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This document contains our rebuttal to the reviews, the list of changes between
the NDSS version of the paper and the current one and a paper diff.

Changelog since the submission to NDSS’22
• Abstract

– improve the presentation of the contribution
• Introduction

– improve the presentation of the contribution
– update the description of the disclosure

• Background
– better presentation of BT vs. BLE

• CTKD analysis (Section 3)
– 3.A more clearly introduces the CTKD argument in Bluetooth v5.1/5.2
– 3.B better introduce the need to RE CTKD despite the description

in the Bluetooth standard
• BLUR attacks (Section 4)

– 4.E better explain why the unintended session attacks are enabled by
CTKD

– 4.F collects and discusses important attacks’ aspects. For example,
effectiveness regardless of Bluetooth v5.1/5.2 and pairing association
methods

• Evaluation (Section 6)
– 6.B clearly explain that we empirically verified our claim regarding

5.1 and 5.2 and explain why we are not evaluating 5.1/5.2 peripherals
• Discussion (Section 7)

– 7.A provides an extended discussion of the countermeasures
– 7.B reintroduces the lessons learned

• Related work
– Strengthen comparison with prior work including Table IV

• Conclusion
– Shortened as requested

Rebuttal
We thank the reviewers for their feedback. Each of the following sections
addresses comments raised by a reviewer.

Rev88A

Proposed attacks require considerable programming efforts

We do not agree that a custom attack device makes the attack less practical. Any
attack on a wireless system needs a certain level of equipment. The programming
effort is close to zero because we have already written the software, which will
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be on GitHub when the paper is published. (It is not public yet because of
responsible disclosure).

The manuscript is not discussing and evaluating the mitigation
strategies in depth.

The paper proposes concrete countermeasures in Section 7 and explains the exact
step in the attack that will fail if this countermeasure is in place, In addition,
we test the most obvious countermeasure (disable key overwriting) on actual
devices.

The paper does not discuss Bluetooth IDS

We are currently not discussing such IDS as we believe that our proposed
countermeasures efficiently fix the root issues exploited in the attacks, and an
IDS is at best a probabilistic detection method. Nevertheless, if the reviewers
think the paper would be strengthened by a discussion of Bluetooth IDS, we are
happy to add a discussion on this in a revision.

Rev88B

This paper did not perform any user study

The majority of the devices we tested did not require user interaction, not even
a confirmation of “do you want to accept pairing with your device”. There were
devices that showed a prompt for certain attacks and a user study might indeed
be helpful. However there are already a fair number of studies that inefficacy
of security prompts, e.g., “Alice in Warningland: A Large-Scale Field Study of
Browser Security Warning Effectiveness”, and we do not believe that any study
we do will add much in terms of new information.

This paper would be more solid if a formal model was built

Building a formal model of Bluetooth is not a simple task, nor is it required to
show the nature of the presented attacks or how to effectively prevent them. We
consider this out of the scope of our work.

Rev88C

Issues with some citations

If the reviewer is referring to the lines in the Bibliography, those mean that the
authors are the same as the paper above. It is not our choice to have those, they
come with the conference bibliography-style.

Scalability of the proposed solution by deploying it on small scale
IoT devices.

We are not sure what is meant by this comment. We are proposing protocol-level
attacks and mitigations that work between two Bluetooth devices, regardless
of the number of other devices in the environment. Moreover, CTKD is not a
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mechanism adopted by small-scale IoT devices that typically support only BLE
or LoRa, or Zigbee.

How JW, address, and public key can be retrieved to perform imper-
sonation?

The attacker only needs to know the Bluetooth address of the victim (that can be
gathered by eavesdropping), JW is negotiated by the attacker, and the attacker
computes her public key.

Evaluate the proposed solution thoroughly and be tested on various
devices

Table 3 in our paper is a list of all the devices we tested this on. All the attacks
worked on every single device we tested. We tested a countermeasure on a Linux
laptop and Linux represents a considerable portion of the affected Bluetooth
devices (i.e., Android smartphones, embedded devices).

Rev88D

Why does the BT SIG say something different about 5.1 and 5.2?

The current situation with the SIG is a bit controversial. In summary, they are
convinced that their “key overwrite” mitigation addresses the BLUR attacks.
Such mitigation is presented in the paper in Section 3A. On the other hand,
we have shown that this is not the case in the paper and we provide a detailed
explanation in Section 6B. The same explanation was reported recently to the
SIG.

Attacks against three 5.1 or 5.2 slaves, but only against 4.1 and 4.2
masters.

The evaluation demonstrates attacks against 5.1 and 5.2 masters (e.g., smart-
phones). At the time of writing, there were very few (and expensive) 5.1 and 5.2
devices and we were not able to find 5.1 and 5.2 slaves supporting CTKD. We
can clarify this point in the paper.

How the RE information relates to the standard.

The problem here is that the standard provides a limited description of CTKD
that is not sufficient to perform a security analysis. That is why we had to perform
experiments with actual devices, capture their traffic, and RE information that
are missing from the standard (e.g., CTKD negotiation). As a result, the RE
information is not implementation-specific, but extends what is in the standard.
We will clarify it in the paper.

How CTKD makes the unintended session attack possible or more
powerful

CTKD enables the unintended session attack because it provides more ways to
pair with a victim. In a non CTKD scenario there is only one transport active
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(and potentially in use) at a time. Instead with CTKD a device stays pairable
on both BT and BLE while using only one most of the time. In the revision, we
will clarify this point.

Several of the countermeasures involve users’ transport-specific ac-
tions

The user is not involved in the countermeasure at all. Our countermeasures act
at the protocol level and are transparent to end-users. It would be useful to
know which specific countermeasures the reviewer is referring to so we can fix
the confusion.

Why are there only two master devices of the same type in the
evaluation?

The role column in Table 3 refers to the attacker role, as such, we tested only
two slave devices. We tested 2 of them because they were the only ones at
our disposal and Covid made it difficult to gather devices from colleagues and
students.

Rev88E

Missing feedback from the SIG, report the issues to device vendors

The feedback is missing because the SIG has yet to provide any. Device vendors
are notified by the SIG when a vulnerability is submitted, so they are aware of
the problem.

Overclaiming the attacks’ impact

We disagree about overclaiming the impact of the attacks. As it happens for
other radio technologies, the range of Bluetooth can be extended way over
10 meters with a directional antenna. The fact that the attacks require radio
proximity is an implicit constraint of every attack on a wireless protocol.

Countermeasures not addressing the issue directly. OS logging and
C2.

The countermeasures we present are aimed directly at the root causes of the
attacks. We are happy to improve the explanation if it seems to be unclear.
To clarify, logging the metadata at the OS level (Bluetooth Host) does not
entail any changes in the Bluetooth threat model, and is already employed
for other purposes. C2 does not break the link layer as it does not introduce
backward-incompatible features but it enforces backward compatible ones.

Just Works as a key requirement. How effective are the CTI’s when
there are other association mechanisms?

The attack works against any association mechanism. This is because the
attacker can downgrade the association to Just Works even if a victim device
supports a stronger association method.
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BLURtooth: Exploiting Cross-Transport Key
Derivation in Bluetooth Classic and Bluetooth Low

Energy

Anonymous Submission

Abstract—The Bluetooth standard specifies
::
two

::::::::::
transports:

Bluetooth Classic (BT)
::
for

::::::::::::::
high-throughput

::::::
wireless

:::::::
services

:
and

Bluetooth Low Energy (BLE) . The two transports have different
security architectures and threat models and provide dedicated
pairing and session establishment protocols . Traditionally, two
devices would

::
for

::::
very

:::::::::
low-power

::::::::
scenarios.

:::
BT

::::
and

::::
BLE

:::::
have

:::::::
dedicated

:::::::
pairing

:::::::
protocols

::::
and

::::::
devices have to pair over BT and

BLE to use both securely. But in
::
In

:
2014, Bluetooth

:::
the

::::::::
Bluetooth

:::::::
standard

:
(v4.2

:
) addressed this usability issue by introducing Cross-

Transport Key Derivation (CTKD). CTKD allows establishing BT
and BLE pairing keys just by pairing over one transport

:
of
:::

the
::::
two

::::::::
transports. While CTKD crosses the security boundary between
BT and BLE, little information is know about CTKD internals
and no prior work analyzed

::
is

::::::
known

:::::
about

:::
the

::::::::
internals

:::
of

:::::
CTKD

::::
and its security implications.

In this work, we present the first complete description of
CTKD obtained by merging the scattered information from the
Bluetooth standard and results from

::::
with

:::
the

::::::
results

::::
from

::::
our

reverse-engineering experiments. Then, we perform a security
evaluation of CTKD and uncover four

::::::::::::
cross-transport

:
issues in

its specificationthat can be used to cross the security boundary
between BT and BLE. We leverage these issues to design four
standard-compliant attacks on CTKD enabling to exploit BT
from BLE and vice versa. The

:::
new

:::::
ways

::
to

::::::
exploit

:::::::::
Bluetooth

::::
(e.g.,

::::::::
exploiting

:::
BT

::::
and

::::
BLE

:::
by

:::::::
targeting

:::::
only

:::
one

::
of

:::
the

:::::
two).

:::
Our

:
attacks work even if the strongest security mechanism for BT

and BLE are in placeand they ,
::::::::
including

:::::::
Numeric

:::::::::::
Comparison

:::
and

::::::
Secure

:::::::::::
Connections.

:::::
They

:
allow to impersonate, man-in-

the-middle, and establish unintended sessions with arbitrary
devices. We refer to our attacks as BLUR attacks, as they blur
the security boundary between BT and BLE. We provide a low-
cost implementation of the BLUR attacks and we successfully
evaluate them on 16 devices with 14 unique Bluetooth chips from
popular vendors. We discuss the attacks’ root causes and present
effective countermeasures to fix them. We disclosed our findings
and countermeasures to the Bluetooth SIG in May 2020 (CVE-
2020-15802)

:
,
:
and we reported additional unmitigated issues in

May 2021.

Keywords—
:::::
CTKD,

::::::::
Bluetooth,

:::::::::::::
Cross-Transport

::::::
Attacks

:

I. INTRODUCTION

Bluetooth is a pervasive wireless technology used by billions
of devices including mobile phones, laptops, headphones, cars,
speakers, medical, and industrial appliances [11]. Bluetooth

::
It

is specified in an open standard maintained by the Bluetooth
special interest group (SIG), and its latest version is 5.2 [10].
The standard specifies two transports: Bluetooth Classic (BT)
and Bluetooth Low Energy (BLE)

::::::::
Bluetooth

:::::::
Classic

::::
(BT)

:::
and

::::::::
Bluetooth

::::
Low

::::::
Energy

::::::
(BLE). BT is best suited for connection-

oriented and high-throughput use cases, such as streaming

audio. BLE is optimized for connection-less and very-low-
power use cases such as HCI, fitness tracking, or digital contact
tracing

:::::
fitness

:::::::
tracking.

The Bluetooth standard defines different
::::::::
dedicated security

architectures and threat models for BT [10, p. 947] and BLE [10,
p. 1617]. Each transport provides a pairing and a secure session
establishment

::::::
pairing

:::
and

::
a
:::::::
session

::::::::::::
establishment protocol.

Pairing results in the establishment of a long-term pairing key
. While secure session

:::
that

::::
acts

::
as

:::
the

::::
root

:::
of

:::::
trust.

:::::::
Session

establishment allows paired devices to create
:::::::
establish a secure

channel through a fresh session key derived from their shared
pairing key.

Traditionally, two devices
:::::::::
supporting

:::
BT

:::
and

:::::
BLE

:
would

have to pair over BT and BLE to securely use both
::::::::
separately

::
on

::::
each

::::::::
transport. In 2014Bluetooth ,

:::
the

:::::::::
Bluetooth

::::::::
standard

:
(v4.2

:
)
:
introduced Cross-Transport Key Derivation (CTKD) to

address this usability issue. CTKD enables to pair devices once,
either over BT or BLE, and negotiate BT and BLE pairing
keys without having to pair a second timeand with no extra
user interaction [10, p. 1401].

Security-wise, CTKD has not received any attention from
the research community and the Bluetooth standard hastily
describes only some aspects and threats associated with
CTKD. On the other hand, CTKD is a very interesting

:::
We

::::::
believe

::::::
CTKD

::::::::
provides

::
a
::::::::::

significant
:

attack surface, as it
is a standard-compliant security feature, is used together
::::
used

::
in

::::::::::
conjunction

:
with the most secure modes of BT and

BLE (i.e.,
::::::::
Bluetooth

::::::
modes

:::::
(e.g., Secure Connections), allows

crossing
:::
and

::
is

:::::::::
transparent

::
to

:::
the

:::::::::
end-users.

::
In

::::::::
addition,

::::::
CTKD

:::::
allows

::::::::
crossing the security boundary between BT and BLE

, and is transparent to the end-user
:
as

:::::::
CTKD

::::::
forces

:::::::
implicit

::::
trust

:::::::
between

:::
BT

::::
and

:::::
BLE.

:::
For

::::::::
example,

::
if
::::

two
:::::::
devices

::::
pair

:::
over

::::
BT

:::
and

::::::::
generate

:
a
::::
BLE

:::::::
pairing

:::
key

::::
with

::::::
CTKD

:::::
then

:::
the

::::::
security

:::
of

:::
the

::::
BLE

::::::::
transport

:::::::
entirely

:::::
relies

:::
on

:::
BT.

In this work, we present a complete description of CTKD
obtained by reverse-engineering key information missing from
:::::::::
combining

:::
the

:::::::::
incomplete

::::
and

::::::::
scattered

::::::::::
information

::::::::
provided

::
in the Bluetooth standard (i.e., CTKD negotiation and usage
:::
and

:::
our

:::::::::::::::::
reverse-engineering

::::::::::
experiments

::::::
needed

::
to

::::::::::
understand

:::
how

:::::::
CTKD

::
is

:::::::::
negotiated

::::
and

:::::
used

::
in
::::::::

practice
:
for BT and

BLE). Then, we perform a security evaluation
::
the

::::
first

:::::::
security

::::::::
evaluation

::
of

::::::
CTKD

:
and we uncover four cross-transport issues

(CTI) with CTKD’s specification.
::::::::::::
cross-transport

::::::
issues

:::::
(CTI)

::::
with

:::
its

:::::::::::
specification.

::::
The

::::::
issues

::::::
affect

::::::
pairing

::::::
states,

:::::
role

:::::::::::
asymmetries,

:::
key

:::::::::
generation

::::
and

::::::::::
distribution,

::::
and

::::::::::
association

:::::::
methods.

