
malWASH: Washing malware to evade dynamic analysis

Kyriakos K. Ispoglou
Purdue University

Mathias Payer
Purdue University

Abstract

Hiding malware processes from fingerprinting is chal-
lenging. Current techniques like metamorphic algo-
rithms and diversity generate different instances of a
program, protecting it against static detection. Unfor-
tunately, all existing techniques are prone to detection
through behavioral analysis – a runtime analysis that
records behavior (e.g., through system call invocations),
and can detect executing diversified programs like mal-
ware.

We present malWASH, a dynamic diversification en-
gine that executes an arbitrary program without being
detected by dynamic analysis tools. Target programs are
chopped into small components that are then executed
in the context of other processes, hiding the behavior
of the original program in a stream of benign behavior
of a large number of processes. A scheduler connects
these components and transfers state between the differ-
ent processes. The execution of the benign processes is
not impacted. Furthermore, malWASH ensures that the
executing program remains persistent, complicating the
removal process.

1 Introduction

Malware (and fighting malware) is an important aspect
of computer security. Malware by itself does not ex-
ploit security vulnerabilities but is the payload that is ex-
ecuted post-exploitation. Consequently, malware is only
successful if it is stealthy and remains undetected. So-
phisticated, undetectable malware is therefore a required
asset for attackers. Anti Virus systems (AV) are based
on signature detection and static analysis. Although this
method has limitations, it is well-proven, reliable, and
accurate. The AV identifies malware by looking for
known patterns or characteristics. Due to its simplicity
and accuracy, signature-based detection remains widely
used.

Malware authors bypass signature-based detection by
using metamorphic [33] algorithms and diversity. These
techniques generate instances of the same binary that
have different signatures, while maintaining the func-
tionality of the binary. Defenders quickly realized that
all generated instances have the same functionality, and
started to identify the behavior of the malware instead of
the signature [2]. Dynamic analysis executes the mal-
ware to reveal its behavior. This method is simple but
effective, e.g., a typical keylogger repeatedly performs a
sequence of specific system calls. No matter how obfus-
cated the binary is, these system calls are repeated in the
same order, making the keylogger easily detectable.

A simple technique to bypass behavior based detec-
tion would be to insert bogus system calls (i.e., system
calls that do not affect the original execution) between
real ones. An analysis can likely filter out bogus sys-
tem calls, thereby mitigating this naive technique. We
propose a sophisticated, novel mechanism to hide mal-
ware from behavior-based analysis. Rather than execut-
ing the program in a single process, we automatically
distribute the program across a set of pre-existing, benign
processes. Our approach is based on a simple observa-
tion: although we cannot modify the executing system
calls and their order of execution in a binary, we can hide
them within the stream of system calls that are performed
on the entire system.

To spread our system calls across the stream of calls
for the entire system we propose injecting our system
calls into a set of existing processes on the system. To
do this, the original binary is chopped into small chunks.
Each individual chunk only contains limited functional-
ity and therefore executes few system calls. These small
chunks and an “emulator” are then injected into multiple
running processes and blend into the stream of executed
system calls. Each emulator then selects the individual
chunks to run, captures state, and coordinates with the
other emulators who continues execution.

Detection tools that observe behavior based on a per-



process analysis no longer see the complete sequence of
system calls that the program executes. Each injected
system call is hidden in a set of benign system calls and
the program functionality is spread across a set of benign
processes, executing benign code (in addition to the in-
jected one). Tracking the system calls of all applications
globally and trying to look for malicious patterns is a
strictly harder problem, as system calls from the injected
binary are spread out in the stream of system calls for the
entire system. Consequently, methods like [14] which
search for short sequences of malicious system calls fail.

Prior obfuscation techniques such as [32, 10] guaran-
tee that the actual computation remains the same, which
is a required, fundamental property that enabled behav-
ioral analysis. malWASH guarantees equal functionality,
while bypassing behavioral analysis. The design of our
“malware” engine allows chopping and executing arbi-
trary programs. To keep our Windows-based prototype
implementation general but simple, we constrain the exe-
cution environment, and assume that the binary has some
specific properties (defined in Section 4). We evaluate
our malWASH prototype implementation with samples
from different malware categories and show that our im-
plementation successfully chops and executes the pro-
grams.

Beyond stealthiness, malWASH offers another inter-
esting property: resilience. The malware is distributed as
it is injected into multiple benign processes and executes
as part of them. Therefore, killing a single process does
not stop the execution of the malware as it can reinstan-
tiate itself from any remaining emulator. The only way
to stop malWASH is to kill all infected processes at the
same time, before any process reinfects a new process.

The contributions of malWASH are:

• Design of an execution engine that thwarts behav-
ioral and dynamic analysis.

• Creation of fully persistent malware that continues
executing as long as at least one emulator remains.

Furthermore, the design of malWASH, has some very
interesting properties. First, even if malWASH is de-
tected, the actual binary remains obfuscated in a plethora
of processes, complicating reverse engineering. An ana-
lyst would first have to correctly reassemble the binary.
Second, all of the existing obfuscation and diversity tech-
niques can be used with malWASH.

2 Background and Related Work

Over the last decade, many techniques have been pro-
posed to enable obfuscation and diversity, with the goal
of hiding malware from AV systems. One of the old-
est methods to detect whether a given binary is mali-

cious or not is to use static analysis detection [30, 27].
Anti-disassembly mechanisms [10, 8, 1] allow malware
authors to bypass static analysis and companies to pro-
tect their IP against, e.g., illegal distribution. Although
powerful, anti-disassembly techniques are infamous; be-
nign programs have no reason to obfuscate their code
as obfuscation may impact performance, stability, and
the ability to reproduce crashes. Even though analysis
of binaries protected by anti-disassembly is hard, it is
straight-forward to check whether such protections were
applied, e.g., detecting an encrypted PE header [6]. An
AV can exploit this fact and flag a binary as malicious
without trying to analyze it, as using such obfuscation is
a strong indication that the binary is actually malicious.

