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Abstract—The Bluetooth standard specifies two transports:
Bluetooth Classic (BT) for high-throughput wireless services and
Bluetooth Low Energy (BLE) for very low-power scenarios. BT
and BLE have dedicated pairing protocols and devices have to pair
over BT and BLE to use both securely. In 2014, the Bluetooth
standard (v4.2) addressed this usability issue by introducing
Cross-Transport Key Derivation (CTKD). CTKD allows establishing
BT and BLE pairing keys just by pairing over one of the two
transports. While CTKD crosses the security boundary between
BT and BLE, little is known about the internals of CTKD and
its security implications.

In this work, we present the first complete description of
CTKD obtained by merging the scattered information from the
Bluetooth standard with the results from our reverse-engineering
experiments. Then, we perform a security evaluation of CTKD
and uncover four cross-transport issues in its specification. We
leverage these issues to design four standard-compliant attacks on
CTKD enabling new ways to exploit Bluetooth (e.g., exploiting BT
and BLE by targeting only one of the two). Our attacks work even
if the strongest security mechanism for BT and BLE are in place,
including Numeric Comparison and Secure Connections. They
allow to impersonate, man-in-the-middle, and establish unintended
sessions with arbitrary devices. We refer to our attacks as BLUR
attacks, as they blur the security boundary between BT and BLE.
We provide a low-cost implementation of the BLUR attacks and we
successfully evaluate them on 16 devices with 14 unique Bluetooth
chips from popular vendors. We discuss the attacks’ root causes
and present effective countermeasures to fix them. We disclosed
our findings and countermeasures to the Bluetooth SIG in May
2020 (CVE-2020-15802), and we reported additional unmitigated
issues in May 2021.
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I. INTRODUCTION

Bluetooth is a pervasive wireless technology used by billions
of devices including mobile phones, laptops, headphones, cars,
speakers, medical, and industrial appliances [11]. It is specified
in an open standard maintained by the Bluetooth special interest
group (SIG), and its latest version is 5.2 [10]. The standard
specifies two transports: Bluetooth Classic (BT) and Bluetooth
Low Energy (BLE). BT is best suited for connection-oriented
and high-throughput use cases, such as streaming audio. BLE
is optimized for connection-less and very-low-power use cases
such as fitness tracking.

The Bluetooth standard defines dedicated security archi-
tectures and threat models for BT [10, p. 947] and BLE [10,
p. 1617]. Each transport provides a pairing and a session
establishment protocol. Pairing results in the establishment
of a long-term pairing key that acts as the root of trust.
Session establishment allows paired devices to establish a secure

channel through a fresh session key derived from their shared
pairing key.

Traditionally, two devices supporting BT and BLE would
have to pair separately on each transport. In 2014, the Bluetooth
standard (v4.2) introduced Cross-Transport Key Derivation
(CTKD) to address this usability issue. CTKD enables to pair
devices once, either over BT or BLE, and negotiate BT and
BLE pairing keys without having to pair a second time [10,
p. 1401].

CTKD has not received any attention from the research
community and the Bluetooth standard describes only some
aspects and threats associated with CTKD. We believe CTKD
provides a significant attack surface, as it is a standard-
compliant security feature, used in conjunction with the most
secure Bluetooth modes (e.g., Secure Connections), and is
transparent to the end-users. In addition, CTKD allows crossing
the security boundary between BT and BLE as CTKD forces
implicit trust between BT and BLE. For example, if two devices
pair over BT and generate a BLE pairing key with CTKD then
the security of the BLE transport entirely relies on BT.

In this work, we present a complete description of CTKD
obtained by combining the incomplete and scattered information
provided in the Bluetooth standard and our reverse-engineering
experiments needed to understand how CTKD is negotiated
and used in practice for BT and BLE. Then, we perform
the first security evaluation of CTKD and we uncover four
cross-transport issues (CTI) with its specification. The issues
affect pairing states, role asymmetries, key generation and
distribution, and association methods. For example, CTKD by-
design enables overwriting trusted keys with malicious ones
across transports.

We leverage the uncovered CTIs to design four cross-
transport and standard-compliant attacks on CTKD. Our attacks
enable persistent cross-transport impersonation, man-in-the-
middle, and unintended session attacks on BT and BLE via
CTKD. The attacks are effective regardless of the employed
Bluetooth security mechanisms, including Secure Connections
and Numeric Comparison. We name our attacks BLUR attacks,
as theyblur the security boundary between BT and BLE.

The BLUR attacks are the first standard-compliant BT and
BLE attacks to not require the attacker to be present when a
victim is pairing or establishing a secure session, unlike prior
work [22], [21], [36], [40], [9], [2], [5], [4], [44], [46], [41].
In particular, our attacks are the first that can be conducted in
absence of one of the victims. The BLUR attacks are also the
first that exploit interactions between BT and BLE (via CTKD).
For a more detailed comparison to prior work see Section VIII.



To demonstrate that the BLUR attacks are feasible we
present a low-cost implementation of the attacks based on
a cheap development board and open-source software. We
evaluated our attacks on a large and heterogeneous sample of
devices. In particular, we exploited 16 unique devices employ-
ing 14 different Bluetooth chips from Broadcom, Cambridge
Silicon Radio (CSR), Cypress, Intel, and Qualcomm. Our set
of vulnerable devices covers all Bluetooth versions supporting
CTKD (i.e., Bluetooth 4.2, 5.0, 5.1, and 5.2) and even a 4.1
device to which CTKD was backported.

We concretely address the BLUR attacks by presenting four
protocol-level countermeasures mitigating the presented CTIs
and the BLUR attacks. Our mitigations can be implemented at
the operating system level with low effort. To backup this claim
we tested one countermeasure (i.e., disable key overwriting)
by implementing it on a Linux laptop.

We responsibly disclosed our findings with the Bluetooth
SIG two times. In May 2020 we sent our first report which
was tracked with CVE-2020-15802. In September 2020 the
Bluetooth SIG unilaterally released a security note (see https:
//tinyurl.com/vxhwftc2), claiming that Bluetooth 5.1 and later
are not vulnerable to the presented attacks. As result, we
further analyzed 5.1 and 5.2 devices, and found them to still be
susceptible. We explain why this is the case in Section IV-F and
experimentally confirm it in Section VI-B. We disclosed those
findings to the SIG, but have not received a reaction. We note
that the SIG is expected to notify vendors of vulnerabilities,
so no separate vendor disclosure is required.

We summarize our main contributions as follows:

• We present a complete description of CTKD combining
public and reverse-engineered information. We perform
the first security evaluation of CTKD and uncover four
vulnerabilities in its specification. For example, CTKD
enables to adversarially pair over unused transports
and to tamper with BT and BLE security keys.

• Based on the identified issues we propose four novel
and standard-compliant attacks capable of breaking BT
and BLE just by targeting one of the two. Compared
to related work, our attacks are the first exploiting
CTKD and acting across transports. Our attacks en-
able to impersonate, man-in-the-middle, and establish
unwanted and stealthy sessions with arbitrary devices.
We name our attacks BLUR attacks as they blur the
security boundary between BT and BLE.

• We present a low-cost implementation of the BLUR
attacks based on a Linux laptop and a Bluetooth
development board. We use our implementation to
attack 16 different devices employing 14 unique
Bluetooth chips and covering all Bluetooth versions
compatible with CTKD (e.g., 4.2, 5.0, 5.1, and 5.2).
Our evaluation demonstrates that the BLUR attacks are
very effective and specification-compliant. To address
them, we discuss four countermeasures to address the
presented issues and attacks affecting CTKD.

