
0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

1

Automatic Contract Insertion with CCBot
Scott A. Carr∗, Francesco Logozzo†, and Mathias Payer∗

∗Purdue University
†FaceBook, work completed while employed at Microsoft Research

Abstract—Existing static analysis tools require significant programmer effort. On large code bases, static analysis tools produce
thousands of warnings. It is unrealistic to expect users to review such a massive list and to manually make changes for each warning.
To address this issue we propose CCBot (short for CodeContractsBot), a new tool that applies the results of static analysis to existing
code through automatic code transformation. Specifically, CCBot instruments the code with method preconditions, postconditions, and
object invariants which detect faults at runtime or statically using a static contract checker. The only configuration the programmer
needs to perform is to give CCBot the file paths to code she wants instrumented. This allows the programmer to adopt contract-based
static analysis with little effort. CCBot’s instrumented version of the code is guaranteed to compile if the original code did. This
guarantee means the programmer can deploy or test the instrumented code immediately without additional manual effort. The inserted
contracts can detect common errors such as null pointer dereferences and out-of-bounds array accesses. CCBot is a robust
large-scale tool with an open-source C# implementation. We have tested it on real world projects with tens of thousands of lines of
code. We discuss several projects as case studies, highlighting undiscovered bugs found by CCBot, including 22 new contracts that
were accepted by the project authors.

Index Terms—contract-based verification, automated patching, assertions, class invariants

F

1 INTRODUCTION

Static analysis tools help programmers improve their code,
but for large projects, the number of annotations and warn-
ings quickly gets overwhelming. A Stack Overflow question
reads (emphasis ours) [1]:

We have started using a static analyzer (Coverity)
on our code base. We were promptly stupefied
by the sheer amount of warnings we received
(it[’]s in the hundreds of thousands), it will take
the entire team a few months to clear them all
(obliviously [sic] impossible).

A static analysis tool dumping a huge list of warn-
ings on the programmer is not an efficient approach. The
programmer cannot understand a warning without seeing
the surrounding code. For each error, she must look up
the error location in her editor or IDE, resulting in many
context switches between different windows. Some tools
(e.g. Coverity1) have addressed this issue by presenting their
own GUI, but the programmer must learn the new GUI and
might prefer another interface.

One approach to reducing the number of warnings
is adding annotations. In general, the annotations might
disable certain messages, specify the intended behavior of
the program, or enable/disable analysis on some piece of
code. These manual annotations are manageable in small
examples, but not for large code bases when starting from a
completely unannotated code base.

Another approach to reducing the size of the list of
warnings is calculating a confidence rating on each warning
to heuristically filter out low confidence warnings. This
can be based on internal metrics or historical bug data [2].

1. https://scan.coverity.com/

However, a heuristic based approach will always have a
false alarm rate.

While presenting the results to the user is a major prob-
lem for every static analysis tool [3], this work focuses on
contract-based static analysis. Contracts are method precon-
ditions, postconditions, and object invariants.

Case studies have shown that annotation burden is a
primary factor limiting the adoption of contract-based static
analysis [4]. It is tedious to start using contracts from scratch
on a large code base and wide coverage is required to get
the most benefit.

If a piece of code does not have any contracts, i) a static
contract checker will not find anything interesting and ii)
at runtime the errors that would be caught by the contract
checks will slip by. Hundreds of new contracts might be
needed to give reasonable coverage to a large code base.
Surveys have shown that 33% of program elements typically
have contracts [5] and that assertions comprise up to 5%
of all lines of code in design-by-contract software [6]. In
our evaluation for FluentValidation, the maximum coverage
was reached with the insertion of 642 new contracts in 3,000
lines of code.

To address this fundamental problem, we have devel-
oped CCBot, which makes contract-based static analysis
programmer friendly by automatically inserting inferred
contracts into existing code. For projects that do not al-
ready use contracts, CCBot adds many contracts quickly, but
also supports incremental addition of contracts (considering
existing contracts). By utilizing cccheck [7], which soundly
infers and verifies contracts, CCBot can automatically miti-
gate null pointer dereferences, array out of bounds, integer
overflows, and floating point precision mismatches. For
example, the code in Listing 1 is a simplified version of a bug
from our case studies. Without CCBot’s new contract in the

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

constructor (highlighted), the method PeekFirst will later
throw a null pointer exception if the Queue constructor’s
argument is null. This is confusing to the user of this API
because the exception and the root cause are located in dif-
ferent methods. Adding the highlighted contract improves
the robustness of the code in by:

1) documenting that the pts parameter should not be
null;

2) adding a runtime check that “fails fast,” i.e., as soon
as the invalid parameter is given; and

3) providing the static checker with more information
to prove/disprove other contracts.

public class Queue
{

List <int > _items;
public Queue(List <int > items) {

Contract.Requires(items != null);

_items = items;
}
public int PeekFirst () {

_items.Sort();
return items [0];

}
}

Listing 1. An example CCBot transformation.

Automatically inserting the contracts, rather than pre-
senting a list of warnings, has two usability benefits that
reduce the effort required from the programmer. The pro-
grammer can i) view the contracts in place for context, using
familiar tools and ii) accept or test the modified version of
their code without any manual steps.

CCBot has annotated tens of thousands of lines of code
from real projects including internal Microsoft projects and
open source projects from GitHub. We have conducted
several case studies to show CCBot is robust enough for
real-world use and that it finds previously undiscovered
bugs. Our contributions are:

1) design and implementation of an automatic contract
insertion mechanism called CCBot; and

2) evaluation and cases studies of applying CCBot to
large, real code bases.

2 BACKGROUND

To make the description of the design and implementation
of CCBot clear, we must first describe the existing tools
CCBot makes use of, namely CodeContracts, cccheck, and
Roslyn. These are not part of the contribution of this work,
but they are needed to understand CCBot.

2.1 CodeContracts

CodeContracts is a language agnostic way of expressing
preconditions, postconditions, and object invariants [8]. For
the purposes of this paper, we focus on C#. CodeContracts
provides the option of checking the contracts dynamically
or statically. Some contract frameworks put contracts in

comments [9], but CodeContracts are valid C# code. This
allows C# IDEs and tools to interact with the contracts in the
same manner as regular code. For example, in Visual Studio
the user can right-click on a variable in a contract and jump
to its definition. CodeContracts provides a class Contracts
with methods Ensures, Requires, Assume, and Invariant.
Each of these methods have the following parameters:

1) a Boolean predicate, i.e., the condition that should
hold in the code;

2) (optionally) a message to print when the Boolean is
false; and

3) (optionally) an exception to raise when the Boolean
is false.

2.1.1 Ensures, Requires, and Assume

Requires and Ensures represent pre- and postconditions
respectively. Listing 2 shows an example of a method with
Requires and Ensures contracts. Requires and Ensures must
appear at the start of a method body before any other state-
ments while Assume can appear anywhere in the method
body. An Assume is a fact that the static checker should
assume will hold during program execution.

public static void ZeroAt(List <int > orig , int
index) {

Contract.Requires(orig != null):
Contract.Requires (0 <= index);
Contract.Requires(index < orig.Length);
Contract.Ensures(orig[index] == 0);
orig[index] = 0;

}

Listing 2. A simple Requires/Ensures example.

2.1.2 Invariant

Invariant contracts are properties that will always hold
whenever an object is visible to the client. Dynam-
ically the checks are made after the return of ev-
ery public method (including the constructor). Invariant
can only appear in a special method marked with the
ContractInvariantMethod attribute. Each class can have at
most one ContractInvariantMethod. As example class with
an ContractInvariantMethod is show in Listing 3.

class Bucket {
List <int > container;
public Bucket(int n_slot) {

container = new List <int >();
}
[ContractInvariantMethod]
private static void

BucketObjectInvariant () {
Contract.Invariant(container != null);

}
}

Listing 3. A simple ObjectInvariant example.

2

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

2.1.3 Contracts for Interfaces

Sometimes we would like to specify that all implementa-
tions of a certain interface should obey a contract. However,
this is complicated because interfaces cannot contain code.
CodeContracts’ solution to this problem is to create an
abstract class that holds the interface’s contracts. To link
the abstract class and the interface, there are two attributes,
ContractClass and ContractClassFor. For example, if the
original program (without any contracts) contains the code
in Listing 4, we want to specify that all implementers
of IShape should return a non-null value for GetEdges().
Otherwise, the function CalculatePerimeter would crash
when it invokes edges.Length().

public interface IShape {
List <Edges > GetEdges ();

}
static void CalculatePerimeter(IShape shape)
{

var edges = shape.GetEdges ();
var n = edges.Length ();
...