Furthermore, these mechanisms have to eventually re-
veal their payloads and execute it. Techniques like dy-
namic analysis and sandboxes, analyze the malware and
compare the behavior against well-known patterns. Anti-
debugging techniques [3, 32] along with VM-detection
[11] are used to change a program’s behavior when a
sandbox or a debugger is detected. All these methods
share that the actual execution of the malware, when not
being debugged, remains constant (this is a guaranteed
property). Consequently, observing the behavior of the
executing malware always yields the same observation
(e.g., same system calls in the same order).

Improved obfuscation mechanisms were proposed,
notably using Return Oriented Programming (ROP) to
hide a malware within a benign program [21, 25]. Al-
though effective, a ROP-style execution can easily be de-
tected [23, 24, 5, 16, 4, 22]. Another interesting obfusca-
tion technique is movfuscator [7], which compiles a pro-
gram using only mov instructions. This makes analysis
extremely hard, but detecting that movfuscator is applied
to a given binary is trivial. Any use of movfuscator is an
indication that a binary is malicious, even if there is no
information on what the binary does.

The concept behind the previous approaches, was to
hide a malicious payload within a program. Another ap-
proach is to “get rid” of the malicious payload, by forcing
another program to execute it for you. Metasploit’s me-
terpreter [20] uses DLL and Reflective DLL [12] injec-
tion, to inject a malicious payload into another process’s
address space.

The common property of all the aforementioned pro-
tections is that any malicious action happens within the
context of a single process. Here is where dynamic anal-
ysis [9] takes place. This is a powerful method that tries
to classify a program or a process as malicious by ob-
serving its behavior (e.g., system calls, involved files, or
network connections). Using dynamic analysis, it is pos-
sible to detect new, unknown malware just by matching
the behavior of the binary.

Many dynamic analysis methods have been proposed

2



User Space

Process 

I

Process 

II

Process 

III

Process 

IV

Process 

V

Kernel Space

(a) System under normal infection

User Space

Process 

I

Process 

II

Process 

III

Process 

IV

Process 

V

Shared Memory

I

Shared Memory

II

Shared Memory

III

Shared Memory

IV

Kernel Space

(b) System under malWASH infection

=+ + + + +++ + + + +++ + ++

(c) Conceptually, all the small (and benign) injected parts are equal with the original malware

Figure 1: A comparison between normal infection and malWASH

to detect malware. Methods based on execution tracing
[19, 14, 17, 15, 31, 2], inspect executing traces, looking
for malicious patterns of system calls. However, when
a binary runs under malWASH, is significantly compli-
cated due to the distributed nature of our approach: (i) the
execution trace of a process, contains only a small and
out-of-order subset of system calls, and (ii) any sequence
of system calls of the original binary is distributed among
multiple processes, because each quantum given to mal-
WASH, contains only a few system calls (e.g., 1 or 2).

The most recent malware detection methods use ma-
chine learning techniques to classify a binary as mali-
cious or not [13, 26, 18, 28, 34]. However, these meth-
ods all assume that the malware runs in a single process
and that only malicious system calls are executed by a
process.

Even though the original binary is well hidden and
protected, defenders could try to detect the malWASH
emulator itself and not the binary it emulates. However,
the idea of malWASH can also be used to protect mal-
WASH itself. As we show in Section 5.3, the use of sub-
emulators (small emulators that emulate the original em-
ulator) along with other hardening methods in emulator,
makes detection challenging.

3 malWASH Design

The design of malWASH follows a simple concept:
breaking a program into small pieces and hiding these
pieces in benign processes (see Figure 1). Conceptually,
malWASH works as an emulator that (i) executes indi-
vidual instructions of the program and (ii) coordinates

with the other active emulators to create a correct flow of
execution.

Behavioral malware detection is carried out per pro-
cess (or per thread). After analysis, an individual pro-
cess can be flagged as malicious. We believe that scaling
behavioral analysis to a group of processes or threads is
hard due to the exponential explosion of possible combi-
nations of system calls across processes. malWASH in-
troduces an emulator that allows the execution of a target
program in a set of host processes. In the most stealthy
mode of malWASH, a host process executes a single in-
struction of the emulated program per time slice. Detect-
ing this one instruction within the millions of instructions
that get executed by the process is highly unlikely.

malWASH takes as input a binary file and produces a
C++ source file that embeds all the required parts of the
binary along with all malWASH components. Using a
source file as output enables further binary obfuscation
processes (e.g., metamorphism). This means that all the
existing protection methods against static analysis and
signature detection work on top of malWASH.

malWASH operates in two phases. In the first phase,
the original program binary is “chopped” into hundreds
of small pieces and all the required information is ex-
tracted from the binary (segments, loaded libraries, relo-
cations, global data and thread information). All these
components (including those from malWASH) are en-
coded as character arrays and packed into a single C++
source file.

Chopping the binary into components is challeng-
ing as control-flow transfer instructions (e.g., jcc, jmp,
call, and ret) may transfer control of the execution to a
point that is not in the current address space. Therefore,

3



the initial chopping is done at the basic block level. This
way we know that only the last instruction transfers con-
trol to other locations. Using an emulator lookup func-
tion, we can replace the original instruction with a set of
instructions that recover control-flow (possibly signaling
another process to continue). Once we finish chopping
on basic blocks, we can further chop the basic blocks
themselves into new, smaller blocks, or start coalescing
basic blocks to larger blocks.