:
For example, CTKD enables to (over)write and steal

security keys
::::::::
by-design

:::::::
enables

::::::::::
overwriting

::::::
trusted

::::
keys

:::::
with



::::::::
malicious

::::
ones

::::::
across

::::::::
transports.

We leverage these vulnerabilities
:::
the

:::::::::
uncovered

::::::
CTIs

to design four novel cross-transport attacks
:::::::::::::
cross-transport

:::
and

:::::::::::::::::
standard-compliant

:::::
attacks

:::
on

:::::::
CTKD. Our attacks en-

able to impersonate and take over secure sessions from any
BT/BLE master or slave device. Combining master and slave
impersonationthe attacker can also

::::::::
persistent

:::::::::::::
cross-transport

::::::::::::
impersonation,

:
man-in-the-middleBT and BLE secure sessions.

Furthermore, a bad actor can establish secure, but unintended
,

::
and

::::::::::
unintended

:::::::
session

:::::::
attacks

:::
on

:
BT and BLE sessions

with a victim device while remaining anonymous
::
via

::::::
CTKD.

The attacks are effective regardless of the usage of
the strongest security mode for BT and BLE including
Secure Simple Pairing (SSP), Secure Connections (SC), and
strong associations

:::::::
employed

:::::::::
Bluetooth

::::::::
security

:::::::::::
mechanisms,

::::::::
including

::::::
Secure

:::::::::::
Connections

:::
and

::::::::
Numeric

:::::::::::
Comparison. We

name our attacks BLUR attacks, as , by exploiting CTKD,
they

::::
theyblur the security boundary between BT and BLE.

In contrast to prior standard-compliant attacks
[22], [21], [36], [40], [9], [2], [5], [4], [44], [46], [41],
our attacks

:::
The

:::::::
BLUR

::::::
attacks

:
are the first cross-transport

attacks as they can break
::::::::::::::::
standard-compliant

:
BT and

BLE by targeting just one of the two and the first attacks
exploiting CTKD. Additionally, our attacks do

::::::
attacks

:::
to

not require the attacker to be present when a victim is
pairing or establishing a secure sessionand they result
in a persistent compromise of the victim. ,

::::::
unlike

::::::
prior

::::
work

:::::::::::::::::::::::::::::::::::::::::::::::
[22], [21], [36], [40], [9], [2], [5], [4], [44], [46], [41].

::
In

:::::::::
particular,

:::
our

:::::::
attacks

:::
are

:::
the

::::
first

::::
that

::::
can

:::
be

:::::::::
conducted

::
in

:::::::
absence

::
of

::::
one

::
of

:::
the

:::::::
victims.

::::
The

::::::
BLUR

::::::
attacks

::::
are

::::
also

::
the

::::
first

::::
that

:::::::
exploit

::::::::::
interactions

::::::::
between

:::
BT

::::
and

:::::
BLE

::::
(via

:::::::
CTKD). For a more detailed comparison

:
to
:::::

prior
:::::

work
:
see

Section VIII.

We implemented
::
To

:::::::::::
demonstrate

:::::
that

:
the BLUR at-

tacks using
::
are

::::::::
feasible

::::
we

:::::::
present

::
a
:
low-cost hardware

:::::::::::::
implementation

::
of

:::
the

::::::
attacks

::::::
based

:::
on

:
a
::::::
cheap

:::::::::::
development

:::::
board

:
and open-source softwareand we verified their

standard-compliance and large-scale impact. We successfully
exploited

:
.
::::

We
:::::::::

evaluated
::::

our
:::::::

attacks
::::

on
::
a
:::::

large
:::::

and
::::::::::::
heterogeneous

::::::
sample

:::
of

:::::::
devices.

::
In

:::::::::
particular,

:::
we

:::::::::
exploited

16 unique devices employing 14 different Bluetooth chips from
Broadcom, Cambridge Silicon Radio (CSR), Cypress, Intel,
:::
and

:
Qualcomm. Our vulnerable device set

::
set

::
of

::::::::::
vulnerable

::::::
devices

:
covers all Bluetooth versions supporting CTKD (i.e.,

Bluetooth 4.2, 5.0, 5.1, and 5.2) and even a Bluetooth 4.1
device to which CTKD was backported.

We
::::::::
concretely

:
address the BLUR attacks by present-

ing four countermeasures fixing the four
:::::::::::
protocol-level

:::::::::::::
countermeasures

:::::::::
mitigating

:::
the

:
presented CTIs and the related

:::::
BLUR

:
attacks. Our mitigations can be implemented at the

operating system level with low effort. We also evaluated
::
To

::::::
backup

:::
this

::::::
claim

:::
we

:::::
tested

:
one countermeasure (i.e., disable

key overwriting) by implementing it on a Linux laptop.

We responsibly disclosed our findings with the Bluetooth
SIG two times. In May 2020 we sent our first report which
was tracked with CVE-2020-15802. In September 2020 the
Bluetooth SIG

:::::::::
unilaterally

:
released a security note at with

some recommendations to address the attacks. However, as
we detail later in the paper, these recommendations are not

stopping the BLUR attacks. Hence, in May 2021 we provided
:::
(see

:
https://tinyurl.com/vxhwftc2

::
),

:::::::
claiming

::::
that

:::::::::
Bluetooth

:::
5.1

:::
and

::::
later

:::
are

:::
not

:::::::::
vulnerable

::
to
::::

the
::::::::
presented

::::::
attacks.

:::
As

::::::
result,

::
we

::::::
further

::::::::
analyzed

:::
5.1

:::
and

:::
5.2

:::::::
devices,

:::
and

::::::
found

::::
them

::
to

::::
still

::
be

::::::::::
susceptible.

:::
We

::::::
explain

::::
why

::::
this

::
is

:::
the

::::
case

::
in

::::::
Section

:::::
IV-F

:::
and

:::::::::::::
experimentally

:::::::
confirm

::
it

::
in

:::::::
Section

:::::
VI-B.

:::
We

:::::::::
disclosed

::::
those

::::::::
findings to the SIGadditional evidence to explain why

the BLUR attacks are still effective on all Bluetooth versions
supporting CTKD,

::::
but

::::
have

:::
not

::::::::
received

:
a
::::::::

reaction.
:::
We

:::::
note

:::
that

:::
the

::::
SIG

:::
is

:::::::
expected

:::
to

:::::
notify

::::::::
vendors

::
of

:::::::::::::
vulnerabilities,

::
so

::
no

::::::::
separate

::::::
vendor

:::::::::
disclosure

::
is

:::::::
required.

We summarize our
::::
main

:
contributions as follows:

• We present a complete description of CTKD combining
public and reverse-engineered information. We perform
the first security evaluation of CTKD and uncover four
vulnerabilities in its specification. Among others

:::
For

:::::::
example, CTKD enables to adversarially pair over
unused transports and to tamper with BT and BLE
security keys.

• Based on the identified issues we propose four novel
and standard-compliant attacks capable of breaking BT
and BLE just by targeting one of the two. Compared
to related work, our attacks are the first exploiting
CTKD and acting across transports. Our attacks en-
able to impersonate, man-in-the-middle, and establish
unwanted and stealthy sessions with arbitrary devices.
We name our attacks BLUR attacks as they blur the
security boundary between BT and BLE.

• We present a low-cost implementation of the BLUR
attacks based on a Linux laptop and a Bluetooth
development board. We use our implementation to
attack 16 different devices employing 14 unique
Bluetooth chips and covering all Bluetooth versions
compatible with CTKD (e.g., 4.2, 5.0, 5.1, and 5.2).
Our evaluation demonstrates that the BLUR attacks are
very effective and specification-compliant. To address
them, we discuss four countermeasures to address the
presented issues and attacks affecting CTKD.

II. BLUETOOTH CLASSIC (BT) AND LOW ENERGY (BLE)

We now compare the most relevant features of BT and
BLE. To provide precise technical descriptions we follow the
Bluetooth standard’s master/slave terminology instead of more
apt terms like leader/follower.

BT and BLE are two wireless transports specified in the
Bluetooth standard

::::
[10]. These transports are incompatible

(e.g.,they use different physical layers and link layers) and
are designed to complement each other. BT is used for high-
throughput and connection-oriented services, such as streaming
audio and voice, while BLE is optimized for very low-power
and low-throughput services such as fitness tracking and digital
contact tracing. High-end devices, such as laptops, smartphones,
headsets, and tablets, provide both BT and BLE, while low-end
devices such as mice, keyboards

:
, and wearables provide either

BT or BLE.

BT and BLE have similar security mechanisms but different
::::
(i.e.,

::::::
pairing

::::
and

::::::
session

:::::::::::::
establishment)

:::
but

:::::::
different security

architectures and threat models. Both transports provide a

https://tinyurl.com/vxhwftc2


pairing mechanism, named
::::::
Pairing,

:::::
also

::::::
known

:::
as

:
Secure

Simple Pairing (SSP), to let
:::
lets

:
two devices establish a

long-term pairing key
:::
and

:::::::::::
authenticate

:
a
:::::::
pairing

:::
key

::::
that

::::
acts

::
as

:::
the

::::
root

::
of

::::
trust. BLE SSP is performed over the Security

Manager Protocol (SMP) [10, p. 1666], while BT SSP uses the
Link Manager Protocol (LMP) [10, p. 568]. During pairing,
BLE allows negotiating the entropy of the pairing key while
BT does not. Additionally

:::::
While

:::::::
pairing, BT and BLE provide a secure session

establishment mechanism to
::::::
employ

:::::::
similar

:::::::::::
association

::::::::::
mechanisms.

::::
For

:::::::
example,

::::
Just

::::::
Works

:::::::::
association

::
is

:::::::::
supported

::
by

:::
all

::::::::
Bluetooth

:::::::
devices

::
as

::
it

::::
does

:::
not

::::::
require

::::
user

::::::::::
interaction,

:::
but

:
it
:::::

does
:::
not

:::::::
protect

::::::
against

:::::
MitM

:::::::
attacks.

::::::
While

::::::::
Numeric

::::::::::
Comparison

:::::::::
association

::::::::
protects

:::::::
against

::::::
MitM

::::::
attacks

::::
by

:::::
asking

::::
the

::::
user

:::
to

:::::::
confirm

::
a
::::::::
numeric

::::
code

:::
on

::::
the

:::::::
pairing

:::::::
devices’

:::::::
screens.

:::
As

:::
the

:::::::::
Bluetooth

:::::::
standard

:::::
does

:::
not

:::::::
protect

::
the

:::::::::::
negotiation

::
of

::::
the

::::::::::
association

:::::::
method,

:::
an

::::::::
attacker

::::
can

::::::
always

:::::::::
downgrade

:
it
::
to
::::

Just
::::::

Works
:::::
even

::
if

:::
the

::::::
victim

::::::
device

:::
has

:::
I/O

::::::::::
capabilities.

:

::::::
Session

::::::::::::
establishment

:::
lets

::::::
paired

::::::
devices

:
establish a secure

communication channelusing a
:
.
::::
The

:::::::
channel

::
is

::::::::
protected

:::
by

:
a
:::::
fresh session key derived from a pairing key

:::
the

::::::
pairing

::::
key

:::
and

:::::
some

::::::
nonces. During session establishment, BT allows

negotiating the entropy of the session key while the BLE
session key inherits the entropy of the associated pairing key.

BT and BLE use the same notion of pairable and
discoverable

:::::::
pairable

:::
and

:::::::::::
discoverable states. If a device is

pairable then it accepts pairing requests from other devices. If
it is discoverable it reveals its identity when scanned by other
devices. Notably, a device answers to a pairing request even if it
is not

:::
not discoverable [43]. For example, if the user knows the

Bluetooth address of her pair of headphones she can complete
BT or BLE pairing with her smartphone

::
by

:::::::
sending

:
a
:::::::
pairing

::::::
request

::::
from

::::
her

:::::
laptop

:
without putting the headphones into

discoverable mode.

BT and BLE provide a “Secure Connections”
::::::
Secure

::::::::::
Connections mode which enhances their security primitives
without affecting their security mechanisms

:::
the

::::::::
security

::::::::
primitives

:::
in

:::
use

:::::::
without

::::::::
affecting

:::
the

::::::::::
underlying

::::::::
protocols.

In particular, Secure Connections mandates the usage of FIPS-
compliant algorithms such as AES-CCM, HMAC-SHA-256,
and the ECDH on the P-256 curve [10, p. 269]. Furthermore,
BT and BLE employ similar association mechanisms to
authenticate pairing. Two examples of associations are Just
Works that does not protect against MitM attack but requires no
user interaction. Numeric Comparison instead protects against
MitM attacks by forcing the user to confirm that she sees the
same numeric code on the pairing devices’ screens.

Both BT and BLE use a master-slave
:::::::::::
master-slave medium

access protocolbut define the master and slave roles differently.
For BT, the master

:
.
:::
The

::::::
master

:::::
(BLE

:::::::
central) is the connection

initiator, the slave is the connection responder, and roles can
be switched dynamicallyby any party after a radio link is
established. For BLE, the master and slave

::::
while

::::
the

:::::
slave

::::
(BLE

::::::::::
peripheral)

::
is

:::
the

:::::::::
responder.

::::
BT

::::::
allows

::
to

::::::
switch

:::::
roles

::::::::::
dynamically,

:::::
while

:::::
BLE roles are fixedand cannot be switched.

The BLE master (defined as central) acts as the connection
initiator and the BLE slave (defined as peripheral) as the
connection responder.

:
.
:
High-end devices, such as laptops and

smartphones, support both BLE master and BLE slave modes
and are typically used as BLE masters, while low-end devices,
such as fitness trackers and smartwatches , support only the
BLE slave mode 1.

III. DESCRIPTION AND SECURITY ANALYSIS OF CTKD

In this section, we present our
:::
the

:::
first

::::::::
complete

::::::::::
description

:::
and

:
security analysis of CTKD. In particular, in

:
.
::
In

:
Sec-

tion III-A we describe what is publicly known about CTKD,
in Section III-B we complement it by reverse-engineering
how CTKD works in practice. Finally, in

::::
those

:::::::::::
information

::::
with

::::
other

:::::::
crucial

::::
ones

::::
that

:::
we

::::
had

::
to

::::::::::::::
reverse-engineer

:::::
(e.g.,

:::::
CTKD

::::::::::
negotiation

::::
for

:::
BT

::::
and

::::::
BLE).

:::
In

:
Section III-C, we

present four security issues with CTKD’s specification , which
::::::
uncover

::::
four

:::::::
critical

:::
and

:::::
novel

:::::::::::::
cross-transport

:::::
issues

:::::
(CTI)

::
in

::
the

:::::::::::
specification

::
of

:::::::
CTKD.