}

Listing 4. An interface to which we would like to add a contract.

This contract can be implemented by adding the abstract
class with the contract and attributes as shown in Listing 5.

[ContractClass(typeof(IShapeContracts))]
public interface IShape {

List <Edges > GetEdges ();
}
static void CalculatePerimeter(IShape shape) {

var edges = shape.GetEdges ();
var n = edges.Length ();
...

}
[ContractClassFor(typeof(IShape))]
public abstract class IShapeContracts :

IShape {
List <Edges > GetEdges () {

Contract.Ensures(
Contract.Result <List <Edges >>() != null);

}
}

Listing 5. This example specifies contracts for an interface.

2.2 Cccheck

Cccheck (short for code contracts checker) infers and veri-
fies contracts statically [8]. Errors found by cccheck include
null pointer deferences, array out of bounds, buffer over-
flows, integer overflows, and floating point precision mis-
matches. Cccheck uses abstract interpretation to determine
facts about the program, and uses these facts to generate
warnings and annotations. It uses assume/guarantee rea-
soning. When it is analyzing some method foo, it assumes
the contracts of all methods other than foo hold and checks
if foo’s contracts hold given those assumptions.

All the contracts inferred by cccheck are sound. In this
context, “sound” means the new contracts never remove
“good” executions, i.e., those that did not cause an excep-
tion. This means inserting the contracts is a so called verified
repair [10] – one that will reduce the number of bad traces,
but will increase or keep the number of good traces.

The input to cccheck is a Microsoft Common Interme-
diate Language (CIL) assembly and configuration options.
Cccheck performs its static analysis over the assembly and
outputs suggested contracts in addition to a list of warn-
ings. Examples of warnings might include that cccheck can
determine that a contract will never hold or that a certain
Boolean predicate is always true or false leading to the
untaken branch being dead code.

Cccheck uses the contracts in the code and the semantics
of the CIL to build a partial specification of the program.
The CIL gives implicit contracts. For example, dereferencing
foo results in an implicit contract that foo should not be
null. Cccheck infers necessary preconditions [11], i.e., if the
precondition is false the method will fail, but the precondi-
tion holding does not guarantee the method will succeed.
Similarly, cccheck can find necessary conditions on object
invariants. These are conditions on object fields that when
violated imply there exists a call trace (including object
construction and potentially other methods) that leads to
a contract violation [12].

2.3 Roslyn

Roslyn is Microsoft’s open source C# and Visual Basic
compiler framework. Roslyn may be integrated into other
tools that manipulate not only the output assembly but the
original code itself. Example use cases for Rosyln are IDE
plugins, automatic refactoring tools, and diagnostic tools.
Roslyn provides syntactic and semantic APIs. The syntactic
API is for manipulating the actual text of the program.
The semantic API provides a fully resolved and searchable
model of all the symbols in the program. To use the semantic
model, Roslyn does not work on individual C# files but en-
tire projects and solutions. In MSBuild terminology, a project
is a collection of source files and settings that produces a
single assembly. A solution is a group of projects with inter-
project dependencies and configurations.

3 DESIGN

3.1 Automatic Contract Insertion

Our Automatic Contract Insertion tool (CCBot) directly
modifies the code under analysis without any programmer
intervention. This is in contrast to existing static analysis
tools that merely output a list of warnings the programmer
must manually address one-by-one. Our approach is more
programmer friendly and scalable than a list of warnings.
Removing the scalability and usability hurdles will have a
positive effect on contract-based tool adoption and develop-
ment.

Johnson et al. conducted a large (n = 20) detailed static
analysis tool usability study [3]. They found that one of the
biggest user frustrations is having to juggle multiple win-
dows. For example the paper reads, “For [two developers
surveyed], the biggest downside to using Coverity is that it is not

3

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

capable of being integrated into their coding environment, leading
to a lot of clicking back and forth.” Automatically modifying
the code eliminates the switching problem.

The same survey also found that 14 out of 20 participants
expressed poorly presented tool output has a negative effect.
The participants felt that even if there were many warnings,
it would help to present them in a more user-friendly and
intuitive way. Again, directly modifying the code solves this
issue because they can see everything in context and using
their normal tools.

19 out of 20 participants said integrating the tool into
their workflow was important. Directly modifying the code
streamlines integration (viewing changes to code is part
of every open source developer’s work flow). Automatic
Contract Insertion integrates well with Continuous Integra-
tion (CI) which has become very popular in open source
development. CI is the practice of automatically executing
an integration test suite on every code commit [13]. Projects
might run their own CI server (e.g. Jenkins-CI [14]) or use
a CI service (e.g. Travis-CI [15]). The test suite can run on
both the original code and the modified code and report
both results. This gives three chances to find each bug. First,
the static analysis might find it. Second, the run of the CI test
suite after inserting the new contracts might find it. Third,
the CI run on the original code might find it. Having the
modified code pass the CI test suite gives the user extra
confidence that the automatic changes are correct.

The major practical hurdle is modifying the original
sources in a semantically correct way, so that the new code
retains all the valid executions of the original code. A purely
syntactic tool (a tool that just manipulates text) cannot pro-
vide this guarantee. The tool could be fooled into inserting
contracts in the incorrect place. For example, methods with
the same name in different classes or even identical classes
in different namespaces might confuse a text-based tool. Our
tool must fully parse the code and resolve all references
in order to build an accurate semantic model of the code.
Another benefit of fully parsing the code is that it allows
CCBot to recognize existing contracts. This enables CCBot
to eliminate duplicate contracts, and is required to comply
with the constraints CodeContracts requires on the ordering
of contract types. Our design requires the tool to work
equally well whether or not the code under analysis already
had contracts.

Improving software robustness through automatically
inserting contracts has limitations. The design space of fixes
for a given bug can be large [16]. CCBot is not a code syn-
thesis tool. It is limited to adding new contracts the analyzer
can determine are correct. However, our case studies show
that these simple additions are useful to real programmers.
For example, if a class constructor receives an invalid pa-
rameter, it is better to “fail fast” and immediately report the
error message than to let the invalid data propagate leading
to a failure later on. In this case, a simple check with an
appropriate error message is at least an improvement on the
original code if not a fix. CCBot can create and insert these
types of contracts. We do not contend that CCBot’s new
contracts can fix all bugs, but in large real world projects
there is enough neglected code that finding and mitigating
bugs automatically is feasible.

While CCBot’s current implementation is closely tied to

CodeContracts, the idea of a static analysis tool automati-
cally modifying the code under analysis can be extended to
other tools. Any type of analysis that suggests well defined
code modifications could fit the automatic transformation
model. Coupling CCBot with multiple (potentially more
sophisticated) analyzers expands the space of potential fixes
it can perform.

3.2 CCBot Design
At its core, CCBot is a source-to-source translation of C#
code. CCBot’s input is the code to be instrumented and
the output is the original code plus contracts. CCBot can
add all the types of contracts described in Section 2.1.
The added contracts detect and mitigate null-pointer deref-
erences, buffer overflows, integer overflows, and floating
point precision mismatches. CCBot integrates several exist-
ing tools: a static analyzer, a compiler, a version control sys-
tem, and continuous integration testing, into a cohesive bug
finding and code improvement tool that runs automatically.

3.2.1 Static Analysis
CCBot does not implement a static analysis itself, but uses
cccheck. A key design requirement for CCBot is that the
user trusts the tool, so they do not feel the need to scrutinize
every individual contract. To meet this requirement, CCBot
uses a sound static analysis to guarantee the additions never
remove good executions from the original code. There is no
technical reason that CCBot could not use an unsound static
analysis, but we believe users would quickly abandon the
tool if they ran into too many false positives. In the context
of CCBot, a false positive would be a new contract that is too
strict, i.e., a valid execution of the original program exists
that violates the contract.

CCBot’s static analyzer gathers a partial specification of
the program’s behavior through existing contracts, if any,
and the semantics of the CIL. The semantics of the CIL give
implicit contracts. For example, the statement foo.bar();
gives the implicit contract foo != null (or else the program
would crash). Implicit contracts also arise from array ac-
cesses. If the static analyzer finds a contract whose negation
is satisfiable, that is a bug in the program. The analyzer
emits a warning when it cannot prove a contract is valid.