Splitting opens a trade-off between efficiency and
stealthiness. Using smaller blocks, malware signatures
disappear and dynamic analysis detection tools fail to ob-
serve malicious behavior in the block. On the other hand,
because there is a lot of overhead to transition between
executed blocks (capturing state, selecting the next block
to execute, and scheduling which process should execute
the next block), fewer blocks will lead to less overhead
from the emulator.

Once the source file is compiled, the program is
ready to execute. The second phase of malWASH takes
place when it starts execution. The first component
is the loader, which looks for a set of “suitable” pro-
cesses. The amount of emulators used is flexible and
user-configurable. A good candidate is, e.g., the Google
Chrome browser as it spawns many communicating pro-
cesses that are perfect candidates for injection. A pro-
cess is suitable when it allows another process to inject
and execute code into its address space. Obviously, these
instances need to cooperate, so a stealthy, reliable com-
munication channel is needed. For this reason the loader
also initializes a small set of shared memory regions for
use by all the malWASH emulators. These shared re-
gions contain data segments, stack, heap and all metadata
that emulators are needed in order to cooperate and ex-
ecute the blocks. Instead of shared memory, other com-
munication mechanisms can be used such as pipes, files,
network ports, or even covert channels.

Using shared memory regions has several advantages
over process messages: (i) message may get lost and (ii)
someone may observe messages between processes that
are irrelevant to each other. If the emulator from pro-
cess A communicates with the emulator from process B,
it writes to the shared region that emulator of process B is
waiting to read. Someone may still observe that there are
new shared regions between processes, but as we show
in Section 5.3, this information is of limited use.

Emulation of the malware begins after the loader ter-
minates. Control is transferred to the first emulator (there
is no central scheduling emulator) which executes its ba-
sic block, and then transfers control to the next emulator.
At any time, exactly one emulator runs a piece of the
original program (except for multi-threading programs
where multiple emulators can execute different blocks
of the program as long these blocks belong to different

threads). Semaphores and Mutexes synchronize the em-
ulators and ensure that no more than two processes will
execute blocks from the same thread at each time.

When an emulator successfully takes the semaphore,
it executes the next block of the malware. Before exe-
cuting the next block, a context switch is performed and
all memory accesses and imported function addresses
are properly relocated. During the execution, current
instructions within a block are executed transparently,
without knowing of the emulation. After the block is ex-
ecuted, a context switch is performed, saving the current
state of the program in the shared region and the emu-
lators will coordinate to find which one will execute the
next block. Note that different scheduling policies can be
implemented to select which emulator executes the next
block, we use a simple race. This distribution of emula-
tors results in an address space independent execution.

When a process that contains an emulator terminates,
the other emulators can continue the execution and the
malware will continue to execute. The other emulators
can detect the missing component and invoke the loader
to reinitialize the missing emulator in a new process,
keeping the total number of emulators constant. This
means that as long as there is at least one emulator run-
ning it can recover from killed instances. Removing or
stopping the malware requires that all emulators must be
killed at the same time. The emulators run exclusively in
memory, making it harder to detect as there are no per-
sistent files.

4 Implementation

malWASH takes a binary program and distributes its ex-
ecution across a set of benign processes, coordinating the
global state of the program and the scheduling between
the individual components. In the most fine-grained con-
figuration, each instruction of the target program is a
different entity. The Windows-based implementation of
malWASH draws ideas from several areas: binary anal-
ysis to chop the program into individual components, bi-
nary translation to manipulate the control execution of
each block, to coordinate between individual blocks and
to orchestrate scheduling, and snapshotting to capture
and synchronize program state across the different pro-
cesses.

Our malWASH prototype implementation (available at
https://github.com/HexHive/malWASH) consists of
an offline and an online component. The offline com-
ponent runs the binary analysis, chops the program into
individual components, and prepares the emulator. The
online component includes the loader that injects compo-
nents into different processes and the emulator which or-
chestrates and coordinates the execution of the program
among all the different host processes.

4

https://github.com/HexHive/malWASH


Prototype
Property Implementation Design

Obfuscated No Depends

Self Modifying No Yes

Polymorphic /
Metamorphic No Yes

Packed No Yes

Anti disassembly No Yes

Anti debugging (Yes) (Yes)

Non PIE Depends Yes

Use Heap Yes Yes

Multi Threading Yes Yes

W+X sections No Yes

Non x86 No Yes

Statically linked Depends Depends

Table 1: List of supported properties by design and im-
plemented in the current prototype.

By extracting the components offline, we can fall back
on existing tools for the underlying binary analysis and,
more importantly, our emulator does not require disas-
sembly functionality. To keep the implementation proto-
type simple, we have restricted the (implemented) func-
tionality of the emulator. Our emulator supports the
full x86 instruction set (with a special focus of the con-
trol transfer instructions). Anti debugging features of
the original binary can be mitigated by our translation
and analysis process. The current implementation does
not support x86-64 code and obfuscated or any form of
self-modifying code (a design and engineering decision
as otherwise the emulator would require its own binary
analysis framework and disassembly functionality, vastly
increasing the size of the emulator). Table 1 highlights
the design trade-offs.

4.1 Phase 1: Chopping the binary

malWASH uses an IDA pro plugin to “chop” the binary.
If IDA fails to analyse the binary, our tool will fail as
well. Our plugin uses a Depth First Search (DFS) to
disassemble the program from its entry point. This dis-
assembly phase recursively follows control-flow trans-
fer instructions and thereby recovers the Control-Flow
Graph (CFG) of the binary, assigning a Block IDentifier
(BID) to each basic block. These initial basic blocks can
further be chopped into smaller pieces, depending on the
configuration:

BBS (Basic Block Split) mode: the basic blocks are
used as is.

BAST (Below AV Signature Threshold) mode: ba-
sic blocks are chopped so that each block is below
a configurable threshold (we used 16 bytes for our
experiments).