:::::
These

::::::
issues are the root causes of

the BLUR attacks . The attacks’ implementation is described
:::::::::::::::
standard-compliant

::::
and

:::::::::::::
cross-transport

:::::::
attacks

:::::::::
presented

:
in

Section V , while their evaluation is detailed
:::
and

:::::::::
evaluated

in Section VI.

A. Public Information about CTKD

CTKD is a feature provided by
::
As

:::::::::
described

:::
in

::::
the

::::::::::
Introduction,

:::::::
CTKD

::::
was

::::::::::
introduced

::
in

:
the Bluetooth stan-

dard to improve the usability
::::::
usability of BT and BLE

::::::
pairing. Before the introduction of CTKD, a user had to pair
devices separately

::::::
devices

::::
had

::
to

:::::::::
separately

::::
pair over BT and

BLEbefore being able to use both transports securely. While
with CTKD, introduced in 2014 with Bluetooth version 4.2,
two devices , can pair once

::
the

:::::::
devices

::::
pair

:::::
once,

:
either over

BT or BLE, derive a pairing key for each transport and establish
BT and BLE secure sessions [10, p. 280].

CTKD is
:::::
Being

:
a
::::::::::::::::
standard-compliant

::::::
feature

::::::
CTKD

:::
has

:::
to

::
be

:
supported by all major hardware and software Bluetooth

vendors. The list of vendors includes Apple [45], Google [6],
Cypress [15], Linux [13], Qualcomm [34], and Intel [23].
Notably, Apple presented it as a core and always-on Bluetooth
feature during WWDC 2019.

To use CTKD, a device requires specific capabilities. A
device must be

:::
few

:::::::::::
capabilities.

:::
It

:::::
must

:::
be

::
a
:
dual-mode

:::::
device

:
(i.e., support both BT and BLE), has to support Secure

Connections(introduced in Section II) and ,
::::
and

:::::::::
implement

:
a

Bluetooth version among 4.2, 5.0, 5.1, and 5.2. Examples of
devices supporting CTKD are laptops, tablets, smartphones,
headsets, speakers, and high-end wearable devices. The number
of those devices is steadily growing as dual-mode devices are
replacing single-mode ones [12].

CTKD specifies a unique key derivation function (KDF)
regardless of which transport is used to pair

:::::::
employs

::::
the

::::
same

:::::::::::
deterministic

::::
key

::::::::
derivation

::::::::
function

::::::
(KDF)

:::
for

:::
BT

::::
and

::::
BLE [10, p. 1658]. The function

::::
KDF takes as inputs a 128-bit

(16-byte) key and two 4-byte strings and derives a 128-bit (16-
byte) key. If CTKD is started from BLE, then the BT pairing
key is derived using the “tmp2” and “brle” strings. In the other
case, the derivation is performed using the “tmp1” and “lebr”

1
::
For

::::::
precise

::::::
technical

::::::::
descriptions

::
in
:::

the
:::
rest

::
of

:::
the

::::
paper

::
we

:::::
follow

:::
the

::::::
Bluetooth

::::::
standard

:
’s
:::::::::

master/slave
::::::::
terminology

:::::
instead

::
of
::::

more
:::
apt

::::
terms

:::
like

::::::::::
leader/follower.



strings. The key derivation function is deterministic, as using
CTKD on the same input key will always generate the same
output key. Our implementation of KDF is discussed in

:::
We

:::::::::::::
re-implemented

::::
KDF

::
to
:::::::

validate
::::
our

:::::::
analysis,

:::
see

:
Section V-C

::
for

:::::
more

::::::
details.

:::
The

:::::::::
Bluetooth

:::::::
standard

:::::
lacks

:
a
:::::::
security

:::::::
analysis

:::
of

::::::
CTKD

:::
but

::::::::
provides

:::::
only

::
a
:::::::

limited
:::
and

::::::::::::::
version-specific

:::::::
security

::::::::
argument.

:
Since version 5.1 , the Bluetooth standard addresses

a specific key overwrite attack via CTKD with the following
statement: “While performing cross-transport key derivation, if
the key for the other transport already exists, then the devices
shall not overwrite that existing key with a key that is weaker
in either strength or MITM protection”

::
the

::::::::
standard

:::::
states

::::
that

::::::
“While

::::::::::
performing

::::::::::::
cross-transport

::::
key

::::::::::
derivation,

::
if

:::
the

::::
key

::
for

::::
the

:::::
other

::::::::
transport

::::::
already

::::::
exists,

:::::
then

:::
the

:::::::
devices

:::::
shall

:::
not

::::::::
overwrite

::::
that

:::::::
existing

::::
key

::::
with

::
a
::::
key

:::
that

:::
is

::::::
weaker

:::
in

:::::
either

:::::::
strength

::
or

::::::
MITM

:::::::::
protection” [10, p. 1401]. This means

that
::
In

:::::
other

::::::
words,

:
an attacker cannot overwrite a pairing

key with CTKD if the overwritten
:::::::::
overwriting

:
key has either

a lower entropy (i.e., strength) or a lower MitM protection.
We note that the attacker can still

:::::
While

::::
this

:::
can

:::
be

::::::::
expected

::
to

::::::
protect

::::::
against

:::::::
attacks

::
in

:::::::
limited

:::::::
settings,

:::::
other

:::::::::
scenarios

:::
and

::::::
attacks

:::
are

::::
still

::::::::
possible.

::::
For

::::::::
example,

::
an

:::::::::
adversary

::::
can

:::
still

:
overwrite keys with equal

:::::
equal strength and MitM

protection . It is not clear why such countermeasureis enforced
only on

::::::
without

:::::::
violating

:::
the

::::::::
standard

:::
(as

:::
we

:::::::::::::
experimentally

::::::::::
demonstrate

::
in

:::::::
Section

:::::
VI-B).

:::
In

:::::::
addition

::
to

:::
the

::::::
limited

::::::
scope

::
of

:::
the

:::::::::::::
countermeasure,

::
it
::
is

::::::
unclear

::::
why

::
it

::::
was

:::::::::
introduced

::::
only

::
for

:
5.1 and 5.2 devices and is not backported to all devices

compatible with CTKD.

The quoted countermeasure is not effective against the
key overwrite attack presented in Section IV as the attack
is neither lowering the key entropy (i.e., strength) nor the
MitM requirements. We experimentally validated this claim by
performing our key downgrade attack on

::
not

:::
for

:::
all

:::::::::
Bluetooth

:::::::
versions

:::::::::
supporting

:::::::
CTKD,

:::
and

:::::
how

:
it
:::::::

should
::
be

::::::::::
interpreted

::::
when

::::
one

::
of

::::
the

::::::
devices

:::::
does

:::
not

:::::::
support

:
Bluetooth 5.1 and

::
or 5.2devices (see Section VI-B for an extended discussion).

B. Reverse-Engineered CTKD Protocols

The Bluetooth standard lacks a discussion about
:::::
public

:::::::::
information

:::::
that

:::
we

::::::::
gathered

::::::
about

:::::::
CTKD,

:::::::::
including

::::
the

::::
ones

::::::::
provided

:::
by

:::
the

:::::::::
Bluetooth

::::::::
standard

::::
are

:::
not

::::::::
sufficient

::
to

:::::::
perform

::
a
:::::::
security

:::::::
analysis

:::
of

:::::::
CTKD.

:::::::::::
Specifically,

:::::
from

::
the

::::::::
standard

::
is
::::

not
::::
clear

:
how CTKD is negotiated and used

::::::::
negotiated for BT and BLE . We had to reverse-engineer (RE)
these details to perform our security analysis. In this section,
we summarize what we reversed about CTKD negotiation and
usage. To ease our description, we abstract the protocols at a
message leveland we

:::
and

::
if
::::

the
::::::::
protocols

::::::
differ.

:::
To

:::::::
address

:::
this

::::::::
problem,

:::
we

:::::::::::::::::
reverse-engineered

:::
the

:::::::
CTKD

::::::::::
negotiation

:::::::
protocols

:::
for

::::
BT

:::
and

:::::
BLE.

:::::
Here

:::
we

::::::
present

:::::
them

::::::::::
abstracting

::
the

::::::::::
description

::
at

:::
the

::::::::
message

::::
level.

::::
We refer to the Bluetooth

master and slave as Alice and Bob. Finally, we also
:
to

::::
the

::::
slave

::
as

:::::
Bob

:::
and

::
in
::::

the
:::::
figure

:::
we

:::::::::
color-code

:::::
BLE

::::
with

:::::
light

:::
blue

::::
and

::::
BT

::::
with

:::::
blue.

::
At

::::
the

:::
end

:::
of

:::
the

:::::::
section,

:::
we

:
detail

our RE methodology.

a) BLE pairing with CTKD:
:::::
CTKD

::::::
from

:::::
BLE Fig-

ure 1 shows what happens when two devices are pairing over

Alice (master)

A

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request:
Assoc, ADDA, SC, CTKD, PKA, NA

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

DK = PKB · SKA

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

DK = PKA · SKB

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

BLE Key Distribution: CSRKA, IRKA

BLE Key Distribution: CSRKB, IRKB

Fig. 1: BLE pairing with CTKD
::::
from

:::::
BLE. Alice and Bob

negotiate SC and CTKD support during BLE pairing. Then, they
compute the BLE pairing key and from that key, they derive the
BT pairing key via CTKD (without exchanging any message
over BT). Finally, they generate and exchange additional keys
for BLE including signature (CSRK) and identity resolving
(IRK) keys. After the protocol is completed Alice and Bob can
establish secure sessions both for BT and BLE (without having
to pair over BT).

BLE and using CTKD to derive also the BT pairing key
::::
how

:::::
CTKD

:::
is

:::::::::
negotiated

:::
and

:::::
used

:::::
from

::::
BLE

:::
to

:::::
derive

:::::
BLE

::::
and

:::
BT

::::::
pairing

::::
keys. Alice and Bob are pairable over BLE and BT

and discover each other using BLE scanning and advertising.
Then, they perform pairing over BLE using the SMP protocol.
We found that CTKD is negotiated by setting to one the Link
Key flag of the Initiator and Responder key distribution SMP
fields [10, p. 1680] and that such negotiation is not protected.
Other than the Link Key flag the devices should also declare
Secure Connections support (SC) which is also spoofable. The
BLE pairing messages also contain an association method
(Assoc), a source BLE address (ADD), a public key (PK), and
a nonce (N).

After exchanging the pairing messages, the devices compute
a Diffie-Hellman shared secret (DK) using the exchanged PK.
DK is used to compute the BLE pairing key (KBLE) using
BLE pairing key derivation function (kdfLE). Then, the devices
use CTKD’s key derivation function (ctkd) to derive the BT
pairing key (KBT). To complete BLE pairing, Alice and Bob
establish a secure session over BLE and exchange additional
keys (e.g., CSRK and IRK). As a result, Alice and Bob share
KBLE and KBT, but they only paired over BLE.

a) BT pairing with CTKD:
:::::
CTKD

:::::
from

::::
BT Figure 2

presents BT pairing with CTKD
::::
how

::::::
CTKD

::
is

:::::::::
negotiated

::::
and

::::
used

:::::
from

:::
BT

:::
to

::::::
derive

:::
BT

::::
and

:::::
BLE

:::::::
pairing

:::::
keys. Alice

and Bob are pairable over BT and BLE and discover each



Alice (master)

A

Bob (slave)

B

Devices pairable over BT

BT Pairing Request:
Assoc, ADDA, SC, PKA, NA

BT Pairing Response:
Assoc, ADDB , SC, PKB, NB

DK = PKB · SKA

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

DK = PKA · SKB

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

BT CTKD Request:
CTKD, CSRKA, IRKA

BT CTKD Response:
CTKD, CSRKB, IRKB

KBLE = ctkd(KBT,
“tmp2”, “brle”)

KBLE = ctkd(KBT,
“tmp2”, “brle”)

Fig. 2: BT pairing with CTKD
::::
from

:::
BT. Alice and Bob during

BT pairing negotiate SC support. Then, they compute the BT
pairing key, start a secure session over BT and send BT CTKD
messages containing CTKD support and other keying material
generated for BLE such as signature (CSRK) and identity
resolving (IRK) keys. Notably, the CTKD request and response
are encoded as BLE pairing request and response and tunneled
over BT. Afterward, Alice and Bob derive the BLE pairing
key, via CTKD (without exchanging any message over BLE).
After the protocol is completed Alice and Bob can establish
secure sessions both for BT and BLE (without having to pair
over BLE).

other via BT inquiry. Then, they exchange pairing request and
response messages over BT to negotiate several BT capabilities
(including SC), and to exchange their BT addresses, keys, and
nonces. Then, they compute DK and use it together with their
BT addresses and nonces to compute the BT pairing key (KBT)
through the BT pairing key derivation function (kdfBT).

Unlike for BLE, BT pairing messages do not include a
CTKD flag. What happens is that the devices start a secure
BT session and exchange two messages containing the CTKD
flag and additional security material needed for BLE such as
signature keys (CSRK) and identity resolving keys (IRK). These
two messages are peculiar as they are encoded as BLE SMP
packets but sent over BT. We are not sure why the Bluetooth
standard is not describing such ”BLE tunneling” protocol to
negotiate CTKD from BT. Once CTKD is negotiated, Alice
and Bob use it to derive the BLE pairing key (KBLE) from the
BT key and the static strings “tmp2” and “brle”.

a) RE methodology:
:::
RE

:::::::::::
methodology To RE the nego-

tiation and usage of CTKD we used a Linux laptop connected
to a dual-mode development board as a test device. The laptop

runs a patched Linux kernel capable of pairing diagnostic
messages from the board. The board acts as the laptop fronted
(i.e., the laptop is the BT/BLE Host while the board is the
BT/BLE Controller), and is initialized to report to the laptop
all sent and received link-layer traffic using HCI diagnostic
messages.

To test CTKD from BLE we sent a BLE pairing request
from our test device to a pair of dual-mode headphones (Sony
WH-1000XM3) and we monitored the HCI log. To check out
CTKD from BT we sent a BT pairing request from our test
device to an Android smartphone (Pixel 2) and we monitored
the HCI log. In each case, we tested that it was possible to
establish BT and BLE secure sessions after only pairing on one
transport. Notably, CTKD from BT was particularly tricky to
reverse as the CTKD negotiation messages over BT are decoded
by Wireshark but appear as standard L2CAP messages.