3.2.2 Compiler
The design of CCBot is to improve the code rather than
just notifying the programmer there is a bug. Accordingly,
CCBot uses a compiler framework to modify the buggy
code. CCBot’s modifications are restricted to new contracts
that check for the buggy behavior both statically and dy-
namically. These new contracts do not necessarily match the
fix the programmer would make but they mitigate the errors
by checking for invalid state early and failing fast.

An engineering benefit of using a compiler is that CCBot
can perform a sanity check. It can use the compiler to
check the modified code for compiler errors and revert any
modifications that lead to new errors. The compiler gives
the line number that contains the error so the contract that
was inserted at that line is deleted from the list of new
contracts and CCBot starts over from scratch with a smaller
list. In a perfect implementation the modifications would

4

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

src

MSBuild assembly cccheck

Warnings	
+	

Contracts

src’

ReviewBot

Transformation
Logic

Fig. 1. Overview of CCBot’s Transformation

Commit	
ABCD

Commit	
ABCD ReviewBot Pull	

Request*

Merge

Commit	
ABCE

Commit	
ABCE

Remote	Repository	(GitHub)

ReviewBot’s Copy

*Only	manual	
step

Fig. 2. High-level flow chart of the CCBot mechanism.

never cause errors, but experience shows bugs can appear
in implementations of theoretically correct designs.

3.2.3 Version Control System
Since CCBot directly modifies the code, it needs some way
of saving the results that allows the user to easily merge or
revert the changes it made. It uses Git to facilitate this.

CCBot creates its own branch which effectively gives it
its own copy of the code to modify. Then it builds, analyzes,
and instruments the code locally. With the changes saved to
disk, it commits the code to its local repository. A high level
diagram of CCBot’s transformation is shown in Figure 1.
Since CCBot only inserts new statements and classes into
the code, Git can merge CCBot’s changes back into the
main repository with a single command. This workflow is
depicted in Figure 2.

3.3 Continuous Integration

Continuous Integration testing starts when CCBot’s changes
are committed. The Continuous Integration test run will
have contracts enabled. Dynamically checking that the con-
tracts hold at runtime gives another way of finding new
bugs, in addition to what the static analyzer can find.

4 CONTRACT INSERTION CHALLENGES

Previously, programmers could use the above mentioned
tools separately, but CCBot combines them in a novel way to

provide valuable end-to-end guarantees. These guarantees
are that CCBot’s augmented version of the code:

1) always compiles if the original program did; and
2) never removes a valid program execution of the old

code.

CCBot provides these guarantees using the Roslyn C#
compiler to always insert the contracts found by cccheck in
the semantically correct location. The new contracts are nec-
essary preconditions for correct execution of the program,
so adding the new contracts never removes valid execution
traces from the program.

One might think that the problem is simple, and that a
tool could copy-paste text from the cccheck output into the
code. However, cccheck’s analysis is over the CIL. It does
not examine the program’s source code, so the mapping
from a cccheck suggestion to the resulting code with the
contracts inserted is far from trivial. Inserting the contracts
correctly requires the capability of searching and modifying
the code using fully resolved symbols.

A simple tool, like a code style checker, could provide
the exact lines and characters to be changed, but cccheck’s
analysis and suggestions are much more sophisticated. The
output of cccheck gives the text of the contract to be inserted,
but CCBot must determine where the contract should be in-
serted. Finding the correct location is crucial. If CCBot could
mistakenly make a change in the wrong location, it would
destroy any guarantees cccheck provides. For this reason
CCBot’s design does not trust cccheck to output accurate
line numbers, but instead uses the fully qualified name for
every class, field, method, interface, and namespace. While
two classes can have the same name, they cannot have the
same fully qualified name, i.e., two different namespaces
can have a class with the same name, but a single namespace
has to have unique class names. The static analyzer finds
where the bug occurs, but cannot know exactly where the
contract should go in the source code.

For example, cccheck will find interface contract viola-
tions in the methods of classes which implement the inter-
face, but the new contracts should go in a ContractClassFor
associated with the interface. However, since cccheck oper-
ates over CIL, it does not know if the ContractClassFor ex-
ists. For a second example, the violations of object invariants
occur in the member functions, but the invariant contracts
go in the ContractInvariantMethod. Again, cccheck does not
know if the ContractInvariantMethod exists (or if it exists in
one of many partial class definitions). In these cases, CCBot
searches for the location where the new contract should be
inserted based on the location of the violation using the
symbol names.

5 IMPLEMENTATION

CCBot’s implementation is over 7,500 lines of C# code.
The lines of code count is not huge because CCBot makes
efficient use of existing tools such as cccheck and Roslyn.
We have open sourced CCBot (MIT licensed) on Github2.
We hope to incorporate improvements and feedback from
the community.

2. https://github.com/scottcarr/ccbot

5

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

CCBot’s main tasks are parsing the output of cccheck
and using Roslyn to find where the contracts should go
and insert them. CCBot uses Roslyn’s semantic and syntactic
APIs for manipulating C# source code. Opening the entire
MSBuild solution and selected project lets Roslyn resolve
references to other libraries and projects within the solution.
This gives CCBot the fully qualified name of every type,
method, field, and namespace even if it is defined externally.
The fully qualified name of each element is guaranteed to
be unique for a given project and configuration. This allows
the precise matching of cccheck’s suggestions (which come
from an analysis of bytecode) to symbols in the source code.
Roslyn’s syntactic API allows CCBot to insert contracts
into the code, while preserving whitespace, formatting, and
comments. If CCBot did not keep consistent formatting the
user would have to fix it manually, breaking the scalability
of our approach.

5.1 Contract Verification and Inference
CCBot builds the project using MSBuild and starts cccheck’s
analysis of it. The output of cccheck is a large XML file with
a list of all the suggested contracts and warnings for the
entire project.

5.2 Contract Insertion
CCBot parses the XML file to find all the new contracts
for each method. To insert the contracts, CCBot prepends
statements to some method’s body. The complications (ex-
plained in detail in the subsequent sections) are ordering
rules, duplicate contracts, and contracts associated with an
interface or object rather than a specific method.

After inserting is done, CCBot uses Roslyn to check for
errors and reverts any new contracts that might have caused
the errors. When no new errors are returned by Roslyn, then
all the files are written to disk.

5.2.1 Ensures and Requires
Ensures and Requires contracts are added to existing meth-
ods, so CCBot finds the method and inserts the contract.
Cccheck gives the file which contains the method and
the fully qualified name, which CCBot uses to locate the
method. With the method found, CCBot then parses the
recommended contract, checks for duplicates, and inserts
the new annotation subject to the ordering constraints. For
Requires and Ensures the ordering constraints are:

• All Requires and Ensures come before any normal
body statements

• All Requires come before all Ensures

The ordering means that CCBot cannot simply copy cc-
check’s suggested contracts to the beginning of the method.
It must parse the existing contracts and combine them with
the newly suggested ones in sorted order by type. Even this
seemingly simple ordering step cannot be done syntactically
while still preserving CCBot’s correctness guarantee. For
example, consider the case of inserting a new Requires
contract into method Foo. CCBot must find the first non-
Requires statement and insert the new contract before that
statement. To accomplish this, we need to classify an ar-
bitrary statement into one of the CodeContracts types or a

non-CodeContracts statement. Consider the text in Listing 6.
It is impossible to syntactically determine if this is a call to
System.Diagnostics.Contracts.Contract.Requires or any
arbitrary static method named Requires belonging to an
arbitrary class named Contract.

Contract.Requires(arg0 != null);

Listing 6. We cannot syntactically determine if this call is to
System.Diagnostics.Contracts.Contract.Requires.

Even if we could forbid C# programmers from naming
classes Contracts or methods Requires (totally unrealistic),
we can write the same contract in arbitrarily many ways.
All of the contracts in Listing 7 are equivalent.

using Foo =
System.Diagnostics.Contracts.Contract;

using System.Diagnostics.Contracts;
...

Class C {
public static F() (Object arg0) {

System.Contracts.Contract.Requires(arg0
!= null);

Contract.Requires(arg0 != null);
Foo.Requires(arg0 != null);

}
...

}

Listing 7. Examples of syntactically different but semantically equivalent
contracts.

Note that this same problem applies to Ensures equally
as Requires.