Paranoid mode: basic blocks are chopped to include
only a single instruction.

4.1.1 Control-Flow Transfers

After binary analysis, each basic block ends with a con-
trol flow transfer instruction (e.g., jcc, jmp, call, or return
and their variants). In BAST or Paranoid modes we have
to insert additional transfer instructions to connect the
newly chopped basic blocks. These instructions are re-
placed with a set of instructions that execute a lookup of
the target block, transferring execution to another pro-
cess if necessary. By convention, our binary analysis
rewrites the basic block so that the target BID is in the
ebx register (spilling the register if necessary). This is
not optimal from a binary translation perspective but the
context switching overhead to another process will domi-
nate overhead and lookup efficiency is not a key concern.

Indirect control-flow transfer instructions like indirect
jumps, indirect calls, or return instructions are harder to
handle as the target BID is usually not statically known.
For switch statements, IDA Pro can often recover the
actual targets and replace them with the corresponding
BIDs. For all remaining indirect control-flow transfer in-
structions we have to execute an online lookup that trans-
lates a target address to a BID. This lookup can use a ta-
ble of all target locations, or, e.g., in the case of return
instructions, we can use the CFG to identify all possi-
ble call sites and encode the return targets directly in the
code as follows (see Figure 2).

These replacements ensure that the control flow trans-
fers are translated correctly and allow the emulator to
keep executing the target binary. Any calls back to the
emulator request a new target in ebx and dispatch to the
next block.

4.1.2 Block relocations

All external references within a block must be relocated
at runtime. External references can either be functions
from imported modules or constant references to seg-
ments (e.g., data, or rdata). Our block metadata keeps
the offset of the addresses that need runtime relocation,
according with the type of relocation. In cases of indexed
array accesses, or constant pointers that point to constant
addresses, all we have to do is to relocate the base ad-
dress.

5



; if retn is used

xchg [esp], ebx ; backup ebx

; if retn NN is used

mov [esp+ARG], ebx ; retn NN, ARG = NN*4

mov ebx, [esp] ; get return address

; code for both cases

cmp ebx, $_RET_1

jz TARGET_1

cmp ebx, $_RET_2

jz TARGET_2

...

mov ebx, ffffffffh ; ERROR

jmp END

TARGET_1:

mov ebx, $_ID_1

jmp END

TARGET_2:

mov ebx, $_ID_2

jmp END

...

END:

nop

; if retn NN is used, remove all-1 args

add esp, MM ; MM = NN - 4

Figure 2: Translation of a return instruction.

4.1.3 Heap manipulation

Heap manipulation is a challenge when injecting a pro-
cess into a set of benign processes as all access to
the heap must be coordinated, simulating a single tar-
get address space among different host address spaces.
If a block allocates memory using any of the standard
heap functions, this memory will be valid only under
the address space that blocks is executed. To over-
come this problem we provide our own heap manipu-
lation API, that will allocate shared memory regions at
the same base address for all processes. This can be
done by calling MapViewOfFileEx() with a non-NULL
lpBaseAddress.

During the translation we check for heap management
functions like malloc(), calloc(), LocalAlloc(),
or HeapAlloc() and replace the call with an emulator-
local alternative that is aware of the translation. Similar
work is done for other heap management functions, like
LocalFree() or MapViewOfFile().

4.1.4 Socket descriptors and HANDLEs

The biggest challenge for the malWASH implementa-
tion is to transparently support HANDLEs, HKEYs (es-
sentially a HANDLE), sockets descriptors and FILE*

pointers (called “descriptors” for simplicity). Descrip-
tors are unique per-process. If process A creates a
socket, process B cannot use that socket, even if it knows
the socket descriptor. However there are two functions
provided by the Windows API, DuplicateHandle()
and WSADuplicateSocket() that duplicate a HAN-
DLE and a socket respectively. Unfortunately, there is
no native support for duplicating FILE* pointers. We
discuss support for FILE pointers in Section 4.3.2.

Descriptor support has both an offline and an online
component. Our IDA Pro plugin searches for calls to
descriptor functions (complete function declaration is
proviced) and marks them and their parameters for fur-
ther analysis.

If a block creates, duplicates, or deletes a descriptor,
this information is propagated to all other emulators us-
ing the corresponding calls. The emulator includes run-
time functionality to coordinate this information.

4.2 Phase 2.a: Loading emulators

The loader is the first part of malWASH that exe-
cutes. It initializes the required shared memory re-
gions (administrator privileges are required to set up
shared memory, obtaining these privileges is orthogo-
nal to malWASH) and finds up to N processes to in-
ject the emulator. The standard code injection involves
four functions: OpenProcess, VirtualAllocEx,
WriteProcessMemory, and CreateRemoteThread.
Calling these functions in that order is suspicious.

Although we cannot avoid to call these functions in
that order, we make detection harder in two ways. The
first is to recursively use the chopping idea of malWASH:
the loader spawns 3 new processes. Each of these pro-
cesses calls exactly one of the four functions and informs
the next one to continue. HANDLEs can be duplicated
using DuplicateHandle() and shared with any Inter Pro-
cess Communication (IPC) mechanism. This does not
solve the problem but it adds one more layer of indirec-
tion. The second way we make detection more difficult is
to use equivalent undocumented functions from the NT
API: ZwOpenProcess, ZwAllocateVirtualMemory,
ZwWriteVirtualMemory, and NtCreateThreadEx.
Both CreateThread (a benign function) and
CreateRemoteThread (a notorious function), in-
ternally call NtCreateThreadEx. Thus a detection tool
has to check the function arguments to decide if a call is
malicious or not, resulting in performance overhead.

If these mitigations are not enough, the loader can
spawn new processes, instead of infecting existing ones,
or infect non-running processes using one of the existing
methods viruses use for injection [29]. These approaches
are not a panacea against detection and we assume that
the loader is, for now, trusted.

