard-compliant,
Bob sends back a BLE pairing response believing that Alice
wants to pair (or re-pair) over BLE using CTKD. Then,
Charlie and Bob compute KBLE, derive KBT via CTKD, and
exchange additional BLE key material (e.g., CSRK, IRK) over
a BLE secure session. After the master impersonation attack is
completed Charlie takes over Alice’s BT and BLE sessions by
tricking Bob into overwriting Alice’s BT and BLE keys with
his ones.

b) Slave impersonation: Charlie impersonates Bob and
takes over his BT and BLE sessions with Alice as in Figure 5.
Alice and Bob have already paired and can run a BLE secure
session while the impersonation takes place. Alice has to be
pairable over BT and BLE to provide CTKD support from both
transports, and Charlie takes advantage of that by sending a BT
pairing request to Alice as Bob using Bob’s address (ADDB),
Just Works (JW), and his public key (PKC). Charlie’s pairing
request is still standard-compliant even if Charlie is supposed

Charlie (master)

C

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request as Alice:
JW, ADDA, SC, CTKD, PKC , NC

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

Compute KBLE

Derive KBT

Compute KBLE

Derive KBT

BLE Key Distribution: CSRKC , IRKC

BLE Key Distribution: CSRKB, IRKB

Fig. 4: BLUR master impersonation attack. Charlie sends a BLE
pairing request with Alice’s address (ADDA) including Just
Works (JW) association, CTKD, and his public key (PKC ). Bob
answers with a BLE pairing response thinking that he is talking
to Alice. The attacker and the victim agree on KBLE, and derive
KBT, via CTKD and complete BLE pairing by generating and
distributing more keys over a secure BLE session. As a result
of the master impersonation attack, Charlie tricks Bob into
overwriting Alice’s keys with his ones and takes over Alice
who can no longer connect back to Bob.

to be the slave as BT, unlike BLE, enables a slave to switch
to a master role before sending a pairing request.

Alice answers with a BT pairing response believing that
Bob wants to re-pair over BT, and the two agree on KBT. Then,
Charlie starts a secure BT session and sends a tunneled BLE
pairing request to Alice still pretending to be Bob. The BLE
pairing request includes CTKD support and Charlie’s signature
and MAC randomization BLE keys (CSRKC , IRKC). Alice
answers with a BLE pairing response tunneled over BT and the
two derives KBLE via CTKD. Once the slave impersonation
attack is completed, Charlie takes over Bob’s BT and BLE
sessions by tricking Alice into overwriting Bob’s BT and BLE
keys with his ones.

c) Man-in-the-middle: Charlie can conveniently com-
bine the described master and slave attacks to launch a cross-
transport man-in-the-middle attack as shown in Figure 6. If
Alice and Bob are running a BLE session, Charlie starts with
the slave impersonation attack presenting to Alice as Bob over
BT. Otherwise, he launches a master impersonation attack by
targeting Bob as Alice over BLE. After the first impersonation
attack, the impersonated victim is taken over and disconnects
from the other victim. Then, Charlie targets the impersonated
victim with a second impersonation attack and establishes a
MitM position between the two victims. As a result, Charlie
controls all BT and BLE secure sessions between Alice and
Bob.
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Alice (master)

A

Charlie (slave)

C

Devices pairable over BT

BT Pairing Request as Bob:
JW, ADDB , SC, PKC , NC

BT Pairing Response:
Assoc, ADDA, SC, PKA, NA

Compute KBT Compute KBT

BT CTKD Request as Bob:
CTKD, CSRKC , IRKC

BT CTKD Response:
CTKD, CSRKA, IRKA

Derive KBLE Derive KBLE

Fig. 5: BLUR slave impersonation attack. Charlie sends a BT
pairing request with Bob’s address (ADDB) including Just
Works (JW) association, and his public key (PKC ). The pairing
request is valid as BT enables to dynamically switch from
slave to master before sending a pairing request. Alice answers
with a BT pairing response believing that she is talking to Bob.
The attacker and the victim establish KBT, negotiate CTKD
and exchange additional keying material for BLE with a BT
CTKD request and response messages, and derive KBLE. As a
result of the slave impersonation attack, Charlie tricks Alice
into overwriting Bob’s keys with his ones and takes over Bob
who can no longer connect back to Alice.

Fig. 6: BLUR MitM attack. Charlie combines the master and
slave impersonation attacks presented so far to establish a man-
in-the-middle position between Alice and Bob both on BT and
BLE.