Checking for duplicate contracts is necessary because
the same annotation may be suggested multiple times by
cccheck. An example of this is interface annotations. There
may be multiple implementations of the interface, so when
cccheck analyzes the methods of each implementation, it
might infer the same annotation. Inserting the same an-
notation more than once would be syntactically valid as
long as it obeys the ordering constraints, but adds clutter,
so CCBot drops duplicate annotations. CCBot also checks
for an existing contract that is the same as the newly
suggested contract. When identifying duplicate contracts,
CCBot determines the type of contract and contract location
semantically, but the Boolean predicates of the contracts are
matched syntactically. This means that two contracts are
considered duplicates if:

• both contracts should be inserted at the same loca-
tion,

• both contracts are the same type (Requires, Ensures,
Assume, or Invariant), and

• the text of the predicate of both contracts matches
exactly.

This rule is effective for contracts suggested multiple times
by cccheck, because it generates contract predicates in a
consistent manner.

6

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

5.2.2 Assumes
Since Assume can appear anywhere in the body of a function
and is not subject to any ordering constraints, it is more
straightforward than Ensures and Requires. CCBot simply
inserts the location suggested by cccheck using the line
numbers provided by Roslyn’s syntactic API and checks for
duplicates.

5.2.3 Object Invariants
Inserting contracts for object invariants is complicated
by a few factors. Since cccheck operates on the CIL, it
just suggests that an invariant be added to the class
that contains a particular method. It does not know if a
ContractInvariantMethod exists for the class, where it is
defined, or what the name of the ContractInvariantMethod
is. CCBot must determine this.

The class in which the new invariants should be
added might already have a ContractInvariantMethod.
This is even further complicated by partial classes. In
C#, the partial keyword can be applied to a class def-
inition which allows the definition to be split between
multiple files. CCBot must search the entire project to
find all partial definitions of the class to determine if any
of them contain a ContractInvariantMethod. CCBot gath-
ers all the (partial) definition(s) of the class and checks
the attributes of each method in the definition for the
ContractInvariantMethodAttribute using the fully quali-
fied symbol. If no ContractInvariantMethod is found, CCBot
creates one and inserts the contracts, otherwise the contracts
go in the existing method. In either case, duplicates are
removed as before.

Note that locating the ContractInvariantMethod cannot
be done correctly syntactically because of all of the follow-
ing:

• The attribute symbol must be fully resolved to avoid
confusion with other similarly named types.

• The ContractInvariantMethod may not be in the
same file that contained the method in which cccheck
found the contract violation.

• The ContractInvariantMethod is not required to have
any particular name.

CCBot follows the convention of naming the method
$(class name)ContractInvariantMethod when creating a
new method, but users may name their method arbitrarily
and CCBot will find and insert contracts into the correct
method.

5.2.4 Interface Contracts
When cccheck finds contract violations for an interface,
it finds them in methods of classes that implement the
interface. CCBot needs to locate the interface to determine if
the interface has an existing ContractClassFor or not. CCBot
searches the project for the interface and checks the interface
for the ContractClass attribute. If the attribute exists, then
the ContractClassFor abstract class (which contains the con-
tracts for this interface) already exists and the contracts can
be inserted in the same manner as the contracts described
previously.

If the ContractClass attribute is missing from the inter-
face, CCBot creates a new abstract class to hold the contracts

in the same file as the interface. CCBot ensures that the
new class is uniquely named and implements each of the
interface’s methods. The Roslyn API has a method to create
the class with stub methods. CCBot inserts the contract into
the appropriate stub method and adds the attributes to the
class and interface.

If the interface already has the ContractClass attribute,
then a ContractClassFor already exists for this interface.
The class type that is the ContractClassFor is a parameter
of the ContractClass attribute. CCBot retrieves the type and
searches the project for the type. Again, this must be done
semantically, as CCBot does, and not syntactically, in order
to guarantee correctness. Using the resolved type symbol
guarantees CCBot finds the correct ContractClassFor. The
ContractClass attribute is typically written by C# program-
mers using the unqualified name of the ContractClassFor
class type. A syntactic tool would likely confuse the class
name with that of another class.

Generic interfaces raise an additional complication for
interface annotations because generic interfaces can have the
same name as long as they have a different number of type
parameters. An example of a generic interface is shown in
Listing 8. Each distinct parameterization is its own interface,
so it needs a separate ContractClassFor abstract class with
the same number of parameterized types. CCBot solves this
problem by obtaining the fully qualified interface names
from Roslyn’s semantic model plus the parameterized types,
but any approach that does not fully parse the original code
will almost certainly fail with interfaces like these. CCBot
is careful when inventing the name of the new abstract
class of a generic interface to avoid conflicts. CCBot invents
distinct names for each ContractClassFor by appending the
identifiers used to denote the generalized type(s) to the class
name. In the example in Listing 8, the ContractClassFor
name would be IDictionaryTKeyTValueContracts.

public interface IDictionary <TKey , TValue > {
public void Add(TKey key , TValue value);
...

}

Listing 8. An example of a genereric interface.

6 EVALUATION

In addition to our case studies, we have run CCBot on
several large, popular open source projects including Net-
wonSoft.Json, NuGet, FluentValidation, and other internal
Microsoft projects. The ability to handle large code bases
written by others demonstrates the robustness of CCBot.

The open source applications were chosen from GitHub
based on popularity (number of stars). The internal Mi-
crosoft applications were selected based on their project
members being interested in contracts and source code
availability.

6.1 Fixed Point Experiment
Given the ability to automatically infer contracts and auto-
matically insert contracts, a natural question arises. Can we

7

0
100
200
300
400
500
600
700

0 1 2 3 4

In
se
rt
io
ns

Iteration	#

0
50
100
150
200
250
300
350

0 1 2 3 4

W
ar
ni
ng
s

Iteration	#

75

80

85

90

95

100

0 1 2 3 4

Va
lid
at
ed

	(%
)

Iteration	#

Fig. 3. Fixed point experiment: Insertions, Warnings, and Validated % over iterations for FluentValidation.

keep inferring and inserting new contracts in a loop until
we do not infer any new contracts, i.e., can we reach a fixed
point? In theory, there is no guarantee that a fixed point
will be found, because there is no guarantee adding any
particular contract will decrease the number of warnings.
For example, adding a contract in a method can cause
new warnings to pop up in all its callers. In this manner,
contracts can have a cascading effect that can be witnessed
when inserting contracts manually. This is different from
the compiler warnings a programmer is used to addressing.
Typically, when a programmer fixes a compiler warning, the
length of her list of compiler warnings decreases by (at least)
one. Proof-based static analyzers do not behave the same
way. Adding an annotation to the callee might simply shift
the burden of proof to the caller.

However, we hypothesized that in practice eventually all
methods (and their callee/callers) will be annotated and a
fixed point will be reached. To evaluate this we selected an
open source C# project, FluentValidation, as our test case.
The high-level experiment is relatively simple. We do the
following in a loop:

• run cccheck,
• add the annotations with CCBot, and
• count the total number of annotations in the code.

Then we check for the stopping condition, i.e., if the total
number of annotations is the same as the previous iteration,
we stop.

We empirically measured a fixed point after three iter-
ations. The fixed point version had 642 annotations and
the warnings from the initial version to the fixed point
reduced from 287 to 94. FluentValidation is around 3,000
lines of code. Figure 3 shows the warnings, annotations,
and percentage of validated contracts over the iterations.
In Figure 3, Iteration 0 is after running cccheck the first time,
but before inserting any new contracts. As the graph shows,
adding new contracts gives ccccheck more information,
thus it can prove more contracts correct. The percentage of
provably correct contracts begins at 82.2% and levels off at
96.1% when the fixed point is reached after three iterations.

6.2 Performance
Compared to the cost of performing more complex static
analyses, the runtime of automatically applying the an-
notations with CCBot is short. Many static analysis tools

0

10

20

30

40

50

60

0.00 5.00 10.00 15.00

RU
N
	T
IM

E	
(S
)

KLOC

ATF.Core NuGet.CommandLine

FluentValidation NewtonSoft.Json

CodeMine.LoaderBase Domino.Parser

Fig. 4. CCBot’s runtime versus code size.

terminate either when they have reached a fixed point or
when a timer expires. The runtime of annotating a codebase
is linear in the lines of code as shown by the trend line in
Figure 4. The most costly operation is searching through a
given syntax tree for a method, type, or field. This can be
accomplished naively with a linear scan of the code. The
runtime of CCBot’s transformation on several codebases is
shown in Table 1. From the table, the runtime of CCBot
(measured in seconds) is dwarfed by the runtime of cccheck
(measured in minutes).