II. BLUETOOTH CLASSIC (BT) AND LOW ENERGY (BLE)

BT and BLE are two wireless transports specified in the
Bluetooth standard [10]. These transports are designed to

complement each other. BT is used for high-throughput and
connection-oriented services, such as streaming audio and voice,
while BLE is optimized for very low-power and low-throughput
services such as fitness tracking and digital contact tracing.
High-end devices, such as laptops, smartphones, headsets, and
tablets, provide both BT and BLE, while low-end devices such
as mice, keyboards, and wearables provide either BT or BLE.

BT and BLE have similar security mechanisms (i.e., pairing
and session establishment) but different security architectures
and threat models. Pairing, also known as Secure Simple Pairing
(SSP), lets two devices establish and authenticate a pairing key
that acts as the root of trust. BLE SSP is performed over the
Security Manager Protocol (SMP) [10, p. 1666], while BT SSP
uses the Link Manager Protocol (LMP) [10, p. 568]. During
pairing, BLE allows negotiating the entropy of the pairing key
while BT does not.

While pairing, BT and BLE employ similar association
mechanisms. For example, Just Works association is supported
by all Bluetooth devices as it does not require user interaction,
but it does not protect against MitM attacks. While Numeric
Comparison association protects against MitM attacks by
asking the user to confirm a numeric code on the pairing
devices’ screens. As the Bluetooth standard does not protect
the negotiation of the association method, an attacker can
always downgrade it to Just Works even if the victim device
has I/O capabilities.

Session establishment lets paired devices establish a secure
communication channel. The channel is protected by a fresh
session key derived from the pairing key and some nonces.
During session establishment, BT allows negotiating the entropy
of the session key while the BLE session key inherits the entropy
of the associated pairing key.

BT and BLE use the same notion of pairable and discov-
erable states. If a device is pairable then it accepts pairing
requests from other devices. If it is discoverable it reveals
its identity when scanned by other devices. Notably, a device
answers to a pairing request even if it is not discoverable [43].
For example, if the user knows the Bluetooth address of her
pair of headphones she can complete BT or BLE pairing by
sending a pairing request from her laptop without putting the
headphones into discoverable mode.

BT and BLE provide a Secure Connections mode which
enhances the security primitives in use without affecting
the underlying protocols. In particular, Secure Connections
mandates the usage of FIPS-compliant algorithms such as AES-
CCM, HMAC-SHA-256, and the ECDH on the P-256 curve [10,
p. 269].

Both BT and BLE use a master-slave medium access
protocol. The master (BLE central) is the connection initiator,
while the slave (BLE peripheral) is the responder. BT allows to
switch roles dynamically, while BLE roles are fixed. High-end
devices, such as laptops and smartphones, support both BLE
master and BLE slave modes and are typically used as BLE
masters, while low-end devices, such as fitness trackers and
smartwatches support only the BLE slave mode 1.

1For precise technical descriptions in the rest of the paper we follow the
Bluetooth standard’s master/slave terminology instead of more apt terms like
leader/follower.

https://tinyurl.com/vxhwftc2
https://tinyurl.com/vxhwftc2


III. DESCRIPTION AND SECURITY ANALYSIS OF CTKD

In this section, we present the first complete description
and security analysis of CTKD. In Section III-A we describe
what is publicly known about CTKD, in Section III-B we
complement those information with other crucial ones that we
had to reverse-engineer (e.g., CTKD negotiation for BT and
BLE). In Section III-C, we uncover four critical and novel
cross-transport issues (CTI) in the specification of CTKD.
These issues are the root causes of the standard-compliant and
cross-transport attacks presented in Section V and evaluated in
Section VI.

A. Public Information about CTKD

As described in the Introduction, CTKD was introduced
in the Bluetooth standard to improve the usability of BT and
BLE pairing. Before the introduction of CTKD, devices had
to separately pair over BT and BLE. While with CTKD, the
devices pair once, either over BT or BLE, derive a pairing key
for each transport and establish BT and BLE secure sessions [10,
p. 280].

Being a standard-compliant feature CTKD has to be
supported by all hardware and software Bluetooth vendors. The
list of vendors includes Apple [45], Google [6], Cypress [15],
Linux [13], Qualcomm [34], and Intel [23]. Notably, Apple
presented it as a core and always-on Bluetooth feature during
WWDC 2019.

To use CTKD, a device requires few capabilities. It must
be a dual-mode device (i.e., support both BT and BLE), has
to support Secure Connections, and implement a Bluetooth
version among 4.2, 5.0, 5.1, and 5.2. Examples of devices
supporting CTKD are laptops, tablets, smartphones, headsets,
speakers, and high-end wearable devices. The number of those
devices is steadily growing as dual-mode devices are replacing
single-mode ones [12].

CTKD employs the same deterministic key derivation
function (KDF) for BT and BLE [10, p. 1658]. The KDF
takes as inputs a 128-bit (16-byte) key and two 4-byte strings
and derives a 128-bit (16-byte) key. If CTKD is started from
BLE, then the BT pairing key is derived using the “tmp2” and
“brle” strings. In the other case, the derivation is performed
using the “tmp1” and “lebr” strings. The key derivation function
is deterministic, as using CTKD on the same input key will
always generate the same output key. We re-implemented KDF
to validate our analysis, see Section V-C for more details.

The Bluetooth standard lacks a security analysis of CTKD
but provides only a limited and version-specific security
argument. Since version 5.1 the standard states that “While
performing cross-transport key derivation, if the key for the
other transport already exists, then the devices shall not
overwrite that existing key with a key that is weaker in either
strength or MITM protection” [10, p. 1401]. In other words,
an attacker cannot overwrite a pairing key with CTKD if
the overwriting key has either a lower entropy (i.e., strength)
or a lower MitM protection. While this can be expected to
protect against attacks in limited settings, other scenarios and
attacks are still possible. For example, an adversary can still
overwrite keys with equal strength and MitM protection without
violating the standard (as we experimentally demonstrate

Alice (master)

A

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request:
Assoc, ADDA, SC, CTKD, PKA, NA

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

DK = PKB · SKA

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

DK = PKA · SKB

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

BLE Key Distribution: CSRKA, IRKA

BLE Key Distribution: CSRKB, IRKB

Fig. 1: CTKD from BLE. Alice and Bob negotiate SC and
CTKD support during BLE pairing. Then, they compute the
BLE pairing key and from that key, they derive the BT pairing
key via CTKD (without exchanging any message over BT).
Finally, they generate and exchange additional keys for BLE
including signature (CSRK) and identity resolving (IRK) keys.
After the protocol is completed Alice and Bob can establish
secure sessions both for BT and BLE (without having to pair
over BT).

in Section VI-B). In addition to the limited scope of the
countermeasure, it is unclear why it was introduced only for 5.1
and 5.2 devices and not for all Bluetooth versions supporting
CTKD, and how it should be interpreted when one of the
devices does not support Bluetooth 5.1 or 5.2.

B. Reverse-Engineered CTKD Protocols

The public information that we gathered about CTKD,
including the ones provided by the Bluetooth standard are not
sufficient to perform a security analysis of CTKD. Specifically,
from the standard is not clear how CTKD is negotiated for BT
and BLE and if the protocols differ. To address this problem,
we reverse-engineered the CTKD negotiation protocols for BT
and BLE. Here we present them abstracting the description at
the message level. We refer to the Bluetooth master as Alice
and to the slave as Bob and in the figure we color-code BLE
with light blue and BT with blue. At the end of the section,
we detail our RE methodology.