6



4.3 Phase 2.b: Executing the binary
After the loader finishes, it exits, and the emulator starts
executing the individual pieces of program code, em-
ulating a regular process environment. The emulator
runs under a foreign process, like a parasite, and has
no knowledge of the environment during start up. This
makes the development of the emulator an extremely
challenging process. Written in pure assembly, the emu-
lator consists of 5,500 lines of assembly code (less than
14 kB of compiled code) and can execute all the blocks
in the correct order.

4.3.1 Core environment

When the emulator starts executing it must first estab-
lish its execution environment. By reading the Process
Environment Block (PEB), the emulator finds the entry
point of kernel32.dll and the address of LoadLibrary()
and GetProcAddress(), allowing us to find all other
addresses in the system. The emulator then queries for
a (randomly) named shared memory region that contains
the emulator state and the shared heap.

To get to an executable state, constant addresses to
segments must be relocated to shared regions and func-
tions must be resolved to actual addresses, except some
special functions (e.g., those in Section 4.1.4) that are
redirected to internal functions of the emulator.

The emulator keeps “virtual registers” that the original
binary will use. Context switching is done before and af-
ter block execution. In each iteration the emulator waits
on a semaphore to get a mutual lock to execute the next
block. When it takes the lock it copies the next block into
a local buffer. Eventually, the emulator will start execut-
ing the block using the virtual registers. When the block
finishes, the ebx register will contain the next BID and
control returns to the emulator to dispatch the next block.

There is also a special shared region, called Shared
Control Region. This region coordinates all emulators
and contains (among other fields) the virtual registers.
Stack is handled like other segments. During startup, the
emulator sets the virtual esp and ebp, with the value of
the shared stack, so the malware will not see any differ-
ence and will use the shared stack instead. The loader
prepares any command line arguments of the original
program on the stack.

4.3.2 Advanced Components

So far, the emulator can execute a program under multi-
ple address spaces but there are many small details that
may cause the execution to fail. Here we discuss and
address these problems.

All emulators need to communicate. We therefore re-
serve some space in the shared control region and use it

mailbox for process I

duptab (duplication table)

original

value
type

rese 

rved
P1 handle P2 handle Pn handle...

0x000004c8 SOCK 0 0x000004c8 0x000006c8 0x000008c8...

0x00000504 HDL 0 0x000004bc 0x00000504 0x000008c0...

0x0000060c SOCK 0 0x0000060c 0x00000700 0x000009a8...

……….

cmd
rese 

rved
handle reserved2[0] reserved2[1] data

0x01 0 0 0 0 0

0x02 0 0 0 0 LPWSAPROTOCOL

CMD_WSASTARTUP

CMD_DUPSOCKINIT

0x06 0 0 base address size shared region name CMD_ALLOCMEM

0x05 0 original handle 0 0 0 CMD_DUPHANDLECLOSE

Figure 3: An instance of duptab

as a mailbox. Emulators communicate by sending mes-
sages, each message consists of a header followed by the
data (a message looks like an UDP packet). Emulators
check their mailboxes (e.g., they simply read the value
of the mail counter) and process any messages, before
execution of each block.

Section 4.1.4 discussed the challenge of duplicating
descriptors between emulators. The offline part replaces
the use of the descriptors with calls into the emula-
tor. Here, we discuss the implementation of these func-
tions. We allocate a table (called Duplication Table or
“duptab”) with function pointers for each of the internal
descriptor functions and dispatch the functions accord-
ingly. An instance of duptab is shown in Figure 3.

Duptab contains one row for each descriptor that the
original binary uses. Each row contains the original
value, the type (socket, HANDLE, or HKEY) of the de-
scriptor, and the value of the duplicated descriptor for
each host process. The emulator functions then use this
table to translate a descriptor to the local descriptor.

Unfortunately, there is no mechanism to duplicate
FILE* pointers. We solve this problem by using an alter-
native approach: We provide our API replacements for
functions that use FILE* pointers. These replacements
are simple wrappers of equivalent functions that use
HANDLEs (which we can duplicate). E.g., fopen(), is
a wrapper for CreateFileW(), fprintf() is a wrapper
for sprintf() and WriteFile() and so on.

Beyond FILE* functions, several other functions need
replacement. For instance, if the original binary calls
ExitProcess(), we terminate all emulators (instead of
terminating the current process). The emulator keeps
a list of such special functions and replaces them with
the internal implementations during startup. Other
types of functions that need replacements are: func-
tions that perform per-process specific actions (e.g.,
SetCurrentDirectory()) or functions that keep inter-
nal state (e.g., , strtok()). In both cases, the emulator
has to replicate the information across all emulator in-
stances.

There are some sequences of functions, that

7



must be executed in the same address space, e.g.,
{bind, listen, accept} and {GetStartupInfo,
CreateProcess}. If listen() is executing in a differ-
ent address space than bind(), even though the socket
is successfully duplicated, an WSAEINVAL error will
be returned (this is a Windows bug). Our emulator uses a
call cache to address this issue. Each function in a chain
is marked as push while the last one is marked as sweep.
Replacements are provided for these functions to include
the push-sweep functionality. An emulator does not exe-
cute a push function; instead it pushes the function (with
its arguments) on the call cache and returns a fake suc-
cessful value. When an emulator finds a sweep function
it executes all functions from the call cache along with
the last one, flushing the call cache. Although not per-
fect, this approach works well in practice.

The distributed design of malWASH allows us to han-
dle multi-threaded programs by creating a shared stack
and virtual registers for each thread. Each thread con-
tains its own semaphore and its own variable that in-
dicates the next block. Each emulator uses a round-
robin algorithm to execute blocks from all “RUNNING”
threads. Simple replacements are also provided for
thread management functions: CreateThread() and
ResumeThread() mark and emulated thread as “RUN-
NING”, ExitThread() marks it as “UNUSED” and
SuspendThread() marks it as “SUSPENDED”.