7 CASE STUDIES

To conduct our case studies we began by sorting the open
source C# projects on GitHub by most stars. GitHub users
can star projects they like so star rating is a rough measure
of popularity. From this list we manually filtered for activity
(measured in time since last commit), projects that worked
with Roslyn, and projects that did not require custom build
scripts. Roslyn is under active development and we were
unable to fully open and resolve all references for some
popular projects. CCBot requires the full resolution of all
symbols and references to accurately insert the annotations.

8

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

ATF NuGet FV NewtonSoft.Json Domino CodeMine
LOC 8128 2661 2912 14081 1867 1831
Insertions 2130 467 552 2901 377 494
cccheck warnings 1150 345 287 1564 407 274
Run time (s) 35.29 22.74 13.31 51.74 17.54 28.27
cccheck time (min:s) 14:55 2:58 0:44 27:17 0:35 2:52

TABLE 1
Runtime performance of CCBot and cccheck.

Name LOC total LOC main project Requires Ensures Assume Invariant Warnings Submitted Insertions Accepted
Scriptcs 8236 1800 67 258 85 23 290 16 16
Ninject 5436 2642 143 664 167 9 418 6 6
MongoDB 88200 7174 35 3776 187 24 483 3 0
Nancy 11123 11123 447 2675 208 44 1262 2 0

TABLE 2
Case Study Statistics

With our selected set of projects identified, we created
our own Git forks for CCBot to modify. Once the fork is
cloned onto our local machine, the only configuration CCBot
needs are the project and solution file paths. CCBot auto-
matically builds the selected solution and runs cccheck on
the assembly created by the project. It inserts the contracts,
commits the changes to the local repository, and pushes
them to GitHub. In GitHub, we create a pull request that
notifies the project authors we would like to make changes
to their code. The author can accept and merge the changes
with one click. Alternatively, if the author wants to review
the changes she has two main options. She can see the diff
in GitHub or pull the changes to her local machine. On her
local machine she can use all the features of Visual Studio
(or other tools) to investigate all the variables the contracts
reference. These alternatives are much more useful than just
getting a flat list of suggestions which is what existing static
analysis tools provide.

For the purposes of our case studies, we assume the
authors will only accept a pull request that made a small
number of changes. Maintainers are hesitant to accept
changes from a bot. They might not even review a large pull
request that does not meet their contribution guidelines.
To mitigate this issue we manually split the pull requests
into digestible chunks and did not submit them all at once.
While this method does not perfectly match a new users
first experience with CCBot, it allows us to demonstrate
that at least some subset of the contracts inserted with
CCBot are useful to practitioners. There is a social aspect
to contributing to open-source software. We received no
response to our pull request for MongoDB and we can only
guess as to why. However, we were successful in submitting
small easily-reviewed pull requests to other projects.

We submitted changes that looked like unmistakably
missing checks. For example, if a constructor checks two
out of three of its parameters for null but not the other,
the programmer really meant to check all three but forgot.
If the authors truly wanted to adopt CodeContracts they
would accept all the changes and on subsequent runs CCBot
would make far fewer changes as shown by our fixed point
experiment. Detailed statistics for our case studies are show
in Table 2. The first column is the total lines of code in the
entire repository. We only annotated the main project from
each repository. The Requires, Ensures, and Assume columns

are the total number of new contracts of each type inserted
into the code. Note that for evaluation we run cccheck
with its most strict settings. In practice, cccheck has options
the user could set to reduce the size of cccheck’s output
based on heuristics. The “Warnings” column is the number
of warnings that cccheck produced. The warnings are not
necessarily bugs but suggest actions the programmer could
take to give cccheck more information. The “Submitted
Insertions” column is the number of new lines of code we
submitted to the project authors in our pull requests. The
“Accepted” column is how many of those new lines were
merged into the main repository.

7.1 Scriptcs

Scriptcs is an editor and read-eval-print-loop for C# built on
top of Roslyn. It allows interactive editing and execution of
C# code. The project is a little more than two years old, but
still under active development. Scriptcs is the at the time of
writing the 30th most popular C# repository on GitHub. In
total, the repository contains over 8,000 lines of code. The
project maintainers are interested in using static analysis
to improve the quality of their code. They use Coverity,
StyleCop, and Visual Studio’s Code Analysis. Even though
the maintainers have used these tools CCBot found (and
inserted) missing contracts.

The most common missing check (that these other tools
presumably missed) was a null parameter passed to a con-
structor when the parameter was not dereferenced in the
constructor itself, but it was in one of the class’s methods.
Listing 9 shows an example bug with the new contracts
highlighted in red. The yellow highlighted lines show the
bug. The parameters fileSystem and logger are stored in
fields and then later dereferenced without any null check.
The inserted contracts will cause the code to “fail fast” at
runtime and will display a more informative error message
or cccheck might be able to prove that the parameters will
be null in some case and statically determine the contract is
not satisfied.

In total, we used CCBot to insert 16 new checks for
Scriptcs that were merged into the main repository by the
project authors.

9

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

public class FilePreProcessor :
IFilePreProcessor

{
...
public FilePreProcessor(IFileSystem

fileSystem , ILog logger ,
IEnumerable <ILineProcessor >
lineProcessors)

{

Contract.Requires(fileSystem != null);

Contract.Requires(logger != null);

fileSystem = fileSystem;

logger = logger;

_lineProcessors = lineProcessors;
}
public virtual FilePreProcessorResult

ProcessScript(string script)
{

var scriptLines =

fileSystem.SplitLines(script).ToList();

return Process(context =>
ParseScript(scriptLines , context));

}
protected virtual FilePreProcessorResult

Process(Action <FileParserContext >
parseAction)

{
Guard.AgainstNullArgument("parseAction",

parseAction);
var context = new FileParserContext ();

logger.DebugFormat("Starting pre-processing");

...
}
...

}

Listing 9. An example bug from Scriptcs

7.2 Ninject

Ninject is a dependency injector for .NET applications and
is the 32nd most starred project on GitHub. It is over 5,000
lines of code in total and the project started in 2009. It
is still an active project. There were commits in January
2015, but the rate of commits peaked in 2012 and has since
slowed down. Similar to Scriptcs, there were several cases
where a public constructor took a parameter, assigned it to a
member, and later dereferenced the member without a null
check in a method. There was also a bug where a parameter
was immediately dereferenced without any null check. The
project authors accepted and merged six additions across
four different files.

7.3 MongoDB C# Driver

The C# driver for MongoDB is a very mature, almost five
years old, project that is very active with many contributors
(24 listed on the project website). It is the 40th most starred
project on GitHub. The contributors are a combination of
MongoDB employees and volunteers. In total the project is
around 80,000 lines of C# code. As we might expect for such
a mature project, cccheck gave relatively few suggestions
for such a large code base. It found missing null checks
in two ClusterBuilder constructors. The constructors take

a delegate (C#’s version of a function pointer) and imme-
diately invoke the delegate. ClusterBuilder has multiple
constructors. The others have a contract to check for null on
the same parameter, so CCBot’s inserted contract fixes the
bug and makes all the constructors have consistent behavior.
At the time of writing the authors have not yet responded
to the pull request.

7.4 Nancy

Nancy is a framework for building HTTP services in C#. It is
a 6 year old project with over 10,000 lines of code. Contribu-
tions peaked around 2013, but it is still an active project with
over 20 commits in April 2015. Most of the Nancy code does
parameter validation, but CCBot inserted missing checks for
two parameters in a public constructor. These parameters
were stored in members and later dereferenced without null
checks in other methods. At the time of writing the authors
have not responded to the pull request.

8 DISCUSSIONS

Project authors accepting the new contracts indicated that
the new contracts improve the quality of the code. The
underlying problems could have been found and fixed by
programmers, but they were not. Programmer time is the
most precious resource. The files that CCBot modified in
the case studies typically had not been touched by the
authors for years, so we hypothesize the bugs were there
only because no one had the time to look.

CCBot’s current implementation inserts CodeContracts,
but some projects use other forms of contracts. For these
projects, we transformed all the contracts with a sim-
ple string replacement. For example, cccheck suggests the
contract Contract.Requires(foo != null); but Scriptcs
uses contracts of the form Guard.AgainstNullArgument(foo,
‘‘foo’’);. A more automated solution supporting a wider
range of contract transformations is feasible with little addi-
tional effort.