E. Unintended Session Attacks

The attacker can take advantage of CTKD to establish
unintended secure sessions as an anonymous device. This
attack is valuable for four main reasons. Firstly, the attack is
stealthy as the attacker can pretend to be any device and does
not have to break existing bonds. Secondly, the attacker can
enumerate and tamper with all BT and BLE services running
on the victim device (including the protected ones) without
having to impersonate a trusted device. Thirdly, the attacker
can anonymously gain access to extra key material including

Fig. 7: BLUR unintended sessions attack. Charlie can take
advantage of CTKD to establish unintended BT and BLE
session with Bob as a random device with arbitrary capabilities.
The same can happen if Charlie targets Alice.

identity resolving keys that de-anonymize BLE devices using
random addresses. Finally, the attacker can silently reach more
(vulnerable) code including RCE in the pairing and secure
session code, which is unreachable by an untrusted device.

Let us see how an unintended session attack works in
a scenario where Alice and Bob are already paired and
are running a secure BT session (see Figure 7). As in the
impersonation attack scenario, Alice and Bob must also be
pairable over BLE to support CTKD. Charlie targets Bob
by sending a BLE pairing request using a random Bluetooth
address, CTKD support, and Just Works for association. Bob
answers to Charlie’s request and the two negotiate KBLE, and
derive KBT via CTKD. Now, Charlie can establish secure but
unintended BT and BLE sessions with Bob without breaking
Bob’s existing sessions (e.g., with Alice) and by using an
anonymous identity and arbitrary capabilities. Using a similar
strategy, Charlie can reach the same goals targeting Alice.

F. Mapping Attacks to CTIs

Table I shows how the BLUR attacks take advantage
of the four cross-transport vulnerabilities that we present in
Section III-C in different ways. To cover all possible attack
scenarios, a X indicates that a CTI is required, an ”x” if it is
not required, and an ”*” if it is only needed sometimes.

All attacks exploit extended pairability (CTI 1). The
slave impersonation and MitM attacks take advantage of role
asymmetries (CTI 2), while some unintended session attacks
take advantage of that. Key tampering (CTI 3) is exploited in
all attacks as the attacker has to either write or overwrite keys
using CTKD. Association manipulation (CTI 4) is required
in the first three attacks when the victim expects a strong
association mechanism but the attacker negotiates Just Works.

V. IMPLEMENTATION

In this section we describe our attack scenario, our imple-
mentation of a custom attack device to perform the BLUR
attacks and our re-implementation of CTKD’s key derivation
function. We will open-source both implementations.

A. Attack Scenario

Our attack scenario follows the example in Figure 8 and
includes two victims, Alice (master) and Bob (slave). Alice
is represented by a 7th generation ThinkPad X1 laptop and
Bob by a pair of Sony WH-CH700N headphones. The attacker
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CTI 1 CTI 2 CTI 3 CTI 4

Master Impersonation X x X *
Slave Impersonation X X X *
MitM X X X *
Unintended Session X * X x

TABLE I: Mapping the BLUR attacks to the CTI presented in
Section III-C. CTI 1: extended pairing, CTI 2: role asymmetry,
CTI 3: key tampering, and CTI 4: association manipulation.
We use a X if a CTI is required to conduct an attack, a x if is
not required and a * if is only required in specific cases.

X1 7th gen WH-CH700N

Alice
(master)

Bob
(slave)X1 3rd gen

USB

CYW920819

Charlie (attacker)

BTSecure Session

Fig. 8: BLUR Attack Scenario. Alice (master) is a ThinkPad X1
7th gen, Bob (slave) is a pair of Sony WH-CH700N headphones
and Charlie (attacker) is a CYW920819 board connected via
USB to a ThinkPad X1 3rd gen. Alice and Bob have paired in
absence of Charlie, and are running a secure BT session.

(Charlie) uses a CYW920819 development board [15] and a
3rd generation ThinkPad X1 laptop as an attack device. The
implementation of the attack device is presented in Section V-B.
In our evaluation, presented in Section VI, we use the same
attack scenario to attack other victim devices.