C. CTKD Cross-Transport Issues (CTI)

We isolated four cross-transport issues (CTI)
::::::::::::
cross-transport

:::::::
issues

::::::
(CTI) with the specification of

CTKD resulting from CTKD bridging BT and BLE without
properly enforcing the security boundary between the two. We
now describe in detail each CTI.

a) CTI 1: extended pairing:
::::
CTI

::
1:

:::::::::
extended

:::::::
pairing

CTKD introduces more options to pair two devices as dual-
mode devices are pairable over BT and BLE all the time. This
enables an attacker to (silently) pair over a transport that is
currently unused. The attacker does not need to wait until a
victim is in discoverable mode, as, despite common belief,
a Bluetooth device in pairable state already accepts pairing
requests.

a) CTI 2: role asymmetry:
::::
CTI

:::
2:

::::
role

:::::::::::
asymmetry

While BT and BLE roles are defined differently, CTKD does
not enforce which role was used to pair on which transport.
BT roles can be switched even before pairing, while BLE
roles are fixed. This is problematic because an attacker can
adversarially switch BT role before using CTKD and send a
BT pairing request to a victim which expects BT and BLE
pairing responses. We note that, issues with role asymmetry
have been already proven effective to bypass BT authentication
during session establishment [4].

a) CTI 3: key tampering:
::::
CTI

:::
3:

::::
key

:::::::::::
tampering

CTKD enables to tamper with all BT security keys from BLE
and vice versa using only a single run of the pairing protocol.
This is a new and powerful attack primitive for Bluetooth. For
example, an attacker can use CTKD to write new pairing keys
for BT and BLE or even overwrite trusted pairing keys with her
own. Furthermore, by using CTKD from BT the attacker can
get access to all BLE security keys distributed as part of BLE
pairing including identity resolving key usable to de-anonymize
a BLE device.

a) CTI 4: association manipulation:
::::
CTI

::::
4:

:::::::::
association

::::::::::::::
manipulation CTKD does not keep track

of which association mechanism was used as part of pairing
and the negotiation of the association scheme is not protected.
Indeed, an attacker can use CTKD to re-establish pairing
keys using an arbitrary association scheme. This includes a
weak association to write or substitute authenticated keys with



unauthenticated ones (e.g., by re-pairing using Just Works).
Recently, association confusion attacks have been proposed for
BT or BLE [41], CTKD extends this issue across transports.

IV. ATTACKS VIA CTKD

We now present our threat model and the design of
four novel and standard-compliant attacks on CTKD. Our
attacks are the first samples of cross-transport exploitation
for Bluetooth, as they are capable of exploiting BT and BLE
just by targeting either of the two. Our attacks are stealthy
as CTKD is transparent to the users, and do not

::::::::
Moreover,

:::
they

:::
are

::::
the

:::
first

:::::::
attacks

::::::::
exploiting

:::::::
CTKD.

::::
The

::::::
attacks

::
do

::::
not

require a strong attacker modelas the attacker does not have
to be present when the victims are pairing or establishing a
secure session.

::::
For

::::::::
example,

:::::
they

:::
can

:::
be

:::::::::
conducted

:::
at

::::
any

::::
time

::::::
against

::::::::
arbitrary

::::::
devices

::::::::::
(including

:::
the

::::
ones

::::::::::
supporting

:::
BT

:::
and

:::::
BLE

::::
SC,

::::
and

::::
SSP

::::
with

::::::
strong

::::::::::
association). As our

attacks are blurring the security boundary between BT and
BLE, we name them BLUR attacks.

The attacks were discovered by inference from the analysis
presented in Section III and the data collected during our
experiments with real devices (e.g., BT and BLE link layer
and HCI packets).

A. System Model

Our system model considers two victims, Alice and Bob,
who can securely communicate over BT and BLE. The victims
support CTKD, and are using the most secure BT and BLE
modes, namely, SC and strong association (e.g., Numeric
Comparison if both have the necessary IO)

:::
SSP

:::::
with

::::::
strong

:::::::::
association. This setup should

::::::
should protect the victims

against device impersonation, traffic eavesdropping, and active
::::::::::::
eavesdropping,

:::::::::::::
impersonation,

:::
and

:
man-in-the-middle attacks

on BT and BLE
:
as

::::::::
claimed

::
in [10, p. 269]. Without loss of

generality, we assume that Alice is the master and Bob is the
slave.

Regarding the notation, we indicate a BT pairing key with
KBT, a BT session key with SKBT, a BLE pairing key with
KBLE, a BLE session key with SKBLE. We indicate a Bluetooth
address with ADD, a public key with PK, a private key with
SK, a shared Diffie-Hellman secret with DK, a nonce with N,
and a message authentication code with MAC.

B. Attacker Model and Goals

Our attacker model considers Charlie, a remote attacker
who is in Bluetooth radio

::
an

:::::::
attacker

::
in

::::::::
Bluetooth

:
range with

the victims. The attackeraims to compromise the secure BT
and BLE sessions between the victims without tampering with
their devices. The attacker’s knowledge is limited to what the
victims advertise over the air, e.g., full or partial Bluetooth
addresses, Bluetooth names, authentication requirements, IO
capabilities, and device classes.

The attacker does not know any BT or BLE key shared
between the victims, does not have to be present when the
victims pair or negotiate a secure session. The attacker

:::
and

::::::
security

::::
and

::
IO

:::::::::::
capabilities.

:::
She

:
can scan and discover devices,

send pairing requests and responses, use CTKD, propose weak
association mechanisms (e.g., Just Works), and dissect and craft

Bluetooth packets.
::::::::
However,

:::
the

:::::::
attacker

:::::
does

:::
not

:::::
know

::::
any

::::::
pairing

::
or

:::::::
session

:::
key

::::::
shared

::::::::
between

:::
the

:::::::
victims,

::::
and

:::::
does

:::
not

::::
have

:::
to

::
be

:::::::
present

:::::
when

:::
the

:::::::
victims

::::
pair

:::
or

::::::::
negotiate

::
a

:::::
secure

:::::::
session.

:::::::::
Moreover,

::::
she

::::::
cannot

:::::
access

::::
and

::::::
tamper

:::::
with

::
the

::::::
victim

:::::::
devices.

:

The attacker has four goals. The first one is to impersonate
Alice (to Bob) and potentially take over Alice’s secure sessions
. The second goal is to impersonate Bob(to Alice) and also take
over Bob’s secure sessions. By

::
i)

::::::::::
impersonate

:::::
Alice

::::::::
(master)

:::
and

:
take over ,

::
her

::::::
secure

:::::::
sessions

:::::
with

::::
Bob.

:::
(ii)

:::::::::::
impersonate

:::
Bob

::::::
(slave)

:::
and

::::
take

::::
over

:::
his

::::::
secure

:::::::
sessions

:::::
with

:::::
Alice.

::::
(iii)

:::::::::::::::
man-in-the-middle

:::::
Alice

:::
and

:::::
Bob’

:::::
secure

:::::::
session

:::
(iv)

::::::::
establish

:::::::::
unintended

::::
and

:::::::
stealthy

:::::::
sessions

::::
with

:::::
Alice

::::
and

::::
Bob.

:

:::
Let

::
us

::::::
clarify

::::
some

:::::::
aspects

::
of

:::
the

::::::::
attackers’

:::::
goals.

:::
By

:::::
“take

::::
over”

:
we mean that after the attack the security bond between

the two victims is broken . We note that, Alice and Bob’
impersonations are different goals

:::::
(e.g.,

:::::
when

:::::::
Charlie

:::::
takes

:::
over

::
a
::::::
session

::::
from

:::::
Alice

::::
then

:::::
Alice

::::
will

:::
not

::
be

::::
able

::
to

:::::::
connect

::::
back

::
to

::::::
Bob).

::::::
Master

::::
and

:::::
slave

::::::::::::
impersonation

:::
are

:::::::::
indicated

::
as

::::::::
different

::::::
goals,

:
as they require different impersonation

techniques (i.e., master and slave impersonations).

The attacker’s third objective is to establish a
man-in-the-middle position in a secure session between
two victims and requires combining and synchronizing Alice
and Bob’s impersonation attacks. The fourth objective is to
establish unintended and possibly stealthy sessions with Alice
or Bob

:::::
attack

:::::::::
strategies.

:::
We

:::::
define

:::
an

:::::::::
unintended

:::::::
session

::
as

::
a

::::::
session

:::::::::
established

:::::
with

:
a
::::::
victim

::::::
device as an arbitrary device

, without taking over a session and
::::::
without breaking existing

security bonds . An unintended session enables the attacker
to access a much broader attack surface than the one exposed
in a connection-less scenario

::::
(e.g.,

:::::::
Charlie

:::::::
silently

::::
pairs

:::::
with

::::
Alice

:::
as

::
a
:::::::
random

::::::
device

::::::
using

::::::
CTKD

::::
and

::::::::
connects

:::::
with

::::
Alice

:::::
over

:::
BT

:::
and

::::::
BLE).

C. Attack Strategy

We now describe our attack strategy using Alice’s
impersonation as a reference example and with the help of
Figure 3. Let us assume that Alice is a laptop and Bob
is a pair of headphones and the victims are already paired
and they are running a secure BT session. Since the victims
support CTKD, they are also pairable over BLE, even if
the transport is not currently in use. Charlie sends a BLE
pairing request to Bob

:::
(the

::::::
victim)

:
pretending to be Alice, and

claiming to support CTKD
:::::
CTKD

:::::::
support. The attacker also

declares no input/output capabilities to trigger unauthenticated
JW association during pairing

::
no

:::::::::::
input/output

::::::::::
capabilities

::
to

::::::::
negotiated

::::::::::::::
unauthenticated

::::
Just

:::::
Works

:::::
(JW)

::::::::::
association. This

last step does not
::
not trigger the key overwrite countermeasure

described in Section III-A
::
as

:::
the

:::::::
attacker

::
is
:::::::

neither
::::::::
changing

::
the

::::::
MitM

::::::::
protection

::::
flag

:::
nor

::::
the

:::::::
strength

::::
(i.e.,

:::::::
entropy)

:::
of

:::
the

::::::
pairing

:::
key.

Bob, even if running a BT session with Alice, has to answer
to Charlie with a BLE pairing response as Charlie’s message
is compliant with the Bluetooth standard. Then, Charlie (as
Alice) and Bob agree on a BLE pairing key and, via CTKD,
generate a new BT pairing key that overwrites Alice’s key in
Bob’s BT key store. In doing so, Charlie, wins two prizes with
one shot, as he takes over Alice’s BT and BLE sessions with



Fig. 3: Attack strategy. Alice and Bob are paired over BT and
run a secure BT session. Charlie pairs with Bob as Alice over
BLE declaring CTKD support. Then Charlie agrees upon a
BLE pairing key with Bob, and, via CTKD, tricks Bob into
overwriting Alice’s BT pairing key. As a result, Charlie can
establish BT and BLE sessions with Bob as Alice, and takes
over the real Alice who can no longer connect to Bob. Using
a similar strategy, Charlie can also impersonate Bob to Alice,
man-in-the-middle Alice and Bob, and establish unintended BT
and BLE sessions as an arbitrary device.

Bob. In other words, Alice can no longer connect to Bob as
she does not know the BT and BLE pairing keys (overwritten
by the attacker). Furthermore, Charlie also overwrites other
security keys that are distributed during pairing, including
CSRK (signature key) and IRK (MAC randomization key). We
note that the overwrite trick is transparent to the end user as
the standard does not mandate to notify the user about CTKD,
and works even if Alice and Bob are sharing BT and BLE
pairing keys before the attack takes place.

Following a similar strategy, Charlie can impersonate Bob to
Alice, man-in-the-middle them, and create unintended sessions
as an arbitrary device with a victim. We note that our attack
strategy is effective because the Bluetooth standard does not
enforce important security properties at the boundary between
BT and BLE and does not address all cross-transport threats
in its threat model (see Section III-C for more details). In the
remaining of this section, we describe the technical details of
the four BLUR attacks.

D. Impersonation Attacks

a) Master impersonation:
::::::
Master

:::::::::::::
impersonation Char-

lie impersonates Alice and takes over her BT and BLE sessions
with Bob as in Figure 4. Bob is already paired with Alice, and
can run a BT session with her while Alice’s impersonation
takes place. Notably, Bob must be pairable over BT and BLE to
support CTKD from BT and BLE. Charlie takes advantage of
that and sends a BLE pairing request as Alice by using Alice’s
Bluetooth address (ADDA), Just Works (JW) association while
pairing, his public key (PKC), and CTKD support.

As Charlie’s BLE pairing request is standard-compliant,
Bob sends back a BLE pairing response believing that Alice
wants to pair (or re-pair) over BLE using CTKD. Then,
Charlie and Bob compute KBLE, derive KBT via CTKD, and
exchange additional BLE key material (e.g., CSRK, IRK) over
a BLE secure session. After the master impersonation attack is

Charlie (master)

C

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request as Alice:
JW, ADDA, SC, CTKD, PKC , NC

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

Compute KBLE

Derive KBT

Compute KBLE

Derive KBT

BLE Key Distribution: CSRKC , IRKC

BLE Key Distribution: CSRKB, IRKB

Fig. 4: BLUR master impersonation attack. Charlie sends a BLE
pairing request with Alice’s address (ADDA) including Just
Works (JW) association, CTKD, and his public key (PKC ). Bob
answers with a BLE pairing response thinking that he is talking
to Alice. The attacker and the victim agree on KBLE, and derive
KBT, via CTKD and complete BLE pairing by generating and
distributing more keys over a secure BLE session. As a result
of the master impersonation attack, Charlie tricks Bob into
overwriting Alice’s keys with his ones and takes over Alice
who can no longer connect back to Bob.

completed Charlie takes over Alice’s BT and BLE sessions by
tricking Bob into overwriting Alice’s BT and BLE keys with
his ones.

a) Slave impersonation:
:::::
Slave

:::::::::::::
impersonation Charlie

impersonates Bob and takes over his BT and BLE sessions
with Alice as in Figure 5. Alice and Bob have already paired
and can run a BLE secure session while the impersonation
takes place. Alice has to be pairable over BT and BLE to
provide CTKD support from both transports, and Charlie takes
advantage of that by sending a BT pairing request to Alice as
Bob using Bob’s address (ADDB), Just Works (JW), and his
public key (PKC). Charlie’s pairing request is still standard-
compliant even if Charlie is supposed to be the slave as BT,
unlike BLE, enables a slave to switch to a master role before
sending a pairing request.