8.1 Contract Usage in Practice

We found checking for null to be the most common contract
written by users and inserted by CCBot. This is largely
because dereferencing a pointer is an extremely common
operation in C#.

Other contract types, while fully supported by CCBot,
occur less frequently. For example, CCBot can also insert
contracts that check array bounds. However, in practice, it
is much more common for cccheck to find potential null
pointer dereferences than array out of bounds violations.
With CCBot and cccheck the new version of the code (with
new contracts) is guaranteed to have as many “good” exe-
cutions as the original code. We need to be absolutely sure
that the new contract holds for all possible executions that
do not crash. Dereferencing a null pointer without a check
always leads to a crash, and is very common, so we insert
many of these contracts.

An array bounds contract could be inserted when a
function’s parameters include an array and an index, and
in the original function body the array is indexed (using

10

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

the index parameter) without a check. This is not as com-
mon in C# as simply dereferencing a pointer, and with-
out more information the contract we can safely insert is
0 ≤ index ≤ array.Length − 1. Since CCBot’s inserted
contracts never remove valid executions, in order to insert
a contract like 0 ≤ index ≤ 5, cccheck has to be able to
determine that the length of the array is never 6 or greater
for any execution. It is common to not have a static upper
bound on a given array.

Further, instead of inserting the bounds check contract
in the function that takes the array and index as param-
eters, the better approach is to have the function which
calculated the index have a post-condition 0 ≤ result ≤
array.Length − 1. That way, the user does not have to
write the bounds contract in all callers. However, in C#
the common functions that search an array and return an
index are builtin framework functions so the contract should
be inserted into the framework itself, not the code under
analysis. There is a version of the .NET Framework with
contracts available to CodeContracts users.

9 RELATED WORK

There is significant related work in the areas of code review,
design by contraction, automatic repair and specification
generation.

9.1 Review and Test Tools
CCBot, was originally conceived as an automatic code re-
view tool. Previous work has examined the effectiveness of
combining static analysis with code reviews [17]. CCBot was
designed to prevent the problem the studies identified of the
programmers removing or ignoring many of the warnings.

Khasiana [18] is an online portal that provides static
analysis tools as a service. It eliminates the need for each
user to download and install the tools. However, the output
is a report the user must read and manually address.

Tricorder [19] is a program analysis platform that in-
tegrates multiple program analyses with an emphasis on
usage metrics and scalability.

A key differentiator between CCBot and these platforms
is that since CCBot makes the modifications to the code
directly, the user can use whatever tool she chooses to
review the changes. The Tricorder user tracking found that
users would often bounce back to their own editor to apply
fixes. Even when these tools offer fixes, they do not provide
CCBot’s strong guarantees. CCBot guarantees that the fixes
it applies never remove valid executions of the original code.

Commercial analyzers such as Coverity and Klockwork3

offer their own IDE plugins, which can mitigate the problem
of switching back and forth between the analysis results and
the code. However, these plugins require the use of a specific
IDE while CCBot can integrate into any workflow. Further,
these IDE plugins usually provide a list of problem loca-
tions, but do not modify the code itself. CCBot automatically
applies the suggestions from its analyzer with correctness
guarantees.

Previous work has identified Continuous Integration test
execution as an opportunity to do additional analysis and

3. http://www.klocwork.com/

testing. Continuous Test Generation (CTG) uses a Continu-
ous Integration run to automatically generate new tests for
a given project [20].

9.2 Design By Contract
There are many existing tools that facilitate design-by-
contract. CodeContracts [8] and Spec# [21] add embedded
contracts in .NET languages. Some approaches such as JML
[9] for Java do not embed the contracts in the language itself,
but in comments. This makes rich tooling more difficult.
Eiffel [22] is a language with design by contract at its
core. Though Eiffel’s contracts are dynamically checked,
AutoProof is a research prototype tool that brings static
contract analysis to Eiffel [23].

Contract Inserter (CI) [4] is an IDE plugin that allows
the developer to go through a list of contracts and accept or
reject them one-by-one. Putting a human in the loop makes
CI fundamentally different than CCBot. CI requires manual
effort for every individual contract which is not scalable.
Even more importantly, CI is built on top of Daikon [24]
and is not compatible with cccheck. Daikon has some major
drawbacks relative to cccheck for the automatically applied
static analysis use case. Daikon needs to observe a program
execution and infers likely invariants. This means the con-
tracts suggested by Daikon are only likely to be correct. CI
has to rely on the user to filter out incorrect contracts. It
is a strong requirement to have to execute the program we
want to analyze. Daikon cannot analyze libraries on their
own. CCBot does not need to run the program or rely on
the user to filter incorrect contracts because cccheck is a
static analysis and infers sound invariants. The soundness
property is required to achieve CCBot’s level of robustness.
In the CI case studies, both users said they wanted more
context and better navigation – a more Visual Studio-like
experience. Even though CI is integrated into the IDE it
still pops up as a separate window and suffers from the
“too much switching back and forth” problem [3]. Since CCBot
inserts the contracts automatically into the source, the user
can simply open the Visual Studio project and have all their
usual tools at their disposal. Houdini [25] is a tool similar to
Contract Inserter for ESC/Java [26] that presents potential
contracts to the user in a specialized GUI. CCBot is able
insert contracts into generic interfaces, but CI cannot.

Surveys have measured how contracts are used in prac-
tice by analysing a sample of large projects [6], [5]. To
summarize their findings, when programmers write code in
design-by-contract languages, contracts comprise a signifi-
cant portion of the code – about 33% of program elements
(classes, methods, etc.) and about 5% of all lines of code.
These results show that automated tools for handling con-
tracts in bulk will aid contract based verification.

9.3 Automatic Repair
CCBot is an extension of previous work that presented the
concept of verified repair at the source code level [10],
but previous work integrated the repairs into the Visual
Studio IDE. CCBot is the first implementation of totally
automatically carrying out this type of program repair.

Automatic program repair is a well-researched topic.
One approach is to use Evolutionary Computation (EC) to

11

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

find a repaired version of the program that meets some
fitness criteria. These approaches modify the binary or
source and require: i) input data, ii) execution trace of
the program, and iii) a test suite or fitness metric that
successfully differentiates versions of the program with
the bug from those without the bug. An example of this
type of tool is ClearView [27]. This approach has even
been proposed to using multiple cooperating embedded
devices [28]. GenProg is an EC based approach that works
at the source level through patches [29]. While EC based
approaches can construct much more complex fixes than
CCBot, they run into a fundamental problem that their fixes
only optimize for the fitness criteria and not other factors
that are important to programmers. The neglected factors
include performance, memory usage, readability, and main-
tainability. Some approaches propose on-the-fly patching of
programs [30].

AutoFix-E [31] is an automatic bug fixer for Eiffel. It
relies upon an automated random testing framework Au-
toTest [32] to discover a trace of the program that triggers a
bug first before creating the fix.

ReAssert [33] is a tool for automatically repairing unit
tests. The use case is that the developer makes a (correct)
change to her application, but the change breaks a test
case. In this case she must fix the test case, and ReAssert
is designed to do that automatically.

Previous work has attempted automatic repairs of client-
server programs using differential repairs [34]. The assump-
tion is that the client and server should have the same
functionality so they act as a specification for each.

Works on recommended refactorings [35] [36] are similar
to CCBot in that they generate new code to be added.
CCBot is different from these approaches in that the only
information CCBot needs is the code and its goals are
different. Recommended refactorings typically i) rely on
feedback from the programmer to rank recommendations or
a training set of existing refactorings and ii) try to improve
code organization rather than correct specific bugs. Simi-
larly, statistical bug finders try to use a historical database
of bugs to find new ones.

9.4 Bug Finding
Though CCBot is coupled with cccheck [8] many automatic
bug finding tools (both static and dynamic) exist. There are
many subcategories such as model checkers and symbolic
execution (e.g. Symbolic PathFinder [37]), automated test
generators (e.g. EvoSuite [38]), and statistical or pattern
matching bug finders (e.g. FindBugs [39]).

An industry study found that dynamic tools are less
widely used than static tools (like CCBot) [40].