Table II summarizes the most relevant features of Alice,
Bob, and Charlie. Alice and Bob have an Intel Bluetooth chip,
while Bob has a Cambridge Silicon Radio (CSR) one. Alice,
Bob, and Charlie support respectively Bluetooth 5.1, 4.1, and
5.0. Alice and Charlie support Secure Connections both on
the Host and the Controller, while Bob only on the Controller.
All devices support BT, BLE, and CTKD. Regarding pairing
association methods, the laptops support Numeric Comparison,
while the headsets only support Just Works as they lack a
display.

B. Custom Attack Device

To conduct our attacks we developed a custom attack device
making use of a CYW920819 development board connected to
a Linux laptop (see Figure 9). Both devices BT, BLE, SC, and
CTKD. Using standard laptops, smartphones or dongles is not
sufficient to implement the BLUR attacks, as they do not allow
to modify all device’s identifiers (e.g., BT and BLE address) and
all devices’ capabilities advertised over the air (e.g., firmware
and controller versions). A software-defined radio (SDR) is
also out of scope because there is no open-source BT/BLE
SDR stack currently available.

Instead, with our attack device, we can program our
development board (Bluetooth Controller) to impersonate any

Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716
Version 5.1 4.1 5.0
Name x7 WH-CH700N x1
ADD Redacted Redacted Redacted
Class 0x1c010c 0x0 0x0
BT SC True Only Controller True
BT AuthReq 0x03 0x02 0x03
BLE SC True True True
BLE AuthReq 0x2d 0x09 0x2d
CTKD True True True
h7 True False True
Role Master Slave Master
IO Display No IO Display
Association Numeric C. Just Works Numeric C.
Pairable True True True

TABLE II: Relevant Bluetooth features for Alice, Bob, and
Charlie. We redact the devices’ Bluetooth addresses for privacy
reasons.

Fig. 9: Attack Device Block Diagram. The attack device is
composed of Linux laptop (Host) and a CYW920819 develop-
ment board (Controller) connected via USB and communicating
using the Host Controller Interface (HCI) protocol.

BT/BLE device, we can patch its closed-source firmware to
control both BT LMP and BLE LL link layer packets. Moreover,
we can alter the laptop’s BT and BLE kernel and user-space
code to set Bluetooth Host-specific configuration bits such
as negotiating CKTD and Just Works. We now describe in
detail how we modify the attack device’s Host and Controller
components.

a) Host modifications: For the host, we use stan-
dard Linux tools to configure an Bluetooth interface (e.g.,
hciconfig), and to discover and pair with a device (e.g.,
bluetoothctl, hcitool and btmgmt). In particular,
btmgmt was very useful as it provides handy low-level
commands. For example, it includes commands to toggle BT,
BLE, SC, scanning, and advertising. Moreover, it allows to
easily send custom pairing requests on BT and BLE and to set
the related association (e.g., Just Works).

Furthermore, we configured our host to get all link-layer

8



packets sent and received by the controller. This is handy
as it enables to monitor both HCI and link-layer packets
directly from the host (e.g., using Wireshark). To activate link-
layer packet forwarding, we sent a proprietary Cypress HCI
command from the host to the controller that switches on an
undocumented diagnostic mode in the controller. Then, we
added extra C code to the Linux kernel to parse those special
HCI packets in the host.

b) Controller modifications: We modified the controller
by dynamically patching the development board Bluetooth
firmware using a Cypress proprietary mechanisms. To patch
the firmware we had to extract it from the board and statically
reverse-engineer its relevant parts. In particular, to extract the
firmware we used a proprietary HCI command to read and
save a runtime RAM snapshot from the board’s SoC. We use
the memory maps that we extracted from the board’s SDK to
extract the memory segments from the snapshot (e.g., ROM,
RAM, and the scratchpad). As expected, the firmware was in
the ROM segment and was a stripped ARM binary containing
16-bit Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM,
RAM, and scratchpad in Ghidra and statically analyzed them.
In our first pass, we isolated the libc functions (e.g., malloc
and calloc) by looking at the signatures and the code patterns
of the functions that are called the most. Then, we found the
firmware debugging symbols hidden in the board’s SDK and
loaded them into Ghidra. Using these symbols we isolated
functions and data structures relevant to the BLUR attacks.
Then, we wrote ARM Thumb assembly patches to change
their behaviors and we apply those patches at runtime using
internalblue [29], an open-source toolkit to manage several
Bluetooth devices including our board. Our set of patches
allows transforming our board in whatever device we want
by changing its identifiers including addresses, names, and
capabilities,

C. CTKD Key Derivation Function

We implemented CTKD’s key derivation function, following
its specification in the Bluetooth standard [10, p. 1401]. We
used our implementation to check that the keys that we observed
during our experiments were correctly derived, yet, it is not
required to conduct the BLUR attacks. Our implementation
is written in Python 3 and uses the PyCA cryptographic
module [7]. We tested it against the CTKD test vectors in the
standard [10, p. 1721]. We now describe its technical details.