Alice answers with a BT pairing response believing that
Bob wants to re-pair over BT, and the two agree on KBT. Then,
Charlie starts a secure BT session and sends a tunneled BLE
pairing request to Alice still pretending to be Bob. The BLE
pairing request includes CTKD support and Charlie’s signature
and MAC randomization BLE keys (CSRKC , IRKC). Alice
answers with a BLE pairing response tunneled over BT and the
two derives KBLE via CTKD. Once the slave impersonation
attack is completed, Charlie takes over Bob’s BT and BLE
sessions by tricking Alice into overwriting Bob’s BT and BLE
keys with his ones.



Alice (master)

A

Charlie (slave)

C

Devices pairable over BT

BT Pairing Request as Bob:
JW, ADDB , SC, PKC , NC

BT Pairing Response:
Assoc, ADDA, SC, PKA, NA

Compute KBT Compute KBT

BT CTKD Request as Bob:
CTKD, CSRKC , IRKC

BT CTKD Response:
CTKD, CSRKA, IRKA

Derive KBLE Derive KBLE

Fig. 5: BLUR slave impersonation attack. Charlie sends a BT
pairing request with Bob’s address (ADDB) including Just
Works (JW) association, and his public key (PKC ). The pairing
request is valid as BT enables to dynamically switch from
slave to master before sending a pairing request. Alice answers
with a BT pairing response believing that she is talking to Bob.
The attacker and the victim establish KBT, negotiate CTKD
and exchange additional keying material for BLE with a BT
CTKD request and response messages, and derive KBLE. As a
result of the slave impersonation attack, Charlie tricks Alice
into overwriting Bob’s keys with his ones and takes over Bob
who can no longer connect back to Alice.

Fig. 6: BLUR MitM attack. Charlie combines the master and
slave impersonation attacks presented so far to establish a man-
in-the-middle position between Alice and Bob both on BT and
BLE.

a) Man-in-the-middle:
::::::::::::::::
Man-in-the-middle Charlie can

conveniently combine the described master and slave attacks to
launch a cross-transport man-in-the-middle attack as shown in
Figure 6. If Alice and Bob are running a BLE session, Charlie
starts with the slave impersonation attack presenting to Alice as
Bob over BT. Otherwise, he launches a master impersonation
attack by targeting Bob as Alice over BLE. After the first
impersonation attack, the impersonated victim is taken over
and disconnects from the other victim. Then, Charlie targets
the impersonated victim with a second impersonation attack
and establishes a MitM position between the two victims. As a

result, Charlie controls all BT and BLE secure sessions between
Alice and Bob.

E. Unintended Session Attacks

BLUR unintended sessions attack. Charlie can take
advantage of CTKD to establish unintended BT and BLE
session with Bob as a random device with arbitrary capabilities.
The same can happen if Charlie targets Alice.

The attacker can take advantage of CTKD to establish
unintended secure sessions as an anonymous device. This
attack is valuable for four main reasons. Firstly, the attack
is stealthy as the attacker can pretend to be any device and
does not have to break existing bonds. Secondly, the attacker
can enumerate and tamper with all

:::::
CTKD

:::::::
enables

::::::::::
unintended

::::::
session

::::::
attacks

:::
as

::
it
::::::::

provides
:::::

more
::::::

ways
:
to

::::::::
(silently)

:::::
pair

::::::
devices.

:::
In

::::::::::
particular,

::::
two

:::::::
devices

::::::::::
supporting

:::::::
CTKD

::::
are

::::::
always

:::::::
pairable

:::::
over

:
BT and BLEservices running on the

victim device (including the protected ones) without having to
impersonate a trusted device. Thirdly

:
,
:::
but

::::::::
typically

::::
they

::::
use

:::
one

::::::::
transport

::
at

:
a
:::::

time.
::::::
Hence, the attacker can anonymously

gain access to extra key material including identity resolving
keys that de-anonymize BLE devices using random addresses.
Finally, the attacker can silently reach more (vulnerable) code
including RCE in the pairing and secure session code, which is
unreachable by an untrusted device

::::
target

:::
the

:::::::
unused

::::::::
transport

::
as

:
a
::::::::
stepping

::::
stone

:::
to

:::::::
establish

::::::
trusted

::::::
bonds

::
on

::::
BT

:::
and

:::::
BLE

::
via

:::::::
CTKD,

:::::
while

::::::::::::
impersonating

::
a
:::::::
random

::::::
device.

:::
To

:::
the

::::
best

::
of

:::
our

::::::::::
knowledge,

::::
this

:::::
attack

:::::::::
technique

::
is

::::
new

::
in

:::
the

:::::::
context

::
of

::::::::
Bluetooth.

Let us see how an unintended session attack works in
a scenario where Alice and Bob are already paired and
are running a secure BT session (see Figure 7). As in the
impersonation attack scenario, Alice and Bob must also be
pairable over BLE to support CTKD. Charlie targets Bob by
sending a BLE pairing request using a random Bluetooth
address, CTKD support, and Just Works for association. Bob
answers to Charlie’s request and the two negotiate KBLE, and
derive KBT via CTKD. Now, Charlie can establish secure but
unintended BT and BLE sessions with Bob without breaking
Bob’s existing sessions (e.g., with Alice) and by using an
anonymous identity and arbitrary capabilities. Using a similar
strategy, Charlie can reach the same goals targeting Alice.

::
An

:::::::::::
unintended

:::::::
session

::::::
attack

:::
is

::::::::
valuable

:::
for

::::::::
various

::::::
reasons.

:::
It

::
is

:::::::
stealthy

:
as

::::
the

:::::::
attacker

::::
can

::::::::
establish

:
a
:::::::

trusted
::::::
relation

:::::
with

:::
the

::::::
victim

:::
as

:::
an

::::::::::
anonymous

::::::
device

::::
and

:::::
with

:::::::
minimal

::::
user

:::::::::
interaction

::::
(e.g.,

::::
Just

:::::::
Works).

::::::::
Moreover,

::
it
::::::
allows

:::::::
complete

::::::
device

:::::::::::
enumeration

::
as

:::
the

:::::::
attacker,

::::::
being

:
a
:::::::

trusted
::::
peer,

::::
can

::::::
access

:::
all

::::
BT

::::
and

:::::
BLE

::::::::
services,

:::::::::
including

::::
the

:::::::
protected

:::::
ones

:::::
unlike

:::::
other

::::::
attacks

:::::
such

::
as

:::::
[14].

:::::::::::
Additionally,

::
the

::::::
attack

::::::::::::::
deterministically

::::::::::::
de-anonymizes

:::
BLE

:::::::
devices,

:::
as

:::
the

::::::
attacker

::::
get

::::::
access

::
to
::::

the
:::::::
identity

::::::::
resolving

::::
key

::::::::::
distributed

:::::
during

::::::::
pairing.

:::::::
Finally,

:::
it

:::::::
enables

::::
the

::::::::
attacker

:::
to

::::::
reach

::::
more

::::::::
Bluetooth

:::::
stack

::::
code

:::::::
sections

:::::
than

::
an

::::::::
untrusted

:::::::
device,

::::::::
including

::::::
remote

::::
code

::::::::
execution

::::
bugs

::
in
:::
the

:::::::
pairing

:::
and

::::::
secure

::::::
session

:::::
code.

Table I shows how the

F. Attacks Discussion



Fig. 7:
:::::
BLUR

::::::::::
unintended

:::::::
sessions

:::::::
attack.

:::::::
Charlie

:::
can

:::::
take

::::::::
advantage

:::
of

::::::
CTKD

:::
to

::::::::
establish

::::::::::
unintended

::::
BT

::::
and

:::::
BLE

::::::
session

::::
with

::::
Bob

::
as

:
a
:::::::
random

:::::
device

::::
with

::::::::
arbitrary

::::::::::
capabilities.

:::
The

:::::
same

:::
can

:::::::
happen

::
if

::::::
Charlie

::::::
targets

::::::
Alice.

:::
We

:::
now

:::::::
discuss

:::
the

:::::::
attacks’

:::
root

:::::::
causes,

::::
their

:::::::::::
effectiveness

::::::::
regardless

:::
of

:::
the

:::::::::
Bluetooth

:::::::
version,

::::::::::
association

:::::::
method,

::::
and

::::
even

::::::
CTKD

::::::::
support.

:::::::
Finally,

:::
we

:::::
detail

:::::
how

:::
we

::::::::::
discovered

:::::
them.

:

::::
Root

::::::
causes

:::::::
(CTIs)

:::
The

:
BLUR attacks take advantage

of the four cross-transport vulnerabilities that we present
:::
CTI

::::::::
presented in Section III-Cin different ways. To cover all

possible attack scenarios, a
:
.
:::
As

:::::
shown

::
in

:::::
Table

::
I,

:
a
::::::::::
checkmark

:
(X

:
)
:

indicates that a CTI is required, an ”x” if it is not
required

:::::
needed, and an ”*” if it is only needed sometimes

.

All
::::::::
sometimes

:::::::
needed.

::::::
From

:::
the

:::::
table

::::
we

:::
see

:::::
that

:::
all

attacks exploit extended pairability (CTI 1). The slave imper-
sonation and MitM attacks take advantage of role asymmetries
(CTI 2), while some unintended session attacks take advantage
of that. Key tampering (CTI 3) is exploited in all attacks as
the attacker has to either write or overwrite keys using CTKD.
Association manipulation (CTI 4) is required in the first three
attacks when the victim expects a strong association mechanism
but the attacker negotiates Just Works.

::::::::
Bluetooth

:::::::::
v5.1/5.2

::
In

:::::::
Section

::::::
III-A

::::
we

::::::::
describe

:::
a

:::::::::::::
version-specific

:::
key

:::::::::
overwrite

:::::::
security

::::::::
argument

::::::::
included

:::
in

::
the

:::::::::
Bluetooth

:::::::
standard

:::::
since

::::
v5.1.

::::
The

::::::::
Bluetooth

::::
SIG

::::::::
currently

:::
uses

::::
this

:::::::::
argument

::
to
:::::

state
::::

that
::::

the
::::::
BLUR

:::::::
attacks

:::
are

::::
not

:::::::
effective

:::::::
against

:::::::::
Bluetooth

:::
5.1

::::
and

::::
5.2

:::::::
devices

::::
(see

:
https:

//tinyurl.com/vxhwftc2
::
).

:::
We

:::::::
disagree

::::
with

:::
this

:::::::::
statement,

::::
and

::
we

::::::::
provided

:::::
them

::::::::
empirical

::::::::
evidence

::::
(see

:::::::
Section

:::::
VI-B)

::::
and

::::
solid

:::::::::
arguments

:::::::::
(described

:::::::
below)

:::::
about

::::
why

::::
this

::
is

:::
not

::::
the

CTI 1 CTI 2 CTI 3 CTI 4

Master Impersonation X x X *
Slave Impersonation X X X *
MitM X X X *
Unintended Session X * X x

TABLE I: Mapping the BLUR attacks to the CTI presented
in

::::
from

:
Section III-C. CTI 1: extended pairing, CTI 2: role

asymmetry, CTI 3: key tampering, and CTI 4: association
manipulation. We use a X if a CTI is required to conduct an
attack, a x if is not required and a * if is only required in
specific cases.

X1 7th gen WH-CH700N

Alice
(master)

Bob
(slave)X1 3rd gen

USB

CYW920819

Charlie (attacker)

BTSecure Session

Fig. 8: BLUR Attack Scenario
:::::
attack

::::::::
scenario. Alice (master)

is a ThinkPad X1 7th gen, Bob (slave) is a pair of Sony WH-
CH700N headphones and Charlie (attacker) is a CYW920819
board connected via USB to a ThinkPad X1 3rd gen. Alice
and Bob have paired in absence of Charlie, and are running a
secure BT session.

::::
case.

:

::
In

:::::::::
particular,

:::::
the

::::
key

::::::::::
overwrite

::::::::::::::
countermeasure

::::
is

::::::::
ineffective

:::
as

:
it
::
is
:::
out

::
of
::::::

scope
::::
with

:::
our

:::::::
attacks.

::::::
Firstly,

:
it
:::::
does

:::
not

:::::
cover

::::
non

:::
key

:::::::::
overwrite

::::::::::::
cross-transport

::::::
attacks

:::::
such

:::
as

::
the

:::::::::::::
cross-transport

::::::::::
unintended

::::::
session

:::
and

::::
key

::::::
writing

:::::::
attacks

::::::::
presented

::
in

:::
this

::::::
work.

::
In

::::::::
addition,

::
it

::::
does

:::
not

::::::
protect

:::::::
against

:::
key

::::::::
overwrite

:::::::
attacks

:::
not

::::::::
involving

:::
the

::::::::::
downgrade

:::
of

:::::
keys’

::::::
strength

::::
and

:::::
MitM

::::::::::
protection.

::::::::::
Specifically,

::::
our

:::
key

:::::::::
overwrite

::::::
attacks

::::::
declare

:::
”no

::::::::::
input/output

:::::::::::
capabilities”

::
to

:::::
force

:::
the

:::::
usage

::
of

::::
Just

::::::
Works

:::::::
without

:::::::::::
downgrading

::::
key

::::::::
strengths

:::
or

::::::
MitM

:::::::::
protections.

:

::::::::::
Association

:::
The

:::::::
BLUR

::::::
attacks

:::
are

:::::::
effective

:::::::::
regardless

:::
of

::
the

::::::::::
association

:::::::
methods

:::::::::
supported

:::
by

:
a
::::::
victim,

:::
as

:::
the

:::::::
attacker

:::
can

::::::
always

:::::::::
downgrade

::
it

::
to

:::
Just

:::::::
Works.

::::
Even

::::
Just

:::::
Works

::::::
might

::::::
require

:::::::
minimal

::::
user

:::::::::
interaction

:::::
(e.g.,

::::::
Yes/No

:::::::
pairing

:::::::
prompt)

:::
but

:::::::
remains

:::
an

::::::::::::::
unauthenticated

:::
and

:::::::::
vulnerable

:::::::::::
mechanism

::::
(e.g.,

:::
the

::::
user

::::
has

::
no

::::
way

:::
to

:::
tell

::
if

:::
the

::::::
remote

:::::::
pairing

::::::
device

:
is
:::::::::::

trustworthy).
:

::::::
CTKD

:::::::
support

::::::::::
Interestingly

:::
our

:::::::
attacks

:::
can

:::
be

::::::::
launched

::::
even

::
if

:::
one

::
of

:::
the

:::::::
victims

::::
does

::::
not

::::::
support

:::::::
CTKD.

:::
By

::::::
design

:::::::
CTKD’s

::::::::::
negotiation

:::
is

:::
not

:::::::::
protected

::::
and

::::::::
enforced

:::::::
across

::::::
pairing

:::::::
sessions.