The job of the emulator is twofold; it executes the em-
ulated binary and keeps itself stealthy. Emulators can
“ping” other emulators to see if all of them are alive.
When an emulator detects that some are missing, it could
invoke the loader to inject the missing emulator into a
new process.

4.4 Recovering terminated instances

The core functionality of malWASH is to ensure that the
original binary executes as if being run in a regular envi-
ronment. In addition, malWASH also ensures resilience
and recovery against “attacks”.

Resilience, is enforced as a side effect of malWASH’s
distributed nature. We may run into the problem that
an analyst kills all but one emulator instances to sim-
plify the analysis process. Therefore, malWASH also
needs a recovery mechanism. We already have a commu-
nication mechanism between emulators (Section 4.3.1)
and as we mentioned in Section 3, the total number of
running emulators is constant and known to all emula-
tors. Thus, checking whether an emulator was killed is
straight forward: each emulator periodically sends heart-
beat messages to all emulators. If an emulator stops re-
ceiving heartbeats, it can invoke the loader process again,
to respawn the missing emulators.

Figure 4: CPU usage among infected (idle) processes

5 Evaluation

We evaluate malWASH by targeting a set of malware
samples that we inject into the most popular browsers
(Google Chrome v50.0.2661.94, Mozilla Firefox 6.0.1
32 bit, Opera 12.16 and Safari 5.1.7) as victim pro-
cesses under the Windows 8.1 Pro x64 operating system.
Chrome’s security feature of separating each tab as its
own process comes in handy and allows malWASH to
inject a different set of chunks into each per-tab process
and shared memory regions across Chrome instances
will not raise alarms.

Table 2 shows details of the malware samples we eval-
uate. The total number of instructions is not equal to the
number of blocks in paranoid mode as malWASH omits
code before and after main() as the malWASH loader
component sets up the process environment and not the
initialization code in the executable.

We inject malWASH into 1, 2, 4, and 8 Chrome pro-
cesses, executing the samples in the different modes. In
all cases both the host processes and the emulated pro-
cess run without error. The host process continues with-
out measurable performance degradation.

5.1 malWASH resilience
Due to the distributed nature and the shared state of mal-
WASH, killing an emulated process is hard. In Figure 4
we inject a sample into 8 idle processes (so any CPU us-
age will come from malWASH) and start measuring their
CPU usage using Microsoft Performance Monitor. Ini-
tially, all host processes execute roughly the same num-
ber of blocks, so the CPU per host process stays low. As
we kill off individual host processes, the remaining em-
ulators end up executing more blocks, increasing their
CPU usage. If additional stealth is required, the emula-
tors can throttle execution of the target process and add
sleep intervals between block executions.

5.2 Case Study: Remote Keylogger
For malWASH we assume that the target process is not
CPU intensive. For CPU intensive workloads, the emu-

8



Sample name Type ## Instructions Blocks Generated

BBS BAST Paranoid
Trojan.Win32.Keylogger.Gen keylogger 2957 347 541 1484
Trojan.Win32.Invader.aa backdoor 6359 118 233 782
Gen:Heur.Bodegun.8 backdoor 1326 112 195 496
Virus.Win32.FileInfector virus 1739 98 183 772
TrojanSpy:Win32/Keylogger.BZ keylogger 1380 89 178 546
Trojan-Spy.Win32.DiabloII.a trojan-spy 162 62 86 162
W32/S-ac5b79f0!Eldorado trojan 1837 67 141 431
W32/SelfStarterInternetTrojan!M trojan-backdoor 3391 107 209 576

Table 2: Block statistics of malware samples.

lator may be an issue as there is overhead between exe-
cuted blocks. Our emulator works well for programs that
require stealthiness with little computation. Examples of
such programs are keyloggers or host-based backdoors.
In this section we focus on a remote keylogger to demon-
strate the effectiveness of malWASH.

The remote keylogger works a follows: it opens a
TCP connection to a remote host and sends captured
keystrokes to the host. For the evaluation, the keystrokes
were sent to a different process on the same machine.
The target program is repeatedly checking whether the
foreground window contains keywords from a whitelist
(e.g., Facebook, GMail, Hotmail, or Twitter). And if so,
it starts keylogging by checking the state of each key.

We measured performance impact by using the Oc-
tane 2.0 JavaScript benchmark on the host browsers’ pro-
cesses. In this benchmark we inject malWASH into the
browser process that runs the benchmark for each exper-
iment. Table 3 shows the average and standard deviation
of the benchmark scores for five runs, the low standard
deviation shows that the results are stable. The differ-
ence of the performance results across injected and non-
injected version is in the noise and will make intrusion
detection based on performance results hard.

Figure 5 shows a second scenario where we inject the
keylogger under malWASH in one Firefox process and
four Chrome processes (Chrome has four running pro-
cesses even with a single open tab), measuring their CPU
usage using the Microsoft Performance Monitor. During
normal browsing we observe some spikes due to regular
browsing activity. Then we stop browsing (browsers are
idle) and inject malWASH. At this point there is a small
peak due to malWASH startup. As browsing continues,
the keylogger now runs inside the host processes and
captures keystrokes. After some time we close Chrome
and the emulator inside Firefox now has to execute all
blocks, showing a slight increase in CPU usage for the
Firefox process.

This benchmark shows that we can distribute the load

of the emulator across several processes. With an in-
creasing amount of host processes, the overhead for each
individual host process through the injected process is
reduced.