KBLE =

{
f (f (tmp2,KBT ) , brle) if h7 is supported
f (f (KBT , tmp2) , brle) otherwise

We implemented CTKD’s key derivation for BT deriving
and following the equation above. The key derivation computes
KBLE using a function f(a, b) that corresponds to AES-
CMAC(key, plaintext). If both pairing devices declare h7
support, then KBLE is computed using the equation at the
top otherwise the one at the bottom. h7 is a key conversion
function defined in the Bluetooth standard and is negotiated
during pairing using AuthReq [10, p. 1634].

KBT =

{
f (f (tmp1,KBLE) , lebr) if h7 is supported
f (f (KBLE , tmp1) , lebr) otherwise

We also implemented CTKD’s key derivation for BLE
deriving and following the equation above. In this case the
derived key is KBT. The equations’ logic is identical to the
one explained for BT. What changes are the input parameters.
In particular, the computation uses as inputs: KBLE, “tmp1”,
and “lebr”.

VI. EVALUATION

In this section we present how we successfully conducted
the BLUR attacks on 16 devices using 14 unique Bluetooth
chips. Our results confirm that the BLUR attacks are effective
against different device types (e.g., laptops, smartphones,
headphones, and development boards), manufacturers (e.g.,
Samsung, Dell, Google, Lenovo, and Sony), operating systems
(e.g., Android, Windows, Linux, and proprietary OSes), and
Bluetooth firmware (e.g., Broadcom, CSR, Cypress, Intel,
Qualcomm, and Samsung).

A. Conducting the Attacks

The BLUR attacks, presented in Section IV, include master
impersonation, slave impersonation, man-in-the-middle, and
unintended session attacks. In the next paragraphs, we describe
how we conducted each attack using the attack device described
in Section V-B.

a) Laptop (master) BLUR impersonation attack: To
impersonate the laptop, we patch our attack device to clone
the laptop’s Bluetooth features (e.g., Bluetooth address, name,
device class, and security parameters) Then, we send a BLE
pairing request from the attack device to the headphones
declaring CTKD and Just Works support. The malicious BLE
pairing request is sent using btmgmt’s text-based user interface
(TUI). The headphones accept the pairing request, and the
devices agree on KBLE, derive KBT via CTKD and establish
a secure BLE session. Then, the headphones terminate the BT
session with the impersonated laptop and establish a secure BT
session with the attack device. The impersonated laptop cannot
connect back with the headphones as it does not possess the
correct pairing keys overwritten by the attacker.

b) Headphones (slave) BLUR impersonation attack:
To impersonate the headphones, we patch our attack device to
clone the headphones’ Bluetooth features. Then, we send a BT
pairing request from the attack device to the laptop declaring
CTKD and Just Works support using btmgmt’s TUI. The
laptop accepts to pair over BT as a BLE slave can send a BT
pairing request as a master. The devices agree on KBT, derive
KBLEvia CTKD, and establish a secure session over BT. The
impersonated headphones cannot connect to the laptop as they
do not own the correct pairing keys.

c) BLUR Man-in-the-middle attack: By using two
development boards connected to the same laptop, we can
impersonate the laptop and the headphones at the same time,
and man-in-the-middle them. In particular, we run the laptop
(master) impersonation attack first, and then the headphone
(slave) impersonation attack. As a result, the attack device
positions itself in the middle between the victims.
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Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave X X X

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave X X X

Google Pixel 2 Android Qualcomm SDM835 5.0 Slave X X X

Google Pixel 4 Android Qualcomm 702 5.0 Slave X X X

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave X X X

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave X X X

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave X X X

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave X X X

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Slave X X X

Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Slave X X X

Xiaomi Mi 10T Lite Android Qualcomm 9312 5.1 Slave X X X

Xiaomi Mi 11 Android Qualcomm 10765 5.2 Slave X X X

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master X X X

Sony WH-CH700N Proprietary CSR 12942 4.1† Master X X X

† CTKD was backported by the vendor to Bluetooth 4.1.