:::::::
Hence,

::
if

:::
the

:::::::
attacker

:::::::::::
impersonates

::
a
::::::
device

:::
not

:::::::::
supporting

:::::::
CTKD,

::::
she

::::
can

::::
still

:::
use

::::
the

::::::
BLUR

:::::::
attacks

:
if
::::

the
::::::
victim

::::::::
supports

:::::::
CTKD.

::::
For

::::::::
example,

::::
the

:::::::::
adversary

:::
can

::::::::::
impersonate

::::::::
BT-only

:::::::
speakers

:::
to

:
a
::::::::

BT/BLE
:::::::::::
(dual-mode)

:::::
laptop

::::
and

::::::
exploit

::::::
CTKD.

:

::::::::
Discovery

:::
We

:::::::::
discovered

:::
the

::::::
BLUR

:::::::
attacks

::
by

:::::::::
inference

::::
from

::::
the

::::::
public

:::::::::::
information

::::
and

:::
RE

:::::::
details

:::::::::
presented

:::
in

::::::
Section

:::
III.

::::
Our

::::::::::
experiments

:::::::
involved

::::::
actual

::::::
devices

::::
and

:::::
static

:::
and

:::::::
dynamic

:::::::
analysis

:::
of

:::
the

:::::::::
exchanged

::::::::
Bluetooth

:::::::
packets

::::
and

::
the

:::::::
CTKD

:::::
code.

V. IMPLEMENTATION

In this section we describe our attack scenario, our imple-
mentation of a custom attack device to perform the BLUR
attacks and our re-implementation of CTKD’s key derivation
function. We will open-source both implementations.

A. Attack Scenario

Our attack scenario follows the example in Figure 8 and
includes two victims, Alice (master) and Bob (slave). Alice

https://tinyurl.com/vxhwftc2
https://tinyurl.com/vxhwftc2


Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716
Version 5.1 4.1 5.0
Name x7 WH-CH700N x1
ADD Redacted Redacted Redacted
Class 0x1c010c 0x0 0x0
BT SC True Only Controller True
BT AuthReq 0x03 0x02 0x03
BLE SC True True True
BLE AuthReq 0x2d 0x09 0x2d
CTKD True True True
h7 True False True
Role Master Slave Master
IO Display No IO Display
Association Numeric C. Just Works Numeric C.
Pairable True True True

TABLE II: Relevant Bluetooth features for
::
of

:
Alice, Bob, and

Charlie. We redact the devices’ Bluetooth addresses for privacy
reasons.

is represented by a 7th generation ThinkPad X1 laptop and
Bob by a pair of Sony WH-CH700N headphones. The attacker
(Charlie) uses a CYW920819 development board [16] and a
3rd generation ThinkPad X1 laptop as an attack device. The
implementation of the attack device is presented in Section V-B.
In our evaluation, presented in Section VI, we use the same
attack scenario to attack other victim devices.

Table II summarizes the most relevant features of Alice,
Bob, and Charlie. Alice and Bob have an Intel Bluetooth chip,
while Bob has a Cambridge Silicon Radio (CSR) one. Alice,
Bob, and Charlie support respectively Bluetooth 5.1, 4.1, and
5.0. Alice and Charlie support Secure Connections both on
the Host and the Controller, while Bob only on the Controller.
All devices support BT, BLE, and CTKD. Regarding pairing
association methods, the laptops support Numeric Comparison,
while the headsets only support Just Works as they lack a
display.

B. Attack Device

To conduct our attacks we developed a custom
::
an

:
attack

device making use of a CYW920819 development board
::::::::::
CYW920819

:::::::::::
development

:::::
board connected to a Linux laptop

:::::
Linux

:::::
laptop (see Figure 9). Both devices

:::
The

:::::::
devices

:::::::
support

BT, BLE, SC, and CTKD. Using standard laptops, smartphones
or dongles is not sufficient to implement the BLUR attacks, as
they

:::
We

:::::
picked

:::::
these

:::::::
devices

::
as

::::::
COTS

::::::
devices

:
do not allow to

modify all device’s identifiers (e.g., BT and BLE address) and
all devices’ capabilities advertised over the air (e.g., firmware
and controller versions

::::
their

:::::::::
Bluetooth

::::::::
firmware

:::::::::::
(Controller)

:::
but

::
at

::::
most

:::
the

:::
OS

:::::::::
Bluetooth

:::::
stack

:::::
(Host). A software-defined

radio (SDR) is also out of scope because there is no open-source
BT/BLE SDR stack currently available.

Fig. 9: Attack Device Block Diagram
::::::
device

:::::
block

:::::::
diagram.

The attack device is composed of Linux laptop (Host) and a
CYW920819 development board (Controller) connected via
USB and communicating using the Host Controller Interface
(HCI) protocol.

Instead, with our attack device, we can program our
development board (Bluetooth Controller) to impersonate any
BT/BLE device, we can patch its closed-source firmware to
control both BT LMP and BLE LL link layer packets. Moreover,
we can alter the laptop’s BT and BLE kernel and user-space
code to set Bluetooth Host-specific configuration bits such
as negotiating CKTD and Just Works. We now describe in
detail how we modify the attack device’s Host and Controller
components.

a) Host modifications:
::::
Host

:::::::::::
modifications For the host,

we use standard Linux tools to configure an Bluetooth interface
(e.g., hciconfig), and to discover and pair with a device
(e.g., bluetoothctl, hcitool and btmgmt). In particular,
btmgmt was very useful as it provides handy low-level
commands. For example, it includes commands to toggle BT,
BLE, SC, scanning, and advertising. Moreover, it allows to
easily send custom pairing requests on BT and BLE and to set
the related association (e.g., Just Works).

Furthermore, we configured our host to get all link-layer
packets sent and received by the controller. This is handy
as it enables to monitor both HCI and link-layer packets
directly from the host (e.g., using Wireshark). To activate link-
layer packet forwarding, we sent a proprietary Cypress HCI
command from the host to the controller that switches on an
undocumented diagnostic mode in the controller. Then, we
added extra C code to the Linux kernel to parse those special
HCI packets in the host.

a) Controller modifications:
:::::::::
Controller

:::::::::::::
modifications

We modified the controller by dynamically patching the devel-
opment board Bluetooth firmware using a Cypress proprietary
mechanisms. To patch the firmware we had to extract it from
the board and statically reverse-engineer its relevant parts. In
particular, to extract the firmware we used a proprietary HCI
command to read and save a runtime RAM snapshot from the
board’s SoC. We use the memory maps that we extracted from
the board’s SDK to extract the memory segments from the
snapshot (e.g., ROM, RAM, and the scratchpad). As expected,
the firmware was in the ROM segment and was a stripped
ARM binary containing 16-bit Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM,
RAM, and scratchpad in Ghidra and statically analyzed them.
In our first pass, we isolated the libc functions (e.g., malloc
and calloc) by looking at the signatures and the code patterns



of the functions that are called the most. Then, we found the
firmware debugging symbols hidden in the board’s SDK and
loaded them into Ghidra. Using these symbols we isolated
functions and data structures relevant to the BLUR attacks.
Then, we wrote ARM Thumb assembly patches to change
their behaviors and we apply those patches at runtime using
internalblue [30], an open-source toolkit to manage several
Bluetooth devices including our board. Our set of patches
allows transforming our board in whatever device we want
by changing its identifiers including addresses, names, and
capabilities,

C. CTKD Key Derivation Function (KDF)

We implemented CTKD’s key derivation function,
following its specification in

::::::
custom

::::::
KDF,

:::::::::
following

:
the

Bluetooth standard [10, p. 1401]. We used our implementation
to

::::
This

:::::::::::::
implementation

::
is
::::

not
:::::::
required

::
to
::::::::

conduct
:::
the

::::::
attack,

:::
but

::
it

::::
was

:::::
used

::
to
:

check that the keys that we observed
during our experiments

::::::
CTKD

::::
keys

:
were correctly derived,

yet, it is not required to conduct the BLUR attacks. Our
implementation is written in Python 3and ,

:
uses the PyCA

cryptographic module [7]. We tested it against the CTKD
:
,
:::
and

::::
was

:::::::::::
successfully

:::::
tested

:::::::
against

:::
the

:
test vectors in the

standard [10, p. 1721]. We now describe its technical details.

KBLE =

{
f (f (tmp2,KBT ) , brle) if h7 is supported
f (f (KBT , tmp2) , brle) otherwise

We implemented CTKD’s key derivation for BT deriving
and following the equation above. The key derivation

:::
The

:::::
KDF

computes KBLE using a function f(a, b) that corresponds to
AES-CMAC(key, plaintext). If both pairing devices declare
h7 support, then KBT,

:::::::
“tmp2”

::::
and

:::::::
“brle”,

::::
and

:
KBT :::::

from
KBLE is computed using the equation at the top otherwise
the one at the bottom. h7 is a

:
,
::::::
“tmp1”

::::
and

::::::
“lebr”.

::::
Each

:::::
case

:::
can

:::
be

::::::::::
represented

::
by

::
a
:::::::
system

::
of

:::::::::
equations

::::
(see

::::::
below).

:::
If

:::::
CTKD

:::
is

:::
run

:::::
from

:::
BT

:::::
then

:::
the

::::
first

::::::
system

:::
of

::::::::
equations

:::
is

::::
used

::::::::
otherwise

::::
the

:::::::
second.

:::::
Each

::::::
system

::::
has

::::
two

:::::::::
equations

:::
and

:::
the

::::
top

:::::::
equation

:::
is

::::
used

::
if
:::::

both
:::::::
devices

::::::
support

::::
the

:::
h7

key conversion functiondefined in the Bluetooth standard and
:
.
::
h7

:
is negotiated during pairing using AuthReq

:::
the

::::::::
AuthReq

:::
flag [10, p. 1634].

:::
All

::::
four

::::::::
equations

::::::::
internally

:::
use

::::::
f(a, b)

:::
that

:
is
:::::::::::

implemented
:::

as
:::::::::::::::::::::::::
AES-CMAC(key, plaintext).

:

KBLE =

{
f (f (tmp2,KBT ) , brle) if h7 is supported
f (f (KBT , tmp2) , brle) otherwise

::::::::::::::::::::::::::::::::::::::::::::::::

KBT =

{
f (f (tmp1,KBLE) , lebr) if h7 is supported
f (f (KBLE , tmp1) , lebr) otherwise

We also implemented CTKD’s key derivation for BLE
deriving and following the equation above. In this case the
derived key is . The equations ’ logic is identical to the one
explained for BT. What changes are the input parameters. In
particular, the computation uses as inputs: , “tmp1”, and “lebr”.

VI. EVALUATION

In this section we present how we successfully conducted
the BLUR attacks on 16 devices using 14 unique Bluetooth
chips. Our results confirm that the BLUR attacks are effective
against different device types (e.g., laptops, smartphones,
headphones, and development boards), manufacturers (e.g.,
Samsung, Dell, Google, Lenovo, and Sony), operating systems
(e.g., Android, Windows, Linux, and proprietary OSes), and
Bluetooth firmware (e.g., Broadcom, CSR, Cypress, Intel,
Qualcomm, and Samsung).

A. Setup

The BLUR attacks, presented in Section IV, include master
impersonation, slave impersonation, man-in-the-middle, and
unintended session attacks. In the next paragraphs, we describe
how we conducted each attack using the attack device described
in Section V-B.

a) Laptop (master) BLUR impersonation attack:
::::::
Laptop

::::::::
(master)

::::::
BLUR

::::::::::::::
impersonation

::::::
attack To imperson-

ate the laptop, we patch our attack device to clone the laptop’s
Bluetooth features (e.g., Bluetooth address, name, device class,
and security parameters) Then, we send a BLE pairing request
from the attack device to the headphones declaring CTKD
and Just Works support. The malicious BLE pairing request
is sent using btmgmt’s text-based user interface (TUI). The
headphones accept the pairing request, and the devices agree
on KBLE, derive KBT via CTKD and establish a secure BLE
session. Then, the headphones terminate the BT session with
the impersonated laptop and establish a secure BT session with
the attack device. The impersonated laptop cannot connect back
with the headphones as it does not possess the correct pairing
keys overwritten by the attacker.

a) Headphones (slave) BLUR impersonation attack:
:::::::::::
Headphones

::::::
(slave)

::::::
BLUR

:::::::::::::
impersonation

::::::
attack To imper-

sonate the headphones, we patch our attack device to clone the
headphones’ Bluetooth features. Then, we send a BT pairing
request from the attack device to the laptop declaring CTKD and
Just Works support using btmgmt’s TUI. The laptop accepts to
pair over BT as a BLE slave can send a BT pairing request as
a master. The devices agree on KBT, derive KBLEvia CTKD,
and establish a secure session over BT. The impersonated
headphones cannot connect to the laptop as they do not own
the correct pairing keys.

a) BLUR Man-in-the-middle attack:
::::::
BLUR

::::::::::::::::
Man-in-the-middle

:::::::
attack By using two development

boards connected to the same laptop, we can impersonate
the laptop and the headphones at the same time, and man-
in-the-middle them. In particular, we run the laptop (master)
impersonation attack first, and then the headphone (slave)
impersonation attack. As a result, the attack device positions
itself in the middle between the victims.

a) BLUR Unintended sessions attack:
::::::
BLUR

::::::::::
Unintended

::::::::
sessions

:::::::
attack For the unintended session

attack, we patched our attack device to look like an unknown
device to the current victim (e.g., unknown Bluetooth address
and name). If the victim is a master, we run the same steps
used in the slave impersonation attack otherwise we use the
master impersonation attack’s steps. In both cases, the attacker



Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave X X X

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave X X X

Google Pixel 2 Android Qualcomm SDM835 5.0 Slave X X X

Google Pixel 4 Android Qualcomm 702 5.0 Slave X X X

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave X X X

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave X X X

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave X X X

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave X X X

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Slave X X X

Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Slave X X X

Xiaomi Mi 10T Lite Android Qualcomm 9312 5.1 Slave X X X

Xiaomi Mi 11 Android Qualcomm 10765 5.2 Slave X X X

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master X X X

Sony WH-CH700N Proprietary CSR 12942 4.1† Master X X X

† CTKD was backported by the vendor to Bluetooth 4.1.

TABLE III: BLUR attacks evaluation results. The first three columns show the device’s producer, model, and OS. The next two
columns state the Bluetooth chip’s producer and model. The sixth column tells the Bluetooth version of the target device. The
seventh column indicates the attacker role. The last three columns contain a checkmark (X) if a device is vulnerable to the
relevant BLUR attack.

completes pairing using CTKD and can establish secure
sessions over BT and BLE with the victim.