5.3 Discussion

Detecting programs running under malWASH through
static or dynamic analysis is difficult. Static analysis is
complicated because the original binary is chopped into
many small pieces, likely below the signature threshold.
The (tiny) emulator itself can also be protected using ex-
isting (automated) diversity techniques. Dynamic analy-
sis is challenging as the behavior of the target program
is hidden under the infected processes, making it hard to
observe a sequence of calls of the target program. There-
fore, defenders will likely move towards detecting mal-
WASH instead of the target program. This by itself has
the advantage of hiding the true functionality of the em-
ulated program.

5.3.1 Protecting the emulators

Although existing detection methods will have a hard
time detecting the original binary, they can be used for
detecting the emulators. We argue that behavioral anal-
ysis of emulator is challenging because: (i) the emula-
tor is very small (14kB), (ii) the emulator uses only a
tiny set of system calls (for shared memory management)
which will appear benign, and, most importantly, (iii)
these system calls are well mixed with a subset of system
calls from the emulated binary. In addition, the emula-
tor can leverage any existing obfuscation techniques to
make analysis harder.

An issue that the emulator faces is that it uses dedi-
cated threads with similar behavior. Thus, instead of a
per-process analysis, a defender could look at the actual
threads and try to identify emulator threads. However,
this situation is somewhat similar to the status quo: mal-

9



Average scores from Octance 2.0 Javascript Benchmark

Google Chrome Mozilla Firefox Opera Safari
Mode w/o Std Full w/o Std Full w/o Std Full w/o Std Full

Average 19,541 15,762 11,226 16,259 12,146 10,356 6,048 4,832 3,988 3,163 2,328 2,041
St. Dev 316 754 1,431 947 2.727 650 201 250 136 99 153 38

Table 3: Statistics from running the Octane 2.0 JavaScript benchmark five times in each of the most popular browsers,
“w/o” shows execution without injection, “Std” shows a keylogger that scans for keywords for half of the time and cap-
tures and sends keystrokes for the rest of the time, while “Full” shows the keylogger capturing and sending keystrokes
100% of the time.

Figure 5: CPU usage of Firefox and Chrome under malWASH infection

ware uses a dedicated process within the system. One op-
tion would be to chop the emulator itself into small com-
ponents, injecting them into different threads of the same
process. This would lead to yet another (smaller) sub-
emulator. Sub-emulators are much simpler because they
run under the same address space and thus they lack the
aforementioned problems that malWASH tries to solve.
No shared memory is required, just a form of synchro-
nization (e.g., spin locks or covert channels), hardening
the options for behavioral analysis and spreading the em-
ulator across several threads.

5.3.2 Fixing any abnormal system behavior

The performance overhead for malWASH is small for
non-CPU intensive workloads (see Figure 4). A possi-
ble detection mechanism could spread “honeypot” pro-
cesses that are idling on the system. As soon as the emu-
lator is injected into these processes they will start to ex-
ecute some computation and the malWASH injection can
be detected. malWASH can try to mitigate by scanning
for active processes by making the loader more complex
(and therefore more detectable).

Careful selection of host processes, hides potential be-
havioral discrepancies of a process, e.g., no alarms are
raised for an emulator that opens a remote connection if
it is running in a browser. Process selection is an open
problem and we leave it as a future work. In short, mal-
WASH could observe the behavior of a process, and if

Process 

I

Process 

II

Process 

III

Process 

IV

Shared Region #1

External

Process V

External

Process VI

Covert

Channel

Shared Region #2 Shared Region #3

Figure 6: Thwarting detection based on shared memory
correlation. Here processes I through IV used to share
the same mapping. We create 3 replicas for the shared
mapping with two processes attached each.

suitable, do the injection.
Another opportunity to detect malWASH is the shared

memory regions. A detection mechanism may corre-
late host processes through their shared memory regions.
On one hand correlation is challenging, due to the large
amount of shared memory regions that are active across
all processes on windows systems. In addition, mal-
WASH does not require a star-like mapping where the
same shared memory region is mapped among all pro-
cesses (even for heap allocated shared regions) but can
also use duplicated regions as shown in Figure 6.

With duplicated regions, we maintain multiple copies
of the same shared mapping, and we force at most two

10



processes to share the same region. Each region could
then use a disjoint encryption key to avoid correlation
between shared regions. In order to keep these shared re-
gions consistent, some “external” processes are needed.
Each external process is responsible for keeping the sub-
set of shared regions consistent. External processes com-
municate with each other to keep their subsets consistent.
This communication is done using covert channels or by
reading/writing regions to temporary files to avoid “cir-
cles” of processes connected by shared memory.

In case that usage of shared memory is a problem by
itself, it can safely replaced by different (and admittedly
slower) mechanisms like files, pipes, or covert channels.

Also, the distributed nature of malWASH does not re-
quire all the blocks and program’s state to be present in
memory during execution: the emulator could request
the next block and the current program’s state from a re-
mote host which is controlled by the bot of the attacker.

As discussed in Section 4.2, the loading is the most
exposed part of malWASH. If our proposed obfuscation
approach is not stealthy enough, additional emulator pro-
cesses can be spawned on demand, further obfuscating
the loader.

We do not claim that this section covers all methods
to detect malWASH and other ways may exist. The cur-
rent prototype of malWASH is not complete but focuses
on showcasing the technique. Overall, malWASH is a
new technique to hide a target program in a set of benign
processes.

6 Conclusion

Hiding processes in an execution environment is a chal-
lenging problem. While static detection is straight-
forward to evade using metamorphism [33] and diversity,
dynamic detection can single out processes at runtime
due to their behavior.

We present malWASH, a tool that hides the behavior
of an arbitrary program by distributing the program’s ex-
ecution across many processes. We break the program
into small chunks and inject these chunks into other pro-
cesses. Our emulator captures and synchronizes state
among the processes and coordinates the execution of the
program, hopping from process to process and weaving
individual instructions and system calls into the stream
of instructions and system calls of the host program. We
also propose the use of sub-emulators to further protect
malWASH itself.