CTKD from BLE Figure 1 shows how CTKD is negotiated
and used from BLE to derive BLE and BT pairing keys. Alice
and Bob are pairable over BLE and BT and discover each other
using BLE scanning and advertising. Then, they perform pairing
over BLE using the SMP protocol. We found that CTKD is
negotiated by setting to one the Link Key flag of the Initiator
and Responder key distribution SMP fields [10, p. 1680] and
that such negotiation is not protected. Other than the Link Key



Alice (master)

A

Bob (slave)

B

Devices pairable over BT

BT Pairing Request:
Assoc, ADDA, SC, PKA, NA

BT Pairing Response:
Assoc, ADDB , SC, PKB, NB

DK = PKB · SKA

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

DK = PKA · SKB

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

BT CTKD Request:
CTKD, CSRKA, IRKA

BT CTKD Response:
CTKD, CSRKB, IRKB

KBLE = ctkd(KBT,
“tmp2”, “brle”)

KBLE = ctkd(KBT,
“tmp2”, “brle”)

Fig. 2: CTKD from BT. Alice and Bob during BT pairing
negotiate SC support. Then, they compute the BT pairing key,
start a secure session over BT and send BT CTKD messages
containing CTKD support and other keying material generated
for BLE such as signature (CSRK) and identity resolving (IRK)
keys. Notably, the CTKD request and response are encoded
as BLE pairing request and response and tunneled over BT.
Afterward, Alice and Bob derive the BLE pairing key, via
CTKD (without exchanging any message over BLE). After
the protocol is completed Alice and Bob can establish secure
sessions both for BT and BLE (without having to pair over
BLE).

flag the devices should also declare Secure Connections support
(SC) which is also spoofable. The BLE pairing messages also
contain an association method (Assoc), a source BLE address
(ADD), a public key (PK), and a nonce (N).

After exchanging the pairing messages, the devices compute
a Diffie-Hellman shared secret (DK) using the exchanged PK.
DK is used to compute the BLE pairing key (KBLE) using
BLE pairing key derivation function (kdfLE). Then, the devices
use CTKD’s key derivation function (ctkd) to derive the BT
pairing key (KBT). To complete BLE pairing, Alice and Bob
establish a secure session over BLE and exchange additional
keys (e.g., CSRK and IRK). As a result, Alice and Bob share
KBLE and KBT, but they only paired over BLE.

CTKD from BT Figure 2 presents how CTKD is negotiated
and used from BT to derive BT and BLE pairing keys. Alice
and Bob are pairable over BT and BLE and discover each
other via BT inquiry. Then, they exchange pairing request and
response messages over BT to negotiate several BT capabilities
(including SC), and to exchange their BT addresses, keys, and
nonces. Then, they compute DK and use it together with their

BT addresses and nonces to compute the BT pairing key (KBT)
through the BT pairing key derivation function (kdfBT).

Unlike for BLE, BT pairing messages do not include a
CTKD flag. What happens is that the devices start a secure
BT session and exchange two messages containing the CTKD
flag and additional security material needed for BLE such as
signature keys (CSRK) and identity resolving keys (IRK). These
two messages are peculiar as they are encoded as BLE SMP
packets but sent over BT. We are not sure why the Bluetooth
standard is not describing such ”BLE tunneling” protocol to
negotiate CTKD from BT. Once CTKD is negotiated, Alice
and Bob use it to derive the BLE pairing key (KBLE) from the
BT key and the static strings “tmp2” and “brle”.

RE methodology To RE the negotiation and usage of
CTKD we used a Linux laptop connected to a dual-mode
development board as a test device. The laptop runs a patched
Linux kernel capable of pairing diagnostic messages from the
board. The board acts as the laptop fronted (i.e., the laptop is
the BT/BLE Host while the board is the BT/BLE Controller),
and is initialized to report to the laptop all sent and received
link-layer traffic using HCI diagnostic messages.

To test CTKD from BLE we sent a BLE pairing request
from our test device to a pair of dual-mode headphones (Sony
WH-1000XM3) and we monitored the HCI log. To check out
CTKD from BT we sent a BT pairing request from our test
device to an Android smartphone (Pixel 2) and we monitored
the HCI log. In each case, we tested that it was possible to
establish BT and BLE secure sessions after only pairing on one
transport. Notably, CTKD from BT was particularly tricky to
reverse as the CTKD negotiation messages over BT are decoded
by Wireshark but appear as standard L2CAP messages.

C. CTKD Cross-Transport Issues (CTI)

We isolated four cross-transport issues (CTI) with the
specification of CTKD resulting from CTKD bridging BT and
BLE without properly enforcing the security boundary between
the two. We now describe in detail each CTI.

CTI 1: extended pairing CTKD introduces more options
to pair two devices as dual-mode devices are pairable over BT
and BLE all the time. This enables an attacker to (silently) pair
over a transport that is currently unused. The attacker does not
need to wait until a victim is in discoverable mode, as, despite
common belief, a Bluetooth device in pairable state already
accepts pairing requests.

CTI 2: role asymmetry While BT and BLE roles are
defined differently, CTKD does not enforce which role was
used to pair on which transport. BT roles can be switched even
before pairing, while BLE roles are fixed. This is problematic
because an attacker can adversarially switch BT role before
using CTKD and send a BT pairing request to a victim which
expects BT and BLE pairing responses. We note that, issues
with role asymmetry have been already proven effective to
bypass BT authentication during session establishment [4].

CTI 3: key tampering CTKD enables to tamper with
all BT security keys from BLE and vice versa using only a
single run of the pairing protocol. This is a new and powerful
attack primitive for Bluetooth. For example, an attacker can
use CTKD to write new pairing keys for BT and BLE or



even overwrite trusted pairing keys with her own. Furthermore,
by using CTKD from BT the attacker can get access to all
BLE security keys distributed as part of BLE pairing including
identity resolving key usable to de-anonymize a BLE device.

CTI 4: association manipulation CTKD does not keep
track of which association mechanism was used as part of
pairing and the negotiation of the association scheme is not
protected. Indeed, an attacker can use CTKD to re-establish
pairing keys using an arbitrary association scheme. This
includes a weak association to write or substitute authenticated
keys with unauthenticated ones (e.g., by re-pairing using Just
Works). Recently, association confusion attacks have been
proposed for BT or BLE [41], CTKD extends this issue across
transports.

IV. ATTACKS VIA CTKD

We now present our threat model and the design of four
novel and standard-compliant attacks on CTKD. Our attacks are
the first samples of cross-transport exploitation for Bluetooth,
as they are capable of exploiting BT and BLE just by targeting
either of the two. Moreover, they are the first attacks exploiting
CTKD. The attacks do not require a strong attacker model. For
example, they can be conducted at any time against arbitrary
devices (including the ones supporting BT and BLE SC, and
SSP with strong association). As our attacks are blurring the
security boundary between BT and BLE, we name them BLUR
attacks.

A. System Model

Our system model considers two victims, Alice and Bob,
who can securely communicate over BT and BLE. The victims
support CTKD, and are using the most secure BT and BLE
modes, namely, SC and SSP with strong association. This setup
should protect the victims against eavesdropping, impersonation,
and man-in-the-middle attacks as claimed in [10, p. 269].
Without loss of generality, we assume that Alice is the master
and Bob is the slave.