9.5 Specification Generation
Cccheck tries to infer a specification (invariants, pre- and
post-conditions, etc.) statically. Many approaches try to infer
such a specification by observing a program execution [24]
[41], by symbol elimination [42] and by many other static
and dynamic techniques.

Another proposed approach to finding preconditions is
mining software repositories [43]. This approach requires
a corpus of libraries and clients. The assumption is that

the clients’ aggregate behavior should define the library’s
preconditions.

10 FUTURE WORK

A standardized format for warnings and annotations would
greatly increase the flexibility and utility of CCBot. CCBot
could take the output of any sound static analysis and
automatically rewrite the analyzed code.

Along the same lines, generalizing CCBot to other lan-
guages is another direction for future work. In particular,
Java with JML [9] is an interesting candidate. The main
interface requirements for CCBot are i) starting the analysis,
ii) gathering the results from the analysis and iii) applying
the results to the source code. For C# and CodeContracts,
the contracts themselves are valid C# code. CCBot starts
the analysis (cccheck) by providing an assembly with the
compiled code, including contracts. Then cccheck reports
back the results in XML and CCBot uses the Roslyn C#
compiler to apply the suggestions. Extending CCBot to sup-
port JML would be significantly different, as JML contracts
are written as specially formatted comments. A different
method would be needed to extract and insert the contracts.
In order to be robust, the extension would require tooling
to parse JML contracts and match the program elements to
the suggestions from the analyser. It would be tempting to
simply copy-and-paste the suggestions from the analyser
into the program, since the JML contracts are just comments
and would never break the compilation. However, in our
experience, analyzers report where the error is, not which
lines of code should change. The problem is worsened when
the analyzer works over some other representation of the
program than the source code (e.g., abstract syntax tree,
intermediate representation, etc.). For these reasons, we en-
vision that the JML extension would need some method of
identifying program elements (classes, methods, interfaces,
etc) rather than doing simple text manipulation. Fortunately,
Java has excellent tooling and many analyzers exist for JML
that the extension could use. The main hurdle would be
that the representation of the contracts in CodeContracts
and JML is significantly different.

Unfortunately there are multiple tools which compete
with CodeContracts that implement design-by-contract for
C#. CCBot could be extended to insert user contracts in
a user-specified format. Some projects even create their
own stripped-down contract framework. Even though the
solutions end up being semantically equivalent, they use
different method and class names so CCBot should be
extended to support other implementations.

Cccheck cannot always generate a fix for each bug it
finds. In this case it produces a warning and CCBot cannot
insert that warning because it is not C# code. The Microsoft
internal version of CCBot uses a code review tool called
CodeFlow to present the warnings to the user, but in future
work we could develop a tool-agnostic way of presenting
warnings.

11 CONCLUSIONS

In this work we have proposed a mechanism for automatic
contract insertion and our implementation of it, CCBot.

12

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

CCBot alleviates the static analysis tool “too many anno-
tations” problem by automatically inserting annotations at
the semantically correct location. The programmer receives
an instrumented version of her original code that can be
accepted into the main repository or tested with almost
no effort. CCBot can instrument a large existing codebase
with minimal programmer effort, but it works just as well
incrementally with codebases that already have some con-
tracts. Because CCBot uses contracts inferred by cccheck all
the inserted contracts are sound. We have demonstrated
CCBot’s efficiency and robustness by running it on large,
real codebases. This shows CCBot is a usable tool for real
projects and programmers and not simply a research pro-
totype. Our success with mitigating bugs in open source
projects and getting 22 new contracts merged into the main
repositories sets CCBot apart from other tools that merely
find bugs.

12 ACKNOWLEDGEMENTS

We thank Xiangyu Zhang, Stephen McCamant, Michael
Pradel, and the anonymous reviewers for their invaluable
feedback on this work. The technical assistance from HeeJae
Chang, Birendra Acharya, Jack Tilford, and Mike Barnett
from Microsoft is greatly appreciated. This work was spon-
sored, in part, by NSF CNS-1464155.

REFERENCES

[1] “StackOverFlow: how to deal with a static analyzer
output,” 2016, http://stackoverflow.com/questions/2070397/
how-to-deal-with-a-static-analyzer-output.

[2] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu, “Comparing
Static Bug Finders and Statistical Prediction,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 424–434. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568269

[3] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why Don’t Software Developers Use Static Analysis Tools
to Find Bugs?” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 672–681. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486877

[4] T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst, “Case
Studies and Tools for Contract Specifications,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 596–607. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568285

[5] H.-C. Estler, C. Furia, M. Nordio, M. Piccioni, and B. Meyer,
“Contracts in Practice,” in FM 2014: Formal Methods, ser.
Lecture Notes in Computer Science, C. Jones, P. Pihlajasaari,
and J. Sun, Eds. Springer International Publishing, 2014, vol.
8442, pp. 230–246. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-06410-9 17

[6] P. Chalin, “Rigorous Development of Complex Fault-Tolerant
Systems,” M. Butler, C. B. Jones, A. Romanovsky, and
E. Troubitsyna, Eds. Berlin, Heidelberg: Springer-Verlag, 2006,
ch. Are Practitioners Writing Contracts?, pp. 100–113. [Online].
Available: http://dl.acm.org/citation.cfm?id=2167981.2167987

[7] M. Fähndrich and F. Logozzo, “Static Contract Checking with
Abstract Interpretation,” in Proceedings of the 2010 International
Conference on Formal Verification of Object-oriented Software, ser.
FoVeOOS’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
10–30. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1949303.1949305

[8] F. Logozzo, “Practical Specification and Verification with Code
Contracts,” in Proceedings of the 2013 ACM SIGAda Annual
Conference on High Integrity Language Technology, ser. HILT ’13.
New York, NY, USA: ACM, 2013, pp. 7–8. [Online]. Available:
http://doi.acm.org/10.1145/2527269.2534188

[9] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, “An Overview
of JML Tools and Applications,” Int. J. Softw. Tools Technol.
Transf., vol. 7, no. 3, pp. 212–232, Jun. 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10009-004-0167-4

[10] F. Logozzo and T. Ball, “Modular and Verified Automatic Program
Repair,” SIGPLAN Not., vol. 47, no. 10, pp. 133–146, Oct. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2398857.2384626

[11] P. Cousot, R. Cousot, M. Fahndrich, and F. Logozzo, “Automatic
Inference of Necessary Preconditions,” in in Proceedings of
the 14th Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’13). Springer Verlag, January 2013.
[Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=174239

[12] M. Bouaziz, F. Logozzo, and M. Fahndrich, “Inference of
Necessary Field Conditions with Abstract Interpretation,” in 10th
Asian Symposium on Programming Languages and Systems (APLAS
2012). Springer, December 2012. [Online]. Available: http:
//research.microsoft.com/apps/pubs/default.aspx?id=172534

[13] M. Fowler, “Continuous Integration,” 2016, http://www.
martinfowler.com/articles/continuousIntegration.html.

[14] “Jenkins CI,” 2016, https://jenkins-ci.org/.
[15] “Travis CI,” 2016, https://travis-ci.org/.
[16] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The

Design Space of Bug Fixes and How Developers Navigate It,”
IEEE Transactions on Software Engineering, vol. 41, no. 1, pp. 65–
81, January 2015.

[17] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol,
“Would static analysis tools help developers with code reviews?”
in Software Analysis, Evolution and Reengineering (SANER), 2015
IEEE 22nd International Conference on, March 2015, pp. 161–170.

[18] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt,
and P. Balachandran, “Making Defect-finding Tools Work for
You,” in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 99–108. [Online]. Available:
http://doi.acm.org/10.1145/1810295.1810310

[19] C. Sadowski, J. van Gogh, C. Jaspan, E. Soederberg, and C. Winter,
“Tricorder: Building a Program Analysis Ecosystem,” in Interna-
tional Conference on Software Engineering (ICSE), 2015.

[20] J. Campos, A. Arcuri, G. Fraser, and R. Abreu, “Continuous Test
Generation: Enhancing Continuous Integration with Automated
Test Generation,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 55–66. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2643002

[21] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec#
Programming System: An Overview,” in Proceedings of the 2004
International Conference on Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, ser. CASSIS’04. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 49–69. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30569-9 3

[22] B. Meyer, Eiffel: The Language. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1992.