TABLE III: BLUR attacks evaluation results. The first three columns show the device’s producer, model, and OS. The next two
columns state the Bluetooth chip’s producer and model. The sixth column tells the Bluetooth version of the target device. The
seventh column indicates the attacker role. The last three columns contain a checkmark (X) if a device is vulnerable to the
relevant BLUR attack.

d) BLUR Unintended sessions attack: For the unin-
tended session attack, we patched our attack device to look
like an unknown device to the current victim (e.g., unknown
Bluetooth address and name). If the victim is a master, we run
the same steps used in the slave impersonation attack otherwise
we use the master impersonation attack’s steps. In both cases,
the attacker completes pairing using CTKD and can establish
secure sessions over BT and BLE with the victim.

B. Evaluation Results

We evaluated the BLUR attacks against 16 unique devices
(employing 14 different Bluetooth chips) and our results are
shown in Table III. The first six columns indicate the device’s
producer, model name, operating system, chip manufacturer,
chip model, and Bluetooth version. The seventh column contains
either Slave if the attacker’s role is slave, or Master otherwise.
The table’s last three columns contain a checkmark (X) if a
device is vulnerable to master or slave impersonation attack
(MI/SI), MitM, or unintended session (US) attack.

From Table III we confirm that the BLUR attacks are
standard-compliant and very effective. All devices that we
tested regardless of their implementation details are vulnerable.
Moreover, all Bluetooth versions supporting CTKD are affected
(i.e., Bluetooth 4.2, 5.0, 5.1, and 5.2) and the attacks are even
effective on older versions of Bluetooth (e.g., 4.1 devices that
backported CTKD).

Table III demonstrates that Bluetooth 5.1 and 5.2 devices
are also vulnerable to the BLUR attack despite the key overwrite
countermeasure in the standard [10, p. 1401] (discussed also in

Section III-A). We identified two reasons why this is the case.
The countermeasure is too narrow as it does not address all
the BLUR attack scenarios but only a specific key overwrite
attack. As such, other attack scenarios exploited by the BLUR
attacks are not covered (e.g., anonymous unintended sessions,
key overwriting without a downgrade, or key writing). And, the
countermeasure is not effective against the key overwrite attack
that we propose, as during a BLUR key overwrite attack we
simply declare the ”no input/output capabilities” flag to force
the usage of ”Just Works” but we lower neither the MITM
protection nor the strength (i.e., entropy) of the overwritten
key.

VII. COUNTERMEASURES

To effectively address the BLUR attacks and their root
causes (CTI presented in Section III-C) we now present four
countermeasures. Each countermeasure addresses its related
CTI (e.g., C1 addresses CTI 1). Then, we describe how to
implement them and how we evaluated one of them on a Linux
laptop.

a) C1: Disable pairing when not needed: To prevent
an attacker from pairing with a device on unused transports, a
device should automatically stop being pairable on a transport
that is not currently in use. To avoid DoS issues, a device
should also allow a user to manually enable and disable pairing
on a specific transport.

b) C2: Align BT and BLE roles: To fix role asymmetries
between BT and BLE when using CTKD, a device should store
the transport and the role used while pairing and enforce it
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across re-pairings regardless of the transport in use. In case of
a role mismatch, the device should abort pairing. We note that
the BIAS paper [4] also takes advantage of role switching but
is not proposing role switch enforcement as a countermeasure.

c) C3: Prevent cross-transport key tampering: To pre-
vent cross-transport key overwrites via CTKD, a device should
disable it while pairing if a trusted pairing key already exists for
the other transport. As a result, to overwrite a trusted pairing
key a user should explicitly re-pair on that transport. To mitigate
cross-transport key writes, CTKD should be disabled when two
devices, who already share a pairing key on a transport, re-pair
on that transport with a weaker pairing key (that would be used
as input to CTKD). A key is considered stronger than another
one if its entropy is higher or if is established with a stronger
association mechanism.

d) C4: Enforce strong association mechanisms: To pre-
vent an attacker from manipulating the association mechanisms
used when pairing on different transports, a device should
keep track of the association mechanism used while pairing
for the first time with a device and enforce it for subsequent
re-pairings across BT and BLE. There is no obvious reason why
two devices which support strong association would want to
ever use a weaker association scheme. If a weaker mechanism
than the one stored is proposed, pairing should be aborted.