Regarding the notation, we indicate a BT pairing key with
KBT, a BT session key with SKBT, a BLE pairing key with
KBLE, a BLE session key with SKBLE. We indicate a Bluetooth
address with ADD, a public key with PK, a private key with
SK, a shared Diffie-Hellman secret with DK, a nonce with N,
and a message authentication code with MAC.

B. Attacker Model and Goals

Our attacker model considers Charlie, an attacker in
Bluetooth range with the victims. The attacker’s knowledge is
limited to what the victims advertise over the air, e.g., full or
partial Bluetooth addresses, Bluetooth names, and security and
IO capabilities. She can scan and discover devices, send pairing
requests and responses, use CTKD, propose weak association
mechanisms (e.g., Just Works), and dissect and craft Bluetooth
packets. However, the attacker does not know any pairing or
session key shared between the victims, and does not have to
be present when the victims pair or negotiate a secure session.
Moreover, she cannot access and tamper with the victim devices.

The attacker has four goals. (i) impersonate Alice (master)
and take over her secure sessions with Bob. (ii) impersonate

Fig. 3: Attack strategy. Alice and Bob are paired over BT and
run a secure BT session. Charlie pairs with Bob as Alice over
BLE declaring CTKD support. Then Charlie agrees upon a
BLE pairing key with Bob, and, via CTKD, tricks Bob into
overwriting Alice’s BT pairing key. As a result, Charlie can
establish BT and BLE sessions with Bob as Alice, and takes
over the real Alice who can no longer connect to Bob. Using
a similar strategy, Charlie can also impersonate Bob to Alice,
man-in-the-middle Alice and Bob, and establish unintended BT
and BLE sessions as an arbitrary device.

Bob (slave) and take over his secure sessions with Alice. (iii)
man-in-the-middle Alice and Bob’ secure session (iv) establish
unintended and stealthy sessions with Alice and Bob.

Let us clarify some aspects of the attackers’ goals. By
“take over” we mean that after the attack the bond between
the victims is broken (e.g., when Charlie takes over a session
from Alice then Alice will not be able to connect back to
Bob). Master and slave impersonation are indicated as different
goals, as they require different attack strategies. We define an
unintended session as a session established with a victim device
as an arbitrary device without breaking existing security bonds
(e.g., Charlie silently pairs with Alice as a random device using
CTKD and connects with Alice over BT and BLE).

C. Attack Strategy

We now describe our attack strategy with the help of
Figure 3. Let us assume that Alice is a laptop and Bob is
a pair of headphones and the victims are already paired and
they are running a secure BT session. Since the victims support
CTKD, they are also pairable over BLE, even if the transport
is not currently in use. Charlie sends a BLE pairing request to
Bob (the victim) pretending to be Alice, and claiming CTKD
support. The attacker also declares no input/output capabilities
to negotiated unauthenticated Just Works (JW) association. This
last step does not trigger the key overwrite countermeasure
described in Section III-A as the attacker is neither changing
the MitM protection flag nor the strength (i.e., entropy) of the
pairing key.

Bob, even if running a BT session with Alice, has to answer
to Charlie with a BLE pairing response as Charlie’s message
is compliant with the Bluetooth standard. Then, Charlie (as
Alice) and Bob agree on a BLE pairing key and, via CTKD,
generate a new BT pairing key that overwrites Alice’s key in
Bob’s BT key store. In doing so, Charlie, wins two prizes with
one shot, as he takes over Alice’s BT and BLE sessions with



Charlie (master)

C

Bob (slave)

B

Devices pairable over BLE

BLE Pairing Request as Alice:
JW, ADDA, SC, CTKD, PKC , NC

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

Compute KBLE

Derive KBT

Compute KBLE

Derive KBT

BLE Key Distribution: CSRKC , IRKC

BLE Key Distribution: CSRKB, IRKB

Fig. 4: BLUR master impersonation attack. Charlie sends a BLE
pairing request with Alice’s address (ADDA) including Just
Works (JW) association, CTKD, and his public key (PKC ). Bob
answers with a BLE pairing response thinking that he is talking
to Alice. The attacker and the victim agree on KBLE, and derive
KBT, via CTKD and complete BLE pairing by generating and
distributing more keys over a secure BLE session. As a result
of the master impersonation attack, Charlie tricks Bob into
overwriting Alice’s keys with his ones and takes over Alice
who can no longer connect back to Bob.

Bob. In other words, Alice can no longer connect to Bob as
she does not know the BT and BLE pairing keys (overwritten
by the attacker). Furthermore, Charlie also overwrites other
security keys that are distributed during pairing, including
CSRK (signature key) and IRK (MAC randomization key). We
note that the overwrite trick is transparent to the end user as
the standard does not mandate to notify the user about CTKD,
and works even if Alice and Bob are sharing BT and BLE
pairing keys before the attack takes place.

Following a similar strategy, Charlie can impersonate Bob to
Alice, man-in-the-middle them, and create unintended sessions
as an arbitrary device with a victim. We note that our attack
strategy is effective because the Bluetooth standard does not
enforce important security properties at the boundary between
BT and BLE and does not address all cross-transport threats
in its threat model (see Section III-C for more details). In the
remaining of this section, we describe the technical details of
the four BLUR attacks.

D. Impersonation Attacks

Master impersonation Charlie impersonates Alice and
takes over her BT and BLE sessions with Bob as in Figure 4.
Bob is already paired with Alice, and can run a BT session
with her while Alice’s impersonation takes place. Notably, Bob
must be pairable over BT and BLE to support CTKD from BT
and BLE. Charlie takes advantage of that and sends a BLE
pairing request as Alice by using Alice’s Bluetooth address

Alice (master)

A

Charlie (slave)

C

Devices pairable over BT

BT Pairing Request as Bob:
JW, ADDB , SC, PKC , NC

BT Pairing Response:
Assoc, ADDA, SC, PKA, NA

Compute KBT Compute KBT

BT CTKD Request as Bob:
CTKD, CSRKC , IRKC

BT CTKD Response:
CTKD, CSRKA, IRKA

Derive KBLE Derive KBLE

Fig. 5: BLUR slave impersonation attack. Charlie sends a BT
pairing request with Bob’s address (ADDB) including Just
Works (JW) association, and his public key (PKC ). The pairing
request is valid as BT enables to dynamically switch from
slave to master before sending a pairing request. Alice answers
with a BT pairing response believing that she is talking to Bob.
The attacker and the victim establish KBT, negotiate CTKD
and exchange additional keying material for BLE with a BT
CTKD request and response messages, and derive KBLE. As a
result of the slave impersonation attack, Charlie tricks Alice
into overwriting Bob’s keys with his ones and takes over Bob
who can no longer connect back to Alice.

(ADDA), Just Works (JW) association while pairing, his public
key (PKC), and CTKD support.

As Charlie’s BLE pairing request is standard-compliant,
Bob sends back a BLE pairing response believing that Alice
wants to pair (or re-pair) over BLE using CTKD. Then,
Charlie and Bob compute KBLE, derive KBT via CTKD, and
exchange additional BLE key material (e.g., CSRK, IRK) over
a BLE secure session. After the master impersonation attack is
completed Charlie takes over Alice’s BT and BLE sessions by
tricking Bob into overwriting Alice’s BT and BLE keys with
his ones.