Our evaluation shows that our prototype of malWASH
successfully distributes different malware programs into
sets of benign processes. Detecting coordinated small
chunks of malicious code in benign processes is a chal-
lenging problem for the research community.

7 Acknowledgements

The present work was supported, in part, by NSF CNS-
1513783 and the “Andreas Mentzelopoulos Scholarships
University of Patras”.

References

[1] John Aycock, Rennie deGraaf, and Michael Jacob-
son Jr. Anti-disassembly using cryptographic hash
functions. Journal in Computer Virology, 2006.

[2] Ulrich Bayer, Andreas Moser, Christopher Kruegel,
and Engin Kirda. Dynamic analysis of malicious
code. Journal in Computer Virology, 2006.

[3] Rodrigo Rubira Branco, Gabriel Negreira Barbosa,
and Pedro Drimel Neto. Scientific but not aca-
demical overview of malware anti-debugging, anti-
disassembly and antivm technologies.

[4] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua
Ding, and Robert H. Deng. Ropecker: A generic
and practical approach for defending against rop at-
tacks. NDSS, 2014.

[5] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel
Winandy. Ropdefender: A detection tool to defend
against return-oriented programming attacks. ASI-
ACCS, 2011.

[6] Dhruwajita Devi and Sukumar Nandi. Pe file fea-
tures in detection of packed executables. Interna-
tional Journal of Computer Theory and Engineer-
ing, 2012.

[7] Stephen Dolan. mov is turing-complete. http://
www.cl.cam.ac.uk/~sd601/papers/mov.pdf,
2013.

[8] Chris Eagle. The IDA Pro Book: The Unofficial
Guide to the World’s Most Popular Disassembler.
No Starch Press; 2 edition, 2011.

[9] Manuel Egele, Theodoor Scholte, Engin Kirda, and
Christopher Kruegel. A survey on automated dy-
namic malware-analysis techniques and tools. ACM
Comput. Surv., 2012.

[10] Eldad Eilam. Reversing: Secrets of Reverse Engi-
neering. Wiley; 1 edition, 2005.

[11] Peter Ferrie. Attacks on virtual machine emulators.
Symantec Security Response, 2006.

[12] Stephen Fewer. Reflective dll injection.
http://www.harmonysecurity.com/files/

HS-P005_ReflectiveDllInjection.pdf.

11

http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf


[13] Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xi-
angyu Zhang, and Dongyan Xu. Leaps: Detecting
camouflaged attacks with statistical learning guided
by program analysis. DSN, 2015.

[14] Steven A. Hofmeyr, Stephanie Forrest, and Anil
Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 1998.

[15] Xin Hu, Tzi cker Chiueh, and Kang G. Shin. Large-
scale malware indexing using function-call graphs.
ACM Conference on Computer and Communica-
tions Security, 2009.

[16] Emily R. Jacobson, Andrew R. Bernat, William R.
Williams, and Barton P. Miller. Detecting code
reuse attacks with a model of conformant program
execution. ESSoS, 2014.

[17] Clemens Kolbitsch, Paolo Milani Comparetti,
Christopher Kruegel, Engin Kirda, Xiao yong
Zhou, and XiaoFeng Wang. Effective and efficient
malware detection at the end host. USENIX Secu-
rity Symposium, 2009.

[18] Jeremy Z. Kolter and Marcus A. Maloof. Learning
to detect and classify malicious executables in the
wild. ournal of Machine Learning Research, 2006.

[19] Wenke Lee, Salvatore J. Stolfo, and Philip K.
Chan. Learning patterns from unix process exe-
cution traces for intrusion detection. AAAI Work-
shop on AI Approaches to Fraud Detection and Risk
Management, 1997.

[20] Metasploit. https://www.metasploit.com/.

[21] Vishwath Mohan and Kevin W. Hamlen. Franken-
stein: Stitching malware from benign binaries.
Usenix WOOT, 2012.

[22] Vasilis Pappas. kbouncer: Efficient and transparent
rop mitigation. Usenix Security Symposium, 2013.

[23] Michalis Polychronakis and Angelos D. Keromytis.
Proceedings of the 5th international conference on
information systems security. MALWARE, 2009.

[24] Michalis Polychronakis and Angelos D. Keromytis.
Rop payload detection using speculative code exe-
cution. MALWARE, 2011.

[25] Giorgos Poulios, Christoforos Ntantogian, and
Christos Xenakis. Ropinjector: Using return
oriented programming for polymorphism and an-
tivirus evasion. Blackhat USA, 2015.

[26] Konrad Rieck, Thorsten Holz, Carsten Willems,
Patrick Dssel, and Pavel Laskov. Learning and clas-
sification of malware behavior. DIMVA, 2008.

[27] Monirul I. Sharif, Vinod Yegneswaran, Hassen
Saidi, Phillip A. Porras, and Wenke Lee. Eureka:
A framework for enabling static malware analysis.
ESORICS, 2008.

[28] P. V. Shijoa and A. Salimb. Integrated static and
dynamic analysis for malware detection. ICICT,
2014.

[29] Peter Szor. The Art of Computer Virus Research
and Defense. Addison-Wesley Professional, 2005.

[30] David Wagner and Drew Dean. Intrusion detection
via static analysis. IEEE Symposium on Security
and Privacy, 2001.

[31] Christina Warrender, Stephanie Forrest, and
Barak A. Pearlmutter. Detecting intrusions using
system calls: Alternative data models. IEEE Sym-
posium on Security and Privacy, 1999.

[32] Mark Vincent Yason. The art of un-
packing. https://www.blackhat.com/

presentations/bh-usa-07/Yason/

Whitepaper