The four countermeasures not only address the four CTIs
but they also stop the BLUR attacks. In particular, C3 prevents
impersonation and MitM as the attacker will not be able to write
and overwrite key across transports but only target separately
BT and BLE. To stop the unintended sessions attacks C1 is
also needed as the attacker should not be able to pair with
CTKD on unused transports. C2 and C4 help to mitigate the
attacks by providing more defense-in-depth but they are not
strictly required.

Our countermeasures can be implemented in the Bluetooth
Host component (i.e., device’s main OS). C2, C3, and C4 can be
realized by keeping track of metadata that is already exchanged
during the pairing protocol (e.g., device role, association) and
aborting the protocol when needed. C1 can be implemented
with a timer which disables pairability on a transport when
not needed and a simple user interface to monitor and switch
on/off pairability for BT and BLE.

To verify the effectiveness of C3 we implemented a C3
proof-of-concept and tested it using a Linux laptop. We paired
our laptop with the victim device using CTKD and we deleted
the pairing data on the victim device and then used it as the
attacker device. Then, to disable CTKD on the laptop, we unset
the write permission bit in the folder and the file storing the
pairing keys. Then we ran the impersonation attack from the
attack device and the attack failed as the OS was preventing
the Bluetooth Host from (over)writing new pairing keys.

VIII. RELATED WORK

Bluetooth provides a royalty-free and widely-available cable
replacement technology [19]. Bluetooth standard compliant
attacks are particularly dangerous as all Bluetooth devices
are affected, regardless of version numbers or implementation
details. Such standard-compliant attacks have appeared since
the first versions of Bluetooth [23], [28]. Standard-compliant

attacks on BT include attacks on legacy pairing [38], secure
simple pairing (SSP) [20], [39], [9], Bluetooth association [21],
[40], key negotiation [2], and authentication procedures [27],
[41], [4]. Standard-compliant attacks on BLE include attacks
on legacy pairing [35], key negotiation [5], SSP [9], [45],
reconnections [43], and GATT [24]. Compared to the mentioned
attacks that target either BT or BLE, the BLUR attacks are
the first standard-compliant attacks targeting the intersection
between BT and BLE.

We have seen attacks targeting specific implementation
flaws on BT [36] and BLE [37], [18]. As our BLUR attacks
target the specification level, they are effective regardless of
the implementation details. Several surveys on BT and BLE
security were published [16], [30], [32] but neither of those
surveys nor the Bluetooth standard considers CTKD as a threat.
We here demonstrate that CTKD is a serious threat and must
be included in the threat model.

Cross-transport attacks were exploited for proximity tech-
nologies using Bluetooth and Wi-FI. Two prominent examples
are attacks on Apple ZeroConf [8] and Google Nearby
Connections [3]. Our BLUR attacks are the first cross-transport
attacks for BT and BLE.

The cryptographic primitives used by Bluetooth have
been extensively analyzed. For example, the E0 cipher used
by BT was investigated [17] and it is considered relatively
weak [32]. SAFER+, used for authentication, was analyzed as
well [26]. BT and BLE “Secure Connections” use the AES-
CCM authenticated-encryption cipher. AES-CCM was exten-
sively analyzed [25], [34] and it is FIPS-compliant. Our BLUR
attacks target key negotiation and not cryptographic primitives,
and are effective even with perfectly secure cryptographic
primitives.

As can be seen from Table IV, compared to other standard-
compliant attacks, the BLUR attacks are novel and are enabling
impactful attack scenarios. The BLUR attacks are the first
cross-transport attacks for Bluetooth and are the first attacks
exploiting CTKD. In terms of impact, the BLUR attacks require
a weak attacker model as the attacker does not have to observe
previous pairing and secure sessions between the victim. On
top of that, they break even the most secure BT and BLE mode
(i.e., SSP, LESC, SC, and strong association) and their effect
is persistent.

IX. CONCLUSION

This work presents the first security evaluation of CTKD.
CTKD is a feature specified in the Bluetooth standard that
allows two devices compatible with BT and BLE to pair just
once on either transport and use both of them securely. Despite
CTKD being a dangerous attack surface, little is known about
its actual security. In our evaluation we reverse-engineered
how CTKD is used from BT and BLE and we uncover four
vulnerabilities in its specification. The vulnerabilities affect any
device supporting CTKD and can be used to exploit BT and
BLE just by targeting one of the two.