Slave impersonation Charlie impersonates Bob and takes
over his BT and BLE sessions with Alice as in Figure 5.
Alice and Bob have already paired and can run a BLE secure
session while the impersonation takes place. Alice has to be
pairable over BT and BLE to provide CTKD support from both
transports, and Charlie takes advantage of that by sending a BT
pairing request to Alice as Bob using Bob’s address (ADDB),
Just Works (JW), and his public key (PKC). Charlie’s pairing
request is still standard-compliant even if Charlie is supposed
to be the slave as BT, unlike BLE, enables a slave to switch
to a master role before sending a pairing request.



Fig. 6: BLUR MitM attack. Charlie combines the master and
slave impersonation attacks presented so far to establish a man-
in-the-middle position between Alice and Bob both on BT and
BLE.

Alice answers with a BT pairing response believing that
Bob wants to re-pair over BT, and the two agree on KBT. Then,
Charlie starts a secure BT session and sends a tunneled BLE
pairing request to Alice still pretending to be Bob. The BLE
pairing request includes CTKD support and Charlie’s signature
and MAC randomization BLE keys (CSRKC , IRKC). Alice
answers with a BLE pairing response tunneled over BT and the
two derives KBLE via CTKD. Once the slave impersonation
attack is completed, Charlie takes over Bob’s BT and BLE
sessions by tricking Alice into overwriting Bob’s BT and BLE
keys with his ones.

Man-in-the-middle Charlie can conveniently combine the
described master and slave attacks to launch a cross-transport
man-in-the-middle attack as shown in Figure 6. If Alice and
Bob are running a BLE session, Charlie starts with the slave
impersonation attack presenting to Alice as Bob over BT.
Otherwise, he launches a master impersonation attack by
targeting Bob as Alice over BLE. After the first impersonation
attack, the impersonated victim is taken over and disconnects
from the other victim. Then, Charlie targets the impersonated
victim with a second impersonation attack and establishes a
MitM position between the two victims. As a result, Charlie
controls all BT and BLE secure sessions between Alice and
Bob.

E. Unintended Session Attacks

CTKD enables unintended session attacks as it provides
more ways to (silently) pair devices. In particular, two devices
supporting CTKD are always pairable over BT and BLE, but
typically they use one transport at a time. Hence, the attacker
can target the unused transport as a stepping stone to establish
trusted bonds on BT and BLE via CTKD, while impersonating
a random device. To the best of our knowledge, this attack
technique is new in the context of Bluetooth.

Let us see how an unintended session attack works in
a scenario where Alice and Bob are already paired and are
running a secure BT session (see Figure 7). Charlie targets Bob
by sending a BLE pairing request using a random Bluetooth
address, CTKD support, and Just Works for association. Bob
answers to Charlie’s request and the two negotiate KBLE, and
derive KBT via CTKD. Now, Charlie can establish secure but
unintended BT and BLE sessions with Bob without breaking
Bob’s existing sessions (e.g., with Alice) and by using an
anonymous identity and arbitrary capabilities. Using a similar
strategy, Charlie can reach the same goals targeting Alice.

Fig. 7: BLUR unintended sessions attack. Charlie can take
advantage of CTKD to establish unintended BT and BLE
session with Bob as a random device with arbitrary capabilities.
The same can happen if Charlie targets Alice.

An unintended session attack is valuable for various reasons.
It is stealthy as the attacker can establish a trusted relation
with the victim as an anonymous device and with minimal user
interaction (e.g., Just Works). Moreover, it allows complete
device enumeration as the attacker, being a trusted peer, can
access all BT and BLE services, including the protected ones
unlike other attacks such as [14]. Additionally, the attack
deterministically de-anonymizes BLE devices, as the attacker
get access to the identity resolving key distributed during
pairing. Finally, it enables the attacker to reach more Bluetooth
stack code sections than an untrusted device, including remote
code execution bugs in the pairing and secure session code.

F. Attacks Discussion

We now discuss the attacks’ root causes, their effectiveness
regardless of the Bluetooth version, association method, and
even CTKD support. Finally, we detail how we discovered
them.

Root causes (CTIs) The BLUR attacks take advantage of
the four CTI presented in Section III-C. As shown in Table I, a
checkmark (X) indicates that a CTI is required, an ”x” if it is
not needed, and an ”*” if it is sometimes needed. From the table
we see that all attacks exploit extended pairability (CTI 1). The
slave impersonation and MitM attacks take advantage of role
asymmetries (CTI 2), while some unintended session attacks
take advantage of that. Key tampering (CTI 3) is exploited in
all attacks as the attacker has to either write or overwrite keys
using CTKD. Association manipulation (CTI 4) is required
in the first three attacks when the victim expects a strong
association mechanism but the attacker negotiates Just Works.

CTI 1 CTI 2 CTI 3 CTI 4

Master Impersonation X x X *
Slave Impersonation X X X *
MitM X X X *
Unintended Session X * X x

TABLE I: Mapping the BLUR attacks to the CTI from
Section III-C. CTI 1: extended pairing, CTI 2: role asymmetry,
CTI 3: key tampering, and CTI 4: association manipulation.
We use a X if a CTI is required to conduct an attack, a x if is
not required and a * if is only required in specific cases.



Bluetooth v5.1/5.2 In Section III-A we describe a version-
specific key overwrite security argument included in the Blue-
tooth standard since v5.1. The Bluetooth SIG currently uses this
argument to state that the BLUR attacks are not effective against
Bluetooth 5.1 and 5.2 devices (see https://tinyurl.com/vxhwftc2).
We disagree with this statement, and we provided them
empirical evidence (see Section VI-B) and solid arguments
(described below) about why this is not the case.

In particular, the key overwrite countermeasure is ineffective
as it is out of scope with our attacks. Firstly, it does not
cover non key overwrite cross-transport attacks such as the
cross-transport unintended session and key writing attacks
presented in this work. In addition, it does not protect against
key overwrite attacks not involving the downgrade of keys’
strength and MitM protection. Specifically, our key overwrite
attacks declare ”no input/output capabilities” to force the usage
of Just Works without downgrading key strengths or MitM
protections.

Association The BLUR attacks are effective regardless of
the association methods supported by a victim, as the attacker
can always downgrade it to Just Works. Even Just Works might
require minimal user interaction (e.g., Yes/No pairing prompt)
but remains an unauthenticated and vulnerable mechanism
(e.g., the user has no way to tell if the remote pairing device
is trustworthy).

CTKD support Interestingly our attacks can be launched
even if one of the victims does not support CTKD. By design
CTKD’s negotiation is not protected and enforced across pairing
sessions. Hence, if the attacker impersonates a device not
supporting CTKD, she can still use the BLUR attacks if
the victim supports CTKD. For example, the adversary can
impersonate BT-only speakers to a BT/BLE (dual-mode) laptop
and exploit CTKD.

Discovery We discovered the BLUR attacks by inference
from the public information and RE details presented in
Section III. Our experiments involved actual devices and static
and dynamic analysis of the exchanged Bluetooth packets and
the CTKD code.

V. IMPLEMENTATION

In this section we describe our attack scenario, our imple-
mentation of a custom attack device to perform the BLUR
attacks and our re-implementation of CTKD’s key derivation
function. We will open-source both implementations.