B. Results

We evaluated
:::::::
exploited

:
the BLUR attacks against 16

unique devices (employing 14 different Bluetooth chips )
and our results are shown

:::
and

:::::::
covering

:::
all

::::::::
Bluetooth

::::::::
versions

::::::::
supported

:::
by

::::::
CTKD.

::::
We

:::::
show

:::
our

::::::
results

:
in Table III. The

:::::
table’s

:
first six columns indicate the device’s producer, model

name, operating system, chip manufacturer, chip model, and
Bluetooth version. The seventh column contains either Slave
if the attacker’s role is slave, or Master otherwise. The table’s
last three columns contain

::::
have

:
a checkmark (X) if a device

is vulnerable to master or slave impersonation attack (MI/SI),
MitM, or unintended session (US) attack.

From Table III we confirm
:::::::::
empirically

::::::::::::
demonstrates

:
that

the BLUR attacks are standard-compliant and very effective.
All devices that we tested regardless of their implementation
details are vulnerable. Moreover,

::::::
effective

::
on

::::::
actual

:::::::
devices

:::
and

:::
are

:::::::::
compliant

::::
with

:::
the

:::::::::
Bluetooth

::::::::
standard.

::::
The

:::::::
attacks

::
are

::::::::
effective

:::
on all Bluetooth versions supporting CTKD are

affected (i.e., Bluetooth 4.2, 5.0, 5.1, and 5.2)and the attacks are
even effective on older versions of Bluetooth (e.g., 4.1 devices
that backported CTKD )

:
.
::
In

::::::::
addition,

::::
they

:::::::
succeed

:::::::::
regardless

::
of

:::
the

:::::::::
hardware

::::
and

::::::::
software

::::::
details

:::
of

:::
the

::::::
victim

:::::::
device.

::::::::::
Interestingly,

:::::
they

:::::
work

::::
even

:::
on

:::::
older

:::::::::
Bluetooth

:::::::
versions

:::
to

:::::
which

::::::
CTKD

::::
was

:::::::::
backported.

::::::::
Moreover,

:
Table III demonstrates

::::::::::::
experimentally

::::::::
confirms

that Bluetooth 5.1and /5.2 devices are also
:::
are

:::
still

:
vulnerableto

the BLUR attack despite the key overwrite countermeasure
::
to

::
the

::::::
BLUR

:::::::
attacks,

::::::
despite

:::
the

::::::
CTKD

::::
key

::::::::
overwrite

:::::::::
mitigation

in the standard [10, p. 1401](discussed also in .
::::

See
:

Sec-
tion III-A ). We identified two reasons why this is the case.
The countermeasure is too narrow as it does not address all
the BLUR attack scenarios but only a specific key overwrite
attack. As such, other attack scenarios exploited by the BLUR
attacks are not covered (e.g., anonymous unintended sessions,
key overwriting without a downgrade, or key writing). And,
the countermeasure is not effective against the key overwrite
attack that we propose, as during a BLUR key overwrite
attack we simply declare the ”no input

::
for

:::
an

::::::::::
introduction

::::
and

::::::
Section

:::::
IV-F

:::
for

:::
our

::::::::::
explanation

::::::
about

::::
why

::
it
::
is
::::::::::

ineffective.
:::
We

::::
want

::
to

:::::::
evaluate

:::::
more

:::
5.1/output capabilities” flag to force

the usage of ”Just Works” but we lower neither the MITM
protection nor the strength (i.e.,

::
5.2

:::::::
devices

:::::::::
supporting

:::::::
CTKD,

::::
such

::
as

:::::::
speakers

::::
and

:::::::
headsets.

:::
So

:::
far,

:::
we

::::
were

::::
able

::
to

::::
find

::::
only

::::::
5.1/5.2

::::::::
high-end

::::::
devices

::::::::::
supporting

::::::
CTKD

:::::
(e.g., entropy)of

the overwritten key
::::::
Xiaomi

:::
Mi

:::
11,

:::
Mi

:::
10T

:::::
Lite,

:::
and

:::::::::
ThinkPad

::
X1

::::
7th

::::
gen).

VII. DISCUSSION

To effectively

A. Countermeasures

::
To

:::::::::
concretely address the BLUR attacks and their root

causes (CTI presented in Section III-C)we now
:::::
CTIs),

::::
we

present four countermeasures. Each countermeasure addresses
its related CTI (e.g., C1 addresses CTI 1). Then, we describe



how to implement them and how we evaluated one of them
on a Linux laptop.

:::
As

::::
they

:::
act

:::
at

:::
the

::::::::
protocol

:::::
level,

:::::
they

::
are

::::::::
effective

:::::::::
regardless

::
of

:::
the

:::::::::
Bluetooth

:::::::
version

:::::::
number,

::::
and

::
as

::::
they

::::
also

:::::
cover

::::
non

:::::::::::::
key-downgrade

:::::::
attacks,

::::
they

:::::
block

:::
all

:::::
BLUR

:::::::
attacks.

::::
This

:::
is

:::
not

:::
the

::::
case

::::
with

::::
the

::::::::
Bluetooth

::::::
SIG’s

:::
5.1

:::
key

::::::::
overwrite

::::::::::::::
countermeasure

::::::::
described

::
in

:::::::
Section

:::::
III-A.

:

a) C1: Disable pairing when not needed:
::::
C1:

:::::::
Disable

::::::
pairing

::::::
when

::::
not

::::::::
needed To prevent an attacker from

pairing with a device on unused transports, a device should
automatically stop being pairable on a transport that is not
currently in use. To avoid DoS issues, a device should also
allow a user to manually enable and disable pairing

::::::::
manually

on a specific transport.

a) C2: Align BT and BLE roles:
:::
C2:

::::::
Align

:::
BT

:::::
and

::::
BLE

:::::
roles To fix role asymmetries between BT and BLE

when using CTKD
::::
from

:::
BT

::
or

:::::
BLE, a device should store the

transport and the role used while pairing,
:
and enforce it across

re-pairingsregardless of the transport in use. In case of a role
mismatch, the device should abort pairing. We note that the
BIAS paper [4] also takes advantage of role switching but is
not proposing role switch enforcement as a countermeasure.

a) C3: Prevent cross-transport key tampering:
:::
C3:

:::::::
Prevent

::::::::::::::
cross-transport

::::
key

::::::::::
tampering To prevent cross-

transport key overwrites via CTKD, a device should disable
it while pairing if a trusted

::
if

::
a pairing key already exists

for the other transport. As a result, to overwrite a trusted
::
To

::::::::
overwrite

:
a
:
pairing key a user should explicitly re-pair on that

transport. To mitigate cross-transport key writes, CTKD should
be disabled when two devices, who already share a pairing
key on a transport, re-pair on that transport with a weaker
pairing key (that would be used as input to CTKD). A key is
considered stronger than another one if its entropy is higher
or if is established with a stronger association mechanism.

a) C4: Enforce strong association mechanisms:
:::
C4:

:::::::
Enforce

::::::
strong

::::::::::
association

::::::::::::
mechanisms To prevent an at-

tacker from manipulating the association mechanisms used
when pairing on different

::::::::::
associations

::::::
across

:
transports, a

device should keep track of the association mechanism used
while pairing for the first time with a device and enforce it
for subsequent re-pairings

:
(across BT and BLE

:
). There is

no obvious reason why two devices which support strong
association would want to ever use a weaker association scheme.
If a weaker mechanism than the one stored is proposed, pairing
should be aborted.

The four countermeasures not only address the four CTIs
but they also stop the

::::::::
ultimately

::::::
block

:::
the

:
BLUR attacks.

In particular, C3 prevents impersonation and MitM as the
attacker will not be able to write and overwrite key across
transports

:::::
cannot

:::::
write

::
or

:::::::::
overwrite

::::
keys

:::::
across

:::::::::
transports,

:
but

only target separately BT and BLE
::::::::
separately. To stop the

unintended sessions attacks
:::::
session

:::::::
attacks,

:
C1 is also needed

as the attacker should not be able to pair with CTKD on unused
transports. C2 and C4 help to mitigate the attacks by providing
more defense-in-depth

:
, but they are not strictly required.

Our countermeasures
::
are

::::
easy

:::
to

:::::::::
implement

::::
and

:::
do

::::
not

:::
rely

:::
on

:::::::::::::::::::
backward-incompatible

:::::::
features.

:::
In

::::::::
particular,

::::
they

:
can

be implemented in the Bluetooth Host component
::::::::
Bluetooth

::::
Host (i.e., device’s main OS

:::
OS

::::
level). C2, C3, and C4 can be

realized by keeping track of metadata that is already exchanged

during the pairing protocol
::::
extra

::::
data

::::
that

::
is

:::::::::
exchanged

::::::
during

::::::
pairing (e.g., device role, association) and aborting the protocol
when needed.

:::::::
Logging

::
is

:::::::
already

::::::::
supported

::::
and

:::::
used

::
by

::::
the

::::
Host

::::
(e.g.,

:::
to

::::
store

::::::
pairing

::::::
keys).

:
C1 can be implemented with

a timer which
:::
that

:
disables pairability on a transport when not

needed and a simple user interface to monitor and switch on/off
pairability for BT and BLE.

::::
PoC

::::
for

::::
C3 To verify the effectiveness of C3 we

implemented a C3
:::
and

:::::
show

::::
that

:::
our

::::::::::
mitigations

:::
are

::::
easy

:::
to

:::::::::
implement

:::
and

::
do

::::
not

::::::
impact

::::::
normal

:::::::::
operations,

:::
we

:::::::::
developed

:
a
:

proof-of-concept and tested it using a Linuxlaptop. We
paired our laptop with the victim device using CTKD and we
deleted the pairing data on the victimdevice and then used it
as the attacker device

:::::
(PoC)

:::
for

:::
C3

:::
for

:::::
Linux.

:::
We

:::
can

::::::::
evaluate

:::::::
multiple

::::::
device

::::::
classes

:::::::::::::
simultaneously

:::
by

:::::::
testing

::::::
Linux,

:::
as

:
it
::

is
:::::::::

employed
:::

by
::::::::

Android
:::::::::::
smartphones,

:::::::::
embedded

::::::::
devices,

:::
and

:::::::
laptops.

::::
The

:::
C3

::::
PoC

::::::
works

::
as

:::::::
follows.

::::
We

:::
pair

::
a
::::::
Linux

:::::
laptop

:::::::
(victim)

:::::
with

:::
an

::::::::
arbitrary

::::::
device

::::
with

:::::::
CTKD.

:
Then,

to disable CTKD
:::
key

:::::::::
overwrites

:
on the laptop, we unset the

write permission bit in the folder and the file storing the
::
of

:::
the

::::::
pairing

:::
key

::::
file

:::::
stored

::
at
:::::::::::::::::::::::
/var/lib/bluetooth.

:::
We

:::::
then

:::
use

:::
the

::::::
paired

::::::
devices

::::::::
normally

::
to
:::::::::::

demonstrate
:::
no

::::::
impact

:::
on

:::::
benign

::::
use.

:::::::
Finally,

::::
we

:::
run

:::
the

:::::::
BLUR

::::::::::::
impersonation

::::::
attack

:::
and

:::
we

:::::::
confirm

::::
that

::
it
:::

is
:::::::::
ineffective

:::
as

:::
the

:::::::
attacker

:::::::
cannot

::::::::
overwrite

:::
the

:
pairing keys. Then we ran the impersonation

attack from the attack device and the attack failed as the OS
was preventing the Bluetooth Host from (over) writing new
pairing keys

B. Lessons Learned

:::::::::::
Specification

::::
and

::::::::::
modeling

::::::
Security

:::::::::::
mechanisms

:::::
that

::::
cross

::
the

::::::::
security

::::::::::
boundary

::::::::
between

:::::
two

::::::::::::
technologies

:::::
should

:::
be

::::::::::::
well-specified

::::
and

:::::
tested

:::::::
against

::
a
:::::::::::::
comprehensive

::::::::::::
cross-transport

:::::
threat

:::::::
model.

:::
On

:::
the

::::::::
contrary,

::::
the

:::::::::
Bluetooth

:::::::
standard

:::::::
provides

:::
an

::::::::::
incomplete

:::::::::::
specification

:::
for

::::::
CTKD

::::
and

::::
only

::::::::
discusses

:::::
some

:::::::::::
cherry-picked

:::::::::::::
cross-transport

:::::::
threats.

:::::::
Security

::::::::::
guarantees

:::::::::::::
Cross-transport

::::::::::
mechanisms

:::::::
should

::
be

::::::::
designed

::::
such

::::
that

:::
the

::::::::::
mechanisms

::::::
trusted

::
at
:::

the
:::::::::

boundary
:::::::
between

:::
the

:::
two

::::::::
transport

::::
(i.e.,

:::
BT

::::
and

::::
BLE

:::::::
pairing)

:::::
have

:::
the

::::
same

::::
threat

::::::
model

:::
and

::::::::
provides

::::::::
equivalent

::::::
security

::::::::::
guarantees.

::::
This

:
is
::::

not
:::
the

::::
case

::
for

:::::::::
Bluetooth

::
as

:::
BT

::::
and

::::
BLE

:::
use

::::::::
different

::::::
pairing

::::::::
protocols,

::::
link

:::::
layer

:::::::::::
mechanisms,

:::
and

::::::
threat

::::::
models.

::::::::
Usability

:::
vs.

::::::::
Security

::::::
CTKD

::::
was

:::::::::
introduced

::
to

::::::::
improve

:::::::::
Bluetooth’s

::::::::
usability,

::::
but,

::
in

::::
light

:::
of

:::
the

::::::::
presented

:::::::
attacks,

:::
the

:::::::
usability

:::::::
benefits

:::
are

:::
not

::::::::
balancing

:::
the

:::::::
security

:::::
issues

::::::::
deriving

::::
from

:::::::
CTKD.

::::::
Indeed,

::
it
::

is
::::::::::

paramount
::
to

::::
find

::
a
:::::
good

:::::::
balance

:::::::
between

:::::::
usability

::::
and

:::::::
security

::::
and

:::
not

::::
trade

:::
off

:::
the

:::::
latter

:::
for

::
the

:::::::
former.