[23] J. Tschannen, C. Furia, M. Nordio, and B. Meyer, “Automatic
Verification of Advanced Object-Oriented Features: The AutoProof
Approach,” in Tools for Practical Software Verification, ser. Lecture
Notes in Computer Science, B. Meyer and M. Nordio, Eds.
Springer Berlin Heidelberg, 2012, vol. 7682, pp. 133–155. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-35746-6 5

[24] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically Discovering Likely Program Invariants to Support
Program Evolution,” in Proceedings of the 21st International
Conference on Software Engineering, ser. ICSE ’99. New York,
NY, USA: ACM, 1999, pp. 213–224. [Online]. Available:
http://doi.acm.org/10.1145/302405.302467

[25] C. Flanagan and K. R. M. Leino, “Houdini, an Annotation
Assistant for ESC/Java,” in Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods for
Increasing Software Productivity, ser. FME ’01. London, UK,
UK: Springer-Verlag, 2001, pp. 500–517. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647540.730008

[26] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata, “Extended Static Checking for Java,” in
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, ser. PLDI ’02. New

13

http://stackoverflow.com/questions/2070397/how-to-deal-with-a-static-analyzer-output
http://stackoverflow.com/questions/2070397/how-to-deal-with-a-static-analyzer-output
http://doi.acm.org/10.1145/2568225.2568269
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://doi.acm.org/10.1145/2568225.2568285
http://dx.doi.org/10.1007/978-3-319-06410-9_17
http://dx.doi.org/10.1007/978-3-319-06410-9_17
http://dl.acm.org/citation.cfm?id=2167981.2167987
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://doi.acm.org/10.1145/2527269.2534188
http://dx.doi.org/10.1007/s10009-004-0167-4
http://doi.acm.org/10.1145/2398857.2384626
http://research.microsoft.com/apps/pubs/default.aspx?id=174239
http://research.microsoft.com/apps/pubs/default.aspx?id=174239
http://research.microsoft.com/apps/pubs/default.aspx?id=172534
http://research.microsoft.com/apps/pubs/default.aspx?id=172534
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://jenkins-ci.org/
https://travis-ci.org/
http://doi.acm.org/10.1145/1810295.1810310
http://doi.acm.org/10.1145/2642937.2643002
http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1007/978-3-642-35746-6_5
http://doi.acm.org/10.1145/302405.302467
http://dl.acm.org/citation.cfm?id=647540.730008

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2625248, IEEE
Transactions on Software Engineering

York, NY, USA: ACM, 2002, pp. 234–245. [Online]. Available:
http://doi.acm.org/10.1145/512529.512558

[27] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan,
W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically
Patching Errors in Deployed Software,” in Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, ser.
SOSP ’09. New York, NY, USA: ACM, 2009, pp. 87–102. [Online].
Available: http://doi.acm.org/10.1145/1629575.1629585

[28] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, “Automated
Repair of Binary and Assembly Programs for Cooperating
Embedded Devices,” SIGARCH Comput. Archit. News, vol. 41,
no. 1, pp. 317–328, Mar. 2013. [Online]. Available: http:
//doi.acm.org/10.1145/2490301.2451151

[29] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
Systematic Study of Automated Program Repair: Fixing 55 out
of 105 Bugs for $8 Each,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 3–13. [Online]. Available:
http://dl.acm.org/coitation.cfm?id=2337223.2337225

[30] M. T. Azim, I. Neamtiu, and L. M. Marvel, “Towards
Self-healing Smartphone Software via Automated Patching,”
in Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE ’14. New York,
NY, USA: ACM, 2014, pp. 623–628. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642955

[31] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller, “Automated Fixing of Programs with
Contracts,” in Proceedings of the 19th International Symposium
on Software Testing and Analysis, ser. ISSTA ’10. New
York, NY, USA: ACM, 2010, pp. 61–72. [Online]. Available:
http://doi.acm.org/10.1145/1831708.1831716

[32] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf,
“Programs That Test Themselves,” Computer, vol. 42, no. 9, pp.
46–55, Sept 2009.

[33] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert:
Suggesting Repairs for Broken Unit Tests,” in Automated Software
Engineering, 2009. ASE ’09. 24th IEEE/ACM International Conference
on, Nov 2009, pp. 433–444.

[34] M. Alkhalaf, A. Aydin, and T. Bultan, “Semantic Differential
Repair for Input Validation and Sanitization,” in Proceedings of
the 2014 International Symposium on Software Testing and Analysis,
ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 225–236.
[Online]. Available: http://doi.acm.org/10.1145/2610384.2610401

[35] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. Ó Cinnéide, “Recommendation System for Software
Refactoring Using Innovization and Interactive Dynamic
Optimization,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 331–336. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642965

[36] G. Bavota, S. Panichella, N. Tsantalis, M. Di Penta, R. Oliveto,
and G. Canfora, “Recommending Refactorings Based on Team
Co-maintenance Patterns,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
’14. New York, NY, USA: ACM, 2014, pp. 337–342. [Online].
Available: http://doi.acm.org/10.1145/2642937.2642948

[37] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Symbolic
Execution of Java Bytecode,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’10. New York, NY, USA: ACM, 2010, pp. 179–180. [Online].
Available: http://doi.acm.org/10.1145/1858996.1859035

[38] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated Unit
Test Generation for Classes with Environment Dependencies,”
in Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE ’14. New York,
NY, USA: ACM, 2014, pp. 79–90. [Online]. Available: http:
//doi.acm.org/10.1145/2642937.2642986

[39] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and
K. Stephens, “Improving Your Software Using Static Analysis to
Find Bugs,” in Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 673–674.
[Online]. Available: http://doi.acm.org/10.1145/1176617.1176667

[40] R. D. Venkatasubramanyam and G. R. Sowmya, “Why is Dynamic
Analysis Not Used As Extensively As Static Analysis: An
Industrial Study,” in Proceedings of the 1st International Workshop

on Software Engineering Research and Industrial Practices, ser. SER &
IPs 2014. New York, NY, USA: ACM, 2014, pp. 24–33. [Online].
Available: http://doi.acm.org/10.1145/2593850.2593855

[41] M. Pradel and T. R. Gross, “Automatic Generation of Object
Usage Specifications from Large Method Traces,” in Proceedings
of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 371–382. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2009.60

[42] K. Hoder, L. Kovács, and A. Voronkov, “Invariant Generation
in Vampire,” in Proceedings of the 17th International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems: Part of the Joint European Conferences on Theory
and Practice of Software, ser. TACAS’11/ETAPS’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 60–64. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987389.1987398

[43] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan,
“Mining Preconditions of APIs in Large-scale Code Corpus,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 166–177. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635924

Scott A. Carr is a PhD candidate in the Purdue
University Department of Computer Science.
Compiler-based techniques in software engi-
neering and software security are his research
interests. In software security, his work concerns
the confidentiality and integrity of sensitive data
in systems software and control-flow integrity
protections. For more information, please visit
http://www.scottandrewcarr.com.

Francesco Logozzo loves static program anal-
ysis. He has been designing and implementing
widely used static analysis tools. He published
papers in the most important research confer-
ences and gave talks at main industrial confer-
ences as e.g., Build.

Mathias Payer is a security researcher and
an assistant professor in computer science at
Purdue university leading the HexHive group.
His research focuses on protecting applications
even in the presence of vulnerabilities, with a
focus on memory corruption. He is interested in
system security, binary exploitation, user-space
software-based fault isolation, binary transla-
tion/recompilation, and (application) virtualiza-
tion.

14

http://doi.acm.org/10.1145/512529.512558
http://doi.acm.org/10.1145/1629575.1629585
http://doi.acm.org/10.1145/2490301.2451151
http://doi.acm.org/10.1145/2490301.2451151
http://dl.acm.org/coitation.cfm?id=2337223.2337225
http://doi.acm.org/10.1145/2642937.2642955
http://doi.acm.org/10.1145/1831708.1831716
http://doi.acm.org/10.1145/2610384.2610401
http://doi.acm.org/10.1145/2642937.2642965
http://doi.acm.org/10.1145/2642937.2642948
http://doi.acm.org/10.1145/1858996.1859035
http://doi.acm.org/10.1145/2642937.2642986
http://doi.acm.org/10.1145/2642937.2642986
http://doi.acm.org/10.1145/1176617.1176667
http://doi.acm.org/10.1145/2593850.2593855
http://dx.doi.org/10.1109/ASE.2009.60
http://dl.acm.org/citation.cfm?id=1987389.1987398
http://doi.acm.org/10.1145/2635868.2635924