To show the effectiveness of the uncovered vulnerabilities
we exploit them to present four cross-transport attacks for
Bluetooth. The attacks allow to impersonate or MitM any
master or slave device supporting CTKD. Furthermore, the
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Attack

Year Paper Target Phase C I AK SC/SCO Persistent Note

Attacks on BT
2016 Albazrqaoe et al. [1] Standard Any G#### x - BlueEar Sniffer
2017 Seri et al. [36] Impl. Pairing    # NA X BlueBorne
2018 Sun et al. [39] Standard Pairing    # X - Passkey (MitM)
2018 Biham et al. [9] Impl. Pairing    G# NA X Fixed Coordinate Invalid Curve
2019 Antonioli et al. [2] Standard Pairing   G## X - KNOB (MitM)
2020 Antonioli et al. [4] Standard Pairing    # X - BIAS
2021 Tschirschnitz et al. [40] Standard Pairing    # X - Method Confusion (MitM)

Attacks on BLE
2016 Jasek et al. [24] Standard NA G#### x - Black Hat
2019 Seri et al. [37] Impl. NA #G#G## NA X Bleedingbit
2020 Zhang et al. [45] Standard Pairing G#G#G## X - MitM (SCO)
2020 Wu et al. [43] Standard Session ## # X - BLESA
2020 Garbelini et al. [18] Impl. Any G#G#G## NA - SweynTooth fuzzer

Attacks on both BLE and BT
2019 Ossmann et al. [31] Standard NA G#### x - Ubertooth sniffer
2020 Antonioli et al. [5] Standard Pairing   G## X - Downgrade (MitM)
2021 This work Standard Any    G# X X BLUR (cross-transport)

TABLE IV: Overview of recent attacks on Bluetooth and BLE. C = Data Confidentiality, I = Data Integrity, A = Device
Authentication, K = Key disclosure. No (#) Partially (G#), Yes ( ).

attacks can be used to establish unintended sessions as an
anonymous device. As the attacks are effective regardless of
the security mode in use (e.g., SSP, SC, on strong association)
they can break the strongest security level of BT and BLE.
Collectively our attacks are called BLUR attacks as they blur
the security boundary between BT and BLE.

The BLUR attacks are also novel compared to prior
standard-compliant attacks in the literature. Our attacks are
the first cross-transport attacks for Bluetooth and are the first
attacks targeting CTKD. Moreover, unlike prior attacks, such as
KNOB or BIAS, they can be executed at any point in time and
they achieve a persistent compromise of the victim devices. For
example, the attacker does not have to wait until the victims
start new pairing or secure sessions.

To demonstrate the practicality of the BLUR attacks, we
presented a low-cost implementation based on readily available
hardware and open-source software. We use our implemen-
tation to experimentally confirm that the BLUR attacks are
standard-compliant. In particular, we exploit 16 devices from
different popular vendors using 14 unique Bluetooth chips and
implementing all Bluetooth versions supporting CTKD (4.2,
5.0, 5.1, and 5.2). We also exploited a Bluetooth 4.1 device to
which CTKD was backported.

To fix the presented attacks, we discuss four effective and
cross-transport countermeasures. The countermeasures enforce
that a device is not pairable when not needed, that BT and
BLE roles are aligned while pairing, that security keys cannot
be improperly (over)written or stolen, and that association is
not downgraded. Our countermeasures can be implemented at
the OS level and to show their feasibility we implemented one
of them on the Linux OS.
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X. APPENDIX

Lessons Learned

In this section we list the main lessons that we learned in
the hope that they will be useful for protocol designers who
are dealing with cross-transport security mechanisms.

a) Cross-transport specification and modeling: Security
mechanisms that cross the security boundary between two
technologies should be well-specified and tested against a
comprehensive cross-transport threat model. On the contrary,
the Bluetooth standard provides an incomplete specification for
CTKD and only discusses some cherry-picked cross-transport
threats.

b) Cross-transport security guarantees: Cross-transport
mechanisms should be designed such that the mechanisms
trusted at the boundary between the two transport (i.e., BT and
BLE pairing) have the same threat model and provides the same
security guarantees. This is not the case for Bluetooth as BT
and BLE use different pairing protocols, link layer mechanisms,
and threat models.

c) Usability vs. Security: CTKD was introduced to
improve Bluetooth’s usability, but, in light of the presented
attacks, the usability benefits are not balancing the security
issues deriving from CTKD. Indeed, it is paramount to find a
good balance between usability and security and not overweight
the former.
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