:

VIII. RELATED WORK

Bluetooth provides a royalty-free and widely-available cable
replacement technology [20]. Bluetooth standard compliant
attacks

::::::::::::::::
Standard-compliant

:::::::
attacks

:::
on

:::::::::
Bluetooth

::
are par-

ticularly dangerous as all Bluetooth devices are affected,
regardless of version numbers or implementation details.
Such standard-compliant attacks have appeared since the first
versions of Bluetooth

::::::
attacks

::::
were

:::::::::
discovered

:::::
since

:::::::::
Bluetooth

::::
v1.0 [24], [29]. Standard-compliant



Attack

Year Paper Target Phase C I AK SC/SCO Persistent Note

Attacks on BT
2016 Albazrqaoe et al. [1] Standard Any G#### x - BlueEar Sniffer
2017 Seri et al. [37] Impl. Pairing    # NA X BlueBorne
2018 Sun et al. [40] Standard Pairing    # X - Passkey (MitM)
2018 Biham et al. [9] Impl. Pairing    G# NA X Fixed Coordinate Invalid Curve
2019 Ossmann et al. [32] Standard NA G#### x - Ubertooth sniffer
2019 Antonioli et al. [2] Standard Pairing   G## X - KNOB (MitM)
2020 Antonioli et al. [4] Standard Pairing    # X - BIAS
2021 Tschirschnitz et al. [41] Standard Pairing    # X - Method Confusion (MitM)

Attacks on BLE
2016 Jasek et al. [25] Standard NA G#### x - Black Hat
2019 Seri et al. [38] Impl. NA #G#G## NA X Bleedingbit
2020 Zhang et al. [46] Standard Pairing G#G#G## X - MitM (SCO)
2020 Wu et al. [44] Standard Session ## # X - BLESA
2020 Garbelini et al. [19] Impl. Any G#G#G## NA - SweynTooth fuzzer
2020 Antonioli et al. [5] Standard Pairing   G## X - Downgrade (MitM)

Cross-transport attacks on BT and BLE
2021 BLUR (this work) Standard Any    G# X X First against CTKD

TABLE IV: Overview of recent
::::::::::
Comparison

:::::
with

:::::::
related

::::::
work.

::::
The

:::::::
BLUR

:
attacks on

::
are

::::
the

::::
first

::::::::::::::
cross-transport

:::::::::::::::
standard-compliant

:::::::
attacks

:::
for

:
Bluetooth and BLE

:::
the

::::
first

::::::::
targeting

::::::
CTKD. C = Data Confidentiality, I = Data Integrity, A

= Device Authentication, K = Key disclosure. No (#) Partially (G#), Yes ( ).

:::
The

:::::::::
Bluetooth

::::::::
standard

::::::::
evolved

:::::
over

:::::
time

::
to
::::::::

include
:::::
better

::::::
pairing

:::::::::::
mechanisms

::::
(e.g.,

:::::
SSP,

::::
SC)

:::
and

::::
two

:::::::::
transports

::::
(e.g.,

::::
BT,

::::::
BLE).

:::::::
Recent

::::::::::::::::
standard-compliant

:
attacks on BT

include attacks on legacy pairing [39], secure simple pairing
(SSP) [21], [40], [9], Bluetooth association [22], [41], key
negotiation [2], and authentication procedures [28], [42],
[4]. Standard-compliant attacks on BLE include attacks on
:::::::::::::
Regarding-BLE

:::
we

::::
have

::::::
attacks

:::
on legacy pairing [36], key ne-

gotiation [5], SSP [9], [46], reconnections [44], and GATT [25].
Compared to the mentioned attacksthat target either BT or BLE
, the BLUR attacks are the

:::
The

:::::::
BLUR

::::::::
attacks

::::
are

::::::
novel

::::::::::
compared

::::
to

::::::
prior

:::::::::::::::
standard-compliant

:::::::
attacks.

:::
As

:::
we

:::
can

:::
see

:::::
from

:::::
Table

:::
IV

::::
they

::
are

:::
the

:
first

::::::::::::
cross-transport

::::::
attacks,

:::::::
meaning

:::
the

::::
first

::::::::
targeting

:::
BT

:::::
from

::::
BLE

::::
and

:::::
vice

::::::
versa.

:::::::::
Moreover,

:::
no

:::::
prior

:::::::
attacks

::::::
targeted

:::::
(and

::::::::
evaluated

::::
the

:::::::
security

:::
of)

:::::::
CTKD.

:::::::
Finally,

::::
like

::
the

::::::
BIAS

:::::
attack

::::
[4],

::::
they

::::::
require

::
a
:::::
weak

:::::
threat

::::::
model

::
as

::::
the

::::::
attacker

::::
can

:::::
target

:
a
:::::
victim

::
at
::::
any

::::
time.

::::::
Unlike

:::
the

:::::
BIAS

::::::
attack,

::
the

:::::
effect

:::
of

:::
our

::::::
attacks

::
is

::::::::
persistent

:::::
across

::::::::
sessions.

::::
Like

:::::
other

standard-compliant attackstargeting the intersection between
BT and BLE

:
,
:::
the

::::::
BLUR

::::::
attacks

:::
are

::::::::
effective

::::::::
regardless

:::
of

:::
the

::::::
security

::::::
mode

::::
(e.g.,

:::::
SSP

::::
with

::::
SC),

::::::::::
association

:::::::
method

:::::
(e.g.,

:::::::
Numeric

::::::::::::
Comparison),

:::
and

:::::::::
Bluetooth

::::::
version

::::::::
numbers.

We have seen attacks targeting specific implementation
flaws on BT [37] and BLE [38], [19]. As our BLUR attacks
target the specification level, they are effective regardless of
the implementation details. Several surveys on BT and BLE
security were published [17], [31], [33] but neither of those
surveys nor the Bluetooth standard considers CTKD as a threat.
We here demonstrate that CTKD is a serious threat and must
be included in the

::::::
standard

:::::::::
Bluetooth

:
threat model.

Cross-transport
:::::::::::::
Cross-protocols attacks were exploited for

proximity technologies using Bluetooth and Wi-FI. Two
prominent examples are attacks on Apple ZeroConf [8] and

Google Nearby Connections [3]. Our BLUR attacks are the
first cross-transport attacks for BTand BLE

:::::::
However,

:::
no

:::::
prior

:::::
attack

:::::::
targeted

:::
the

::::::::
BT/BLE

::::::::::
combination.

The cryptographic primitives used by Bluetooth have
been extensively analyzed. For example, the E0 cipher used
by BT was investigated [18] and it is considered relatively
weak [33]. SAFER+, used for authentication, was analyzed
as well [27]. BT and BLE “Secure Connections” use the
AES-CCM authenticated-encryption cipher. AES-CCM was
extensively analyzed [26], [35] and it is FIPS-compliant. Our
BLUR attacks target key negotiation and not cryptographic
primitives, and

:::
As

:::
our

::::::
attacks

:::
are

::
at

:::
the

::::::::::::
protocol-level,

::::
they are

effective even with perfectly secure cryptographic primitives.

As can be seen from Table IV, compared to other
standard-compliant attacks, the BLUR attacks are novel and
are enabling impactful attack scenarios. The BLUR attacks
are the first cross-transport attacks for Bluetooth and are the
first attacks exploiting CTKD. In terms of impact, the BLUR
attacks require a weak attacker model as the attacker does not
have to observe previous pairing and secure sessions between
the victim. On top of that, they break even the most secure BT
and BLE mode (i.e., SSP, LESC, SC, and strong association)
and their effect is persistent.

IX. CONCLUSION

This work presents the first security evaluation of CTKD.
CTKD is a feature specified

:::
was

:::::::::
introduced

:
in the Bluetooth

standard that allows two devices compatible with BT and BLE
to pair just once on either transport and use both of them
securely. Despite CTKD being a dangerous attack surface ,
little is known about its actual security . In our evaluation
we reverse-engineered how CTKD is used from BT and BLE
and we uncover four vulnerabilities in its specification . The
vulnerabilities affect any device supporting

:
to
::::::::

improve
::::

the



:::::::
usability

::
of

:::::::
pairing.

:::::
With

::::::
CTKD

::::
two

::::::
devices

::::
can

::::
pair

::
on

::::
BT

::
(or

:::::
BLE)

::::
and

:::::::
generate

::::::
pairing

:::::
keys

:::
for

::::
both

:::::::::
transports. CTKD

:
is
::

a
:::::
novel

:::::
attack

:::::::
surface

::
as

::
it
::::::
allows

::
to

:::::::
tamper

::::
with

:::
BT

:::::
from

::::
BLE

:::
and

:::::
vice

:::::
versa,

::::
and

::
is

::::
only

::::::::
partially

::::::::::
documented

::
in
::::

the
::::::::
Bluetooth

:::::::
standard

::::::::
(without

:::
an

:::::::::
appropriate

::::::::
security

::::::::
analysis).

::
To

:::::::
address

:::::
these

::::::
issues,

:::
we

:::
RE

:::
the

:::::::
CTKD

::::::::
protocols

::::
and

:::::::
analyzed

:::::
them

:::::
using

::
a
::::::::::::::

cross-transport
::::::
attacker

:::::::
model.

::::
Our

::::::
analysis

::::::::
uncovers

::::
four

:::::::
critical

:::::
cross

:::::::
transport

::::::
issues

:::::
(CTI)

:::
in

::
the

:::::::::::
specification

:::
of

:::::::
CTKD.

:::
As

:::::
such,

:::
all and can be used to

exploit BT and BLE just by targeting one of the two
::::::::
Bluetooth

::::::
devices

::::::::::
supporting

::::::
CTKD

::::
are

::::::::
currently

::::::::
affected

:::
by

::::::
those

:::::::::::
vulnerabilities.

To show the effectiveness of the uncovered vulnerabilities
we exploit them to present four

:::
We

:::::::
leverage

::::
the

:::::
CTIs

:::
to

:::::::::
implement

::::
four

::::::::::::::::
standard-compliant

:
cross-transport attacksfor

Bluetooth. The attacks allow to impersonate or MitM any
master or slave device supporting CTKD. Furthermore, the
attacks can be used to establish unintended sessions as an
anonymous device. As the attacks are effective regardless of
the security mode in use (e.g., SSP, SC, on strong association)
they can break the strongest security level of BT and BLE.
Collectively our attacks are called BLUR attacks as they blur
the security boundary between .

::::
Our

::::::
attacks

:::::
allow

:::
an

:::::::
attacker

::
to

:::::::::::
impersonate

::::
and

::::::
MitM

:::::::
devices,

::::
and

::::::
allow

:::::::::::
establishing

:::::::::
unintended

:::::::::::
(anonymous)

:::::::
sessions

:::::
with

:
a
::::::

victim
:::
to

:::::::::
enumerate

:::::::
sensitive

::::
data

:::
and

:::::
send

::::::::
malicious

:::::::
packets.

::::
The

::::::
attacks

:::
are

::::
the

:::
first

::::::::::::::::
standard-compliant

:
BT and BLE .

The BLUR attacks are also novel compared to prior
standard-compliant attacks in the literature. Our attacks
::
to

:::
not

:::::::
require

::::
the

::::::::
attacker

::
to

:::
be

::::::::
present

:::::
when

::
a
:::::::

victim
:
is
:::::::

pairing
:::

or
:::::::::::

establishing
:::

a
::::::

secure
::::::::

session,
::::::

unlike
::::::

prior
::::
work

:::::::::::::::::::::::::::::::::::::::::::::::
[22], [21], [36], [40], [9], [2], [5], [4], [44], [46], [41].

::
In

::::::::
particular,

::::
our

::::::
attacks are the first cross-transport attacks for

Bluetooth and are the first attacks targeting CTKD. Moreover,
unlike prior attacks, such as KNOB or BIAS, they can be
executed at any point in time and they achieve a persistent
compromise of the victim devices. For example, the attacker
does not have to wait until the victims start new pairing or
secure sessions.

:::
that

:::
can

:::
be

:::::::::
conducted

:::
in

:::::::
absence

::
of

::::
one

:::
of

::
the

:::::::
victims.

::::
The

::::::
attacks

:::
are

::::::::
effective

::::::::
regardless

:::
of

:::
the

:::::::
targeted

::::::::
Bluetooth

::::::
version

::::
and

:::::::
security

:::::
mode

:::::
(e.g.,

::::
SSP,

:::
SC,

:::
on

::::::
strong

::::::::::
association).

:

To demonstrate the practicality of the BLUR attacks,
we presented a low-cost implementation based on readily
available hardware and open-source software. We use our
implementation to experimentally

:::::::::
empirically

:
confirm that the

BLUR attacks are standard-compliant
:::
and

:::::::
effective

:::
all

:::::::
targeted

::::::
devices. In particular, we exploit

:::::::
exploited

:
16 devices from

different popular vendors
:::::::
different

:::::::
devices

:
using 14 unique

Bluetooth chipsand implementing
:
.
::::
Our

:::::
device

::::::
sample

::::::::
includes

all Bluetooth versions supporting CTKD (
:::
e.g.,

:
4.2, 5.0, 5.1,

and 5.2) . We also exploited a Bluetooth 4.1 device to which
CTKD was backported.

:::
and

:::
BT

::::
and

:::::
BLE

::::::
devices

::::::::::
supporting

::
SC

::::
and

::::::
strong

::::::::::
association.

:

To fix the presented attacks
:::
and

:::::
their

:::::
root

:::::::
causes,

::
we

::::::::
propose

:::::::::::::
protocol-level

:::::::::::::::
countermeasures, we discuss

four effective and cross-transport countermeasures. The
countermeasures enforce that a device is not pairable when not

needed, that BT and BLE roles are aligned while pairing, that
security keys cannot be improperly (over)written or stolen, and
that association is not downgraded. Our countermeasures can
be implemented at the OS level and to show their feasibility
we implemented one of them on the Linux OS

:::
and

:::::::::::
demonstrate

::
the

:::::::
efficacy

:::
of

:::
the

::::
most

::::::::
important

::::
one

:::::::
(disable

:::
key

::::::::::
overwrites)

::::::::::::
experimentally.
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Lessons Learned

In this section we list the main lessons that we learned in
the hope that they will be useful for protocol designers who
are dealing with cross-transport security mechanisms.

a) Cross-transport specification and modeling:
Security mechanisms that cross the security boundary
between two technologies should be well-specified and tested
against a comprehensive cross-transport threat model. On
the contrary, the Bluetooth standard provides an incomplete
specification for CTKD and only discusses some cherry-picked
cross-transport threats.

a) Cross-transport security guarantees: Cross-transport
mechanisms should be designed such that the mechanisms
trusted at the boundary between the two transport (i.e., BT
and BLE pairing) have the same threat model and provides the
same security guarantees. This is not the case for Bluetooth
as BT and BLE use different pairing protocols, link layer
mechanisms, and threat models.

a) Usability vs. Security: CTKD was introduced to
improve Bluetooth’s usability, but, in light of the presented
attacks, the usability benefits are not balancing the security
issues deriving from CTKD. Indeed, it is paramount to
find a good balance between usability and security and not
overweight the former.
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