
CS323 Operating Systems
Introduction

Mathias Payer and Sanidhya Kashyap

EPFL, Fall 2021

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 1 / 17



Topics covered in this lecture

What you will learn in this course
What an OS is and why you want one
Why you should know about OSes

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 2 / 17



This class provides a safe space

Figure 1: Equality, Diversity, Dialogue, Responsibility, Tolerance, and
Inclusion form the basis for a safe space.

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 3 / 17



Class organization

Lectures cover OS design
Book: OSTEP
Five (graded) labs focus on practical OS aspects

C programming (out: 09/22; in: 10/05)
Threading (out: 10/06; in: 10/26)
Concurrency (out: 10/27; in: 11/16)
File systems and storage (out: 10/17; in: 12/07)
Security (out: 12/08; in 12/22)

TAs handle all labs/homework questions
Grading

Quizzes after each class (10%)
Labs during the semester (50%)
Final exam in the exam session (40%)

Feedback: through questions, quizzes, emails, office hours.

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 4 / 17

http://pages.cs.wisc.edu/~remzi/OSTEP/


Time management

5 ECTS points map to, on average, 7 hours/week
Divide and conquer: theory and labs

3 hours of theory/lectures
2 hours class and reading
30 minutes quiz
30 minutes exercise

4 hours of programming
2 hours of lab session and Q&A
2 hours implementation on your own

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 5 / 17



Time management

5 ECTS points map to, on average, 7 hours/week
Divide and conquer: theory and labs

3 hours of theory/lectures
2 hours class and reading
30 minutes quiz
30 minutes exercise

4 hours of programming
2 hours of lab session and Q&A
2 hours implementation on your own

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 5 / 17



Time management

5 ECTS points map to, on average, 7 hours/week
Divide and conquer: theory and labs

3 hours of theory/lectures
2 hours class and reading
30 minutes quiz
30 minutes exercise

4 hours of programming
2 hours of lab session and Q&A
2 hours implementation on your own

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 5 / 17



What is an Operating System?

User

Application

Operating System

Hardware

OS is middleware between
applications and hardware.

Provides standardized
interface to resources
Manages hardware
Orchestrates currently
executing processes
Responds to resource access
requests
Handles access control

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 6 / 17



What is an Operating System?

User

Application

Operating System

Hardware

OS is middleware between
applications and hardware.

Provides standardized
interface to resources
Manages hardware
Orchestrates currently
executing processes
Responds to resource access
requests
Handles access control

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 6 / 17



OS role #1: Standardized interface

The OS provides common functionality to access resources.
The OS abstracts hardware, provides a unified interface
(e.g., network chips A and B are accessed using the same
network API that allows sending and receiving packets).

Challenges:
Defining the correct abstractions (e.g., what level)
What hardware aspects should be exposed and how much
Discussion: how to abstract GPUs

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 7 / 17



OS role #2: Resource management

The OS shares (limited) resources between applications.

Isolation: protect applications from each other
Scheduling: provide efficient and fair access to resources
Limit: share access to resources

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 8 / 17



OS role analogy
The OS is like a waiter that serves individual clients. The waiter
knows the menu, records orders, and delivers food to the right table
while keeping track of the bill.

Figure 2: OS as a waiter for processes

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 9 / 17



What management services does an OS provide?

CPU: initializes program counter/registers, shares CPU
Program memory: initializes process address space, loads
program (code, data, heap, stack)
Devices: read/write from/to disk; device driver is hardware
specific, abstracts to common interface

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 10 / 17



(Short) History of Operating Systems
Started as a convenience library of common functions
Evolved from procedure calls to system calls
OS code executes at higher privilege level
Moved from single process to concurrently executing processes

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 11 / 17



OS building blocks

OS design nicely separates into three pillars, with security as a
transcendental layer covering/overarching all pillars.

Vi
rt
ua
liz
at
io
n

Co
nc
ur
re
nc
y

Pe
rs
ist
en
ce

Security

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 12 / 17



Building block: Virtualization

Each application believes it has all resources for itself

CPU: unlimited amount of instructions, continuous execution
Memory: unlimited memory is available
Challenge: how to share constrained resources

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 13 / 17



Building block: Concurrency

OS must handle concurrent events and untangle them as
necessary.

Hide concurrency from independent processes
Manage concurrency from dependent processes by providing
synchronization and communication primitives
Challenge: providing the right primitives

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 14 / 17



Building block: Persistence

Lifetime of information is greater than lifetime of a process.

Enable processes to access non-volatile information
Abstract how data is stored (through a file system)
Be resilient to failures (e.g., power loss)
Provide access control
Challenge: authentication and permissions

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 15 / 17



Building block: Security

OS is a gatekeeper, it ensures and enforces security. OS is also
privileged and therefore frequently attacked.

Isolate processes from each other and the OS
Authenticate users (who is allowed to do what)
Protect itself against malicious network/user input
Harden program execution (through mitigations)
Challenge: performance versus security

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 16 / 17



Why you should study OS!

Build, modify, or administer an operating system.
Understand design decisions
Understand system performance
Enables understanding of complex systems
Turns you into a better (systems) programmer

Mathias Payer and Sanidhya Kashyap CS323 Operating Systems 17 / 17