A. Attack Scenario

Our attack scenario follows the example in Figure 8 and
includes two victims, Alice (master) and Bob (slave). Alice
is represented by a 7th generation ThinkPad X1 laptop and
Bob by a pair of Sony WH-CH700N headphones. The attacker
(Charlie) uses a CYW920819 development board [16] and a
3rd generation ThinkPad X1 laptop as an attack device. The
implementation of the attack device is presented in Section V-B.
In our evaluation, presented in Section VI, we use the same
attack scenario to attack other victim devices.

Table II summarizes the most relevant features of Alice,
Bob, and Charlie. Alice and Bob have an Intel Bluetooth chip,
while Bob has a Cambridge Silicon Radio (CSR) one. Alice,

X1 7th gen WH-CH700N

Alice
(master)

Bob
(slave)X1 3rd gen

USB

CYW920819

Charlie (attacker)

BTSecure Session

Fig. 8: BLUR attack scenario. Alice (master) is a ThinkPad X1
7th gen, Bob (slave) is a pair of Sony WH-CH700N headphones
and Charlie (attacker) is a CYW920819 board connected via
USB to a ThinkPad X1 3rd gen. Alice and Bob have paired in
absence of Charlie, and are running a secure BT session.

Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716
Version 5.1 4.1 5.0
Name x7 WH-CH700N x1
ADD Redacted Redacted Redacted
Class 0x1c010c 0x0 0x0
BT SC True Only Controller True
BT AuthReq 0x03 0x02 0x03
BLE SC True True True
BLE AuthReq 0x2d 0x09 0x2d
CTKD True True True
h7 True False True
Role Master Slave Master
IO Display No IO Display
Association Numeric C. Just Works Numeric C.
Pairable True True True

TABLE II: Relevant features of Alice, Bob, and Charlie. We
redact the devices’ Bluetooth addresses for privacy reasons.

Bob, and Charlie support respectively Bluetooth 5.1, 4.1, and
5.0. Alice and Charlie support Secure Connections both on
the Host and the Controller, while Bob only on the Controller.
All devices support BT, BLE, and CTKD. Regarding pairing
association methods, the laptops support Numeric Comparison,
while the headsets only support Just Works as they lack a
display.

B. Attack Device

To conduct our attacks we developed an attack device
making use of a CYW920819 development board connected to
a Linux laptop (see Figure 9). The devices support BT, BLE,
SC, and CTKD. We picked these devices as COTS devices do
not allow to modify their Bluetooth firmware (Controller) but at
most the OS Bluetooth stack (Host). A software-defined radio
(SDR) is also out of scope because there is no open-source
BT/BLE SDR stack currently available.

https://tinyurl.com/vxhwftc2


Fig. 9: Attack device block diagram. The attack device is com-
posed of Linux laptop (Host) and a CYW920819 development
board (Controller) connected via USB and communicating using
the Host Controller Interface (HCI) protocol.

Instead, with our attack device, we can program our
development board (Bluetooth Controller) to impersonate any
BT/BLE device, we can patch its closed-source firmware to
control both BT LMP and BLE LL link layer packets. Moreover,
we can alter the laptop’s BT and BLE kernel and user-space
code to set Bluetooth Host-specific configuration bits such
as negotiating CKTD and Just Works. We now describe in
detail how we modify the attack device’s Host and Controller
components.

Host modifications For the host, we use standard Linux
tools to configure an Bluetooth interface (e.g., hciconfig),
and to discover and pair with a device (e.g., bluetoothctl,
hcitool and btmgmt). In particular, btmgmt was very
useful as it provides handy low-level commands. For example,
it includes commands to toggle BT, BLE, SC, scanning, and
advertising. Moreover, it allows to easily send custom pairing
requests on BT and BLE and to set the related association (e.g.,
Just Works).

Furthermore, we configured our host to get all link-layer
packets sent and received by the controller. This is handy
as it enables to monitor both HCI and link-layer packets
directly from the host (e.g., using Wireshark). To activate link-
layer packet forwarding, we sent a proprietary Cypress HCI
command from the host to the controller that switches on an
undocumented diagnostic mode in the controller. Then, we
added extra C code to the Linux kernel to parse those special
HCI packets in the host.

Controller modifications We modified the controller by dy-
namically patching the development board Bluetooth firmware
using a Cypress proprietary mechanisms. To patch the firmware
we had to extract it from the board and statically reverse-
engineer its relevant parts. In particular, to extract the firmware
we used a proprietary HCI command to read and save a runtime
RAM snapshot from the board’s SoC. We use the memory
maps that we extracted from the board’s SDK to extract the
memory segments from the snapshot (e.g., ROM, RAM, and
the scratchpad). As expected, the firmware was in the ROM
segment and was a stripped ARM binary containing 16-bit
Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM,
RAM, and scratchpad in Ghidra and statically analyzed them.
In our first pass, we isolated the libc functions (e.g., malloc
and calloc) by looking at the signatures and the code patterns
of the functions that are called the most. Then, we found the

firmware debugging symbols hidden in the board’s SDK and
loaded them into Ghidra. Using these symbols we isolated
functions and data structures relevant to the BLUR attacks.
Then, we wrote ARM Thumb assembly patches to change
their behaviors and we apply those patches at runtime using
internalblue [30], an open-source toolkit to manage several
Bluetooth devices including our board. Our set of patches
allows transforming our board in whatever device we want
by changing its identifiers including addresses, names, and
capabilities,

C. CTKD Key Derivation Function (KDF)

We implemented CTKD’s custom KDF, following the
Bluetooth standard [10, p. 1401]. This implementation is not
required to conduct the attack, but it was used to check that
the CTKD keys were correctly derived. Our implementation is
written in Python 3, uses the PyCA cryptographic module [7],
and was successfully tested against the test vectors in the
standard [10, p. 1721]. We now describe its technical details.

The KDF computes KBLE using KBT, “tmp2” and “brle”,
and KBT from KBLE, “tmp1” and “lebr”. Each case can be
represented by a system of equations (see below). If CTKD
is run from BT then the first system of equations is used
otherwise the second. Each system has two equations and
the top equation is used if both devices support the h7 key
conversion function. h7 is negotiated during pairing using the
AuthReq flag [10, p. 1634]. All four equations internally use
f(a, b) that is implemented as AES-CMAC(key, plaintext).

KBLE =

{
f (f (tmp2,KBT ) , brle) if h7 is supported
f (f (KBT , tmp2) , brle) otherwise

KBT =

{
f (f (tmp1,KBLE) , lebr) if h7 is supported
f (f (KBLE , tmp1) , lebr) otherwise

VI. EVALUATION

In this section we present how we successfully conducted
the BLUR attacks on 16 devices using 14 unique Bluetooth
chips. Our results confirm that the BLUR attacks are effective
against different device types (e.g., laptops, smartphones,
headphones, and development boards), manufacturers (e.g.,
Samsung, Dell, Google, Lenovo, and Sony), operating systems
(e.g., Android, Windows, Linux, and proprietary OSes), and
Bluetooth firmware (e.g., Broadcom, CSR, Cypress, Intel,
Qualcomm, and Samsung).

A. Setup

The BLUR attacks, presented in Section IV, include master
impersonation, slave impersonation, man-in-the-middle, and
unintended session attacks. In the next paragraphs, we describe
how we conducted each attack using the attack device described
in Section V-B.

Laptop (master) BLUR impersonation attack To im-
personate the laptop, we patch our attack device to clone
the laptop’s Bluetooth features (e.g., Bluetooth address, name,
device class, and security parameters) Then, we send a BLE



Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Slave X X X

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Slave X X X

Google Pixel 2 Android Qualcomm SDM835 5.0 Slave X X X

Google Pixel 4 Android Qualcomm 702 5.0 Slave X X X

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Slave X X X

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Slave X X X

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Slave X X X

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Slave X X X

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Slave X X X

Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Slave X X X

Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Slave X X X

Xiaomi Mi 10T Lite Android Qualcomm 9312 5.1 Slave X X X

Xiaomi Mi 11 Android Qualcomm 10765 5.2 Slave X X X

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Master X X X

Sony WH-CH700N Proprietary CSR 12942 4.1† Master X X X

† CTKD was backported by the vendor to Bluetooth 4.1.

TABLE III: BLUR attacks evaluation results. The first three columns show the device’s producer, model, and OS. The next two
columns state the Bluetooth chip’s producer and model. The sixth column tells the Bluetooth version of the target device. The
seventh column indicates the attacker role. The last three columns contain a checkmark (X) if a device is vulnerable to the
relevant BLUR attack.

pairing request from the attack device to the headphones
declaring CTKD and Just Works support. The malicious BLE
pairing request is sent using btmgmt’s text-based user interface
(TUI). The headphones accept the pairing request, and the
devices agree on KBLE, derive KBT via CTKD and establish
a secure BLE session. Then, the headphones terminate the BT
session with the impersonated laptop and establish a secure BT
session with the attack device. The impersonated laptop cannot
connect back with the headphones as it does not possess the
correct pairing keys overwritten by the attacker.

Headphones (slave) BLUR impersonation attack To
impersonate the headphones, we patch our attack device to
clone the headphones’ Bluetooth features. Then, we send a BT
pairing request from the attack device to the laptop declaring
CTKD and Just Works support using btmgmt’s TUI. The
laptop accepts to pair over BT as a BLE slave can send a BT
pairing request as a master. The devices agree on KBT, derive
KBLEvia CTKD, and establish a secure session over BT. The
impersonated headphones cannot connect to the laptop as they
do not own the correct pairing keys.

BLUR Man-in-the-middle attack By using two develop-
ment boards connected to the same laptop, we can impersonate
the laptop and the headphones at the same time, and man-in-
the-middle them. In particular, we run the laptop (master)
impersonation attack first, and then the headphone (slave)
impersonation attack. As a result, the attack device positions
itself in the middle between the victims.

BLUR Unintended sessions attack For the unintended
session attack, we patched our attack device to look like an

unknown device to the current victim (e.g., unknown Bluetooth
address and name). If the victim is a master, we run the same
steps used in the slave impersonation attack otherwise we
use the master impersonation attack’s steps. In both cases,
the attacker completes pairing using CTKD and can establish
secure sessions over BT and BLE with the victim.

B. Results

We exploited the BLUR attacks against 16 unique devices
employing 14 different Bluetooth chips and covering all
Bluetooth versions supported by CTKD. We show our results
in Table III. The table’s first six columns indicate the device’s
producer, model name, operating system, chip manufacturer,
chip model, and Bluetooth version. The seventh column contains
either Slave if the attacker’s role is slave, or Master otherwise.
The table’s last three columns have a checkmark (X) if a device
is vulnerable to master or slave impersonation attack (MI/SI),
MitM, or unintended session (US) attack.

Table III empirically demonstrates that the BLUR attacks are
effective on actual devices and are compliant with the Bluetooth
standard. The attacks are effective on all Bluetooth versions
supporting CTKD (i.e., Bluetooth 4.2, 5.0, 5.1, and 5.2). In
addition, they succeed regardless of the hardware and software
details of the victim device. Interestingly, they work even on
older Bluetooth versions to which CTKD was backported.

Moreover, Table III experimentally confirms that Bluetooth
5.1/5.2 are still vulnerable to the BLUR attacks, despite the
CTKD key overwrite mitigation in the standard [10, p. 1401].
See Section III-A for an introduction and Section IV-F for our



explanation about why it is ineffective. We want to evaluate
more 5.1/5.2 devices supporting CTKD, such as speakers and
headsets. So far, we were able to find only 5.1/5.2 high-end
devices supporting CTKD (e.g., Xiaomi Mi 11, Mi 10T Lite,
and ThinkPad X1 7th gen).

VII. DISCUSSION

A. Countermeasures

To concretely address the BLUR attacks and their root
causes (CTIs), we present four countermeasures. As they act at
the protocol level, they are effective regardless of the Bluetooth
version number, and as they also cover non key-downgrade
attacks, they block all BLUR attacks. This is not the case
with the Bluetooth SIG’s 5.1 key overwrite countermeasure
described in Section III-A.

C1: Disable pairing when not needed To prevent an
attacker from pairing with a device on unused transports, a
device should automatically stop being pairable on a transport
that is not currently in use. To avoid DoS issues, a device
should also allow a user to enable and disable pairing manually
on a specific transport.

C2: Align BT and BLE roles To fix role asymmetries
when using CTKD from BT or BLE, a device should store the
transport and the role used while pairing, and enforce it across
re-pairings. In case of a role mismatch, the device should abort
pairing. We note that the BIAS paper [4] also takes advantage
of role switching but is not proposing role switch enforcement
as a countermeasure.

C3: Prevent cross-transport key tampering To prevent
cross-transport key overwrites via CTKD, a device should
disable it if a pairing key already exists for the other transport.
To overwrite a pairing key a user should explicitly re-pair on
that transport. To mitigate cross-transport key writes, CTKD
should be disabled when two devices, who already share a
pairing key on a transport, re-pair on that transport with a
weaker key (that would be used as input to CTKD). A key
is stronger than another one if its entropy is higher or if is
established with a stronger association mechanism.

C4: Enforce strong association mechanisms To prevent
an attacker from manipulating associations across transports, a
device should keep track of the association mechanism used
while pairing for the first time and enforce it for subsequent
re-pairings (across BT and BLE). There is no reason why two
devices which support strong association would want to ever
use a weaker association scheme. If a weaker mechanism than
the one stored is proposed, pairing should be aborted.

The four countermeasures ultimately block the BLUR
attacks. In particular, C3 prevents impersonation and MitM as
the attacker cannot write or overwrite keys across transports,
but only target BT and BLE separately. To stop the unintended
session attacks, C1 is also needed as the attacker should not
be able to pair with CTKD on unused transports. C2 and C4
help mitigate the attacks by providing more defense-in-depth,
but they are not strictly required.

Our countermeasures are easy to implement and do not
rely on backward-incompatible features. In particular, they can
be implemented in the Bluetooth Host (i.e., OS level). C2,

C3, and C4 can be realized by keeping track of extra data
that is exchanged during pairing (e.g., device role, association)
and aborting the protocol when needed. Logging is already
supported and used by the Host (e.g., to store pairing keys).
C1 can be implemented with a timer that disables pairability
on a transport when not needed and a simple user interface to
monitor and switch on/off pairability for BT and BLE.

PoC for C3 To verify the effectiveness of C3 and show that
our mitigations are easy to implement and do not impact normal
operations, we developed a proof-of-concept (PoC) for C3 for
Linux. We can evaluate multiple device classes simultaneously
by testing Linux, as it is employed by Android smartphones,
embedded devices, and laptops. The C3 PoC works as follows.
We pair a Linux laptop (victim) with an arbitrary device with
CTKD. Then, to disable key overwrites on the laptop, we
unset the write permission bit of the pairing key file stored
at /var/lib/bluetooth. We then use the paired devices
normally to demonstrate no impact on benign use. Finally, we
run the BLUR impersonation attack and we confirm that it is
ineffective as the attacker cannot overwrite the pairing keys.

B. Lessons Learned

Specification and modeling Security mechanisms that cross
the security boundary between two technologies should be well-
specified and tested against a comprehensive cross-transport
threat model. On the contrary, the Bluetooth standard provides
an incomplete specification for CTKD and only discusses some
cherry-picked cross-transport threats.

Security guarantees Cross-transport mechanisms should
be designed such that the mechanisms trusted at the boundary
between the two transport (i.e., BT and BLE pairing) have the
same threat model and provides equivalent security guarantees.
This is not the case for Bluetooth as BT and BLE use different
pairing protocols, link layer mechanisms, and threat models.

Usability vs. Security CTKD was introduced to improve
Bluetooth’s usability, but, in light of the presented attacks, the
usability benefits are not balancing the security issues deriving
from CTKD. Indeed, it is paramount to find a good balance
between usability and security and not trade off the latter for
the former.

VIII. RELATED WORK

Bluetooth provides a royalty-free and widely-available cable
replacement technology [20]. Standard-compliant attacks on
Bluetooth are particularly dangerous as all devices are affected,
regardless of version numbers or implementation details. Such
attacks were discovered since Bluetooth v1.0 [24], [29].

The Bluetooth standard evolved over time to include better
pairing mechanisms (e.g., SSP, SC) and two transports (e.g.,
BT, BLE). Recent standard-compliant attacks on BT include
attacks on legacy pairing [39], secure simple pairing (SSP) [21],
[40], [9], association [22], [41], key negotiation [2], and
authentication procedures [28], [42], [4]. Regarding-BLE we
have attacks on legacy pairing [36], key negotiation [5], SSP [9],
[46], reconnections [44], and GATT [25].

The BLUR attacks are novel compared to prior standard-
compliant attacks. As we can see from Table IV they are the
first cross-transport attacks, meaning the first targeting BT



Attack

Year Paper Target Phase C I AK SC/SCO Persistent Note

Attacks on BT
2016 Albazrqaoe et al. [1] Standard Any G#### x - BlueEar Sniffer
2017 Seri et al. [37] Impl. Pairing    # NA X BlueBorne
2018 Sun et al. [40] Standard Pairing    # X - Passkey (MitM)
2018 Biham et al. [9] Impl. Pairing    G# NA X Fixed Coordinate Invalid Curve
2019 Ossmann et al. [32] Standard NA G#### x - Ubertooth sniffer
2019 Antonioli et al. [2] Standard Pairing   G## X - KNOB (MitM)
2020 Antonioli et al. [4] Standard Pairing    # X - BIAS
2021 Tschirschnitz et al. [41] Standard Pairing    # X - Method Confusion (MitM)

Attacks on BLE
2016 Jasek et al. [25] Standard NA G#### x - Black Hat
2019 Seri et al. [38] Impl. NA #G#G## NA X Bleedingbit
2020 Zhang et al. [46] Standard Pairing G#G#G## X - MitM (SCO)
2020 Wu et al. [44] Standard Session ## # X - BLESA
2020 Garbelini et al. [19] Impl. Any G#G#G## NA - SweynTooth fuzzer
2020 Antonioli et al. [5] Standard Pairing   G## X - Downgrade (MitM)

Cross-transport attacks on BT and BLE
2021 BLUR (this work) Standard Any    G# X X First against CTKD

TABLE IV: Comparison with related work. The BLUR attacks are the first cross-transport standard-compliant attacks for Bluetooth
and the first targeting CTKD. C = Data Confidentiality, I = Data Integrity, A = Device Authentication, K = Key disclosure. No
(#) Partially (G#), Yes ( ).

from BLE and vice versa. Moreover, no prior attacks targeted
(and evaluated the security of) CTKD. Finally, like the BIAS
attack [4], they require a weak threat model as the attacker can
target a victim at any time. Unlike the BIAS attack, the effect
of our attacks is persistent across sessions. Like other standard-
compliant attacks, the BLUR attacks are effective regardless
of the security mode (e.g., SSP with SC), association method
(e.g., Numeric Comparison), and Bluetooth version numbers.

We have seen attacks targeting specific implementation
flaws on BT [37] and BLE [38], [19]. As our attacks target
the specification level, they are effective regardless of the
implementation details. Several surveys on BT and BLE security
were published [17], [31], [33] but neither of those surveys
nor the Bluetooth standard considers CTKD as a threat. We
here demonstrate that CTKD is a serious threat and must be
included in the standard Bluetooth threat model.

Cross-protocols attacks were exploited for proximity tech-
nologies using Bluetooth and Wi-FI. Two prominent examples
are attacks on Apple ZeroConf [8] and Google Nearby
Connections [3]. However, no prior attack targeted the BT/BLE
combination.

The cryptographic primitives used by Bluetooth have
been extensively analyzed. For example, the E0 cipher used
by BT was investigated [18] and it is considered relatively
weak [33]. SAFER+, used for authentication, was analyzed
as well [27]. BT and BLE “Secure Connections” use the
AES-CCM authenticated-encryption cipher. AES-CCM was
extensively analyzed [26], [35] and it is FIPS-compliant. As
our attacks are at the protocol-level, they are effective even
with perfectly secure cryptographic primitives.

IX. CONCLUSION

This work presents the first security evaluation of CTKD.
CTKD was introduced in the Bluetooth standard to improve the

usability of pairing. With CTKD two devices can pair on BT
(or BLE) and generate pairing keys for both transports. CTKD
is a novel attack surface as it allows to tamper with BT from
BLE and vice versa, and is only partially documented in the
Bluetooth standard (without an appropriate security analysis).

To address these issues, we RE the CTKD protocols and
analyzed them using a cross-transport attacker model. Our
analysis uncovers four critical cross transport issues (CTI)
in the specification of CTKD. As such, all Bluetooth devices
supporting CTKD are currently affected by those vulnerabilities.

We leverage the CTIs to implement four standard-compliant
cross-transport attacks. Our attacks allow an attacker to imper-
sonate and MitM devices, and allow establishing unintended
(anonymous) sessions with a victim to enumerate sensitive data
and send malicious packets. The attacks are the first standard-
compliant BT and BLE attacks to not require the attacker to
be present when a victim is pairing or establishing a secure
session, unlike prior work [22], [21], [36], [40], [9], [2], [5],
[4], [44], [46], [41]. In particular, our attacks are the first that
can be conducted in absence of one of the victims. The attacks
are effective regardless of the targeted Bluetooth version and
security mode (e.g., SSP, SC, on strong association).

To demonstrate the practicality of the BLUR attacks, we
presented a low-cost implementation based on readily available
hardware and open-source software. We use our implementation
to empirically confirm that the BLUR attacks are standard-
compliant and effective all targeted devices. In particular, we
exploited 16 different devices using 14 unique Bluetooth chips.
Our device sample includes all Bluetooth versions supporting
CTKD (e.g., 4.2, 5.0, 5.1, and 5.2) and BT and BLE devices
supporting SC and strong association.

To fix the presented attacks and their root causes, we propose
protocol-level countermeasures, and demonstrate the efficacy of
the most important one (disable key overwrites) experimentally.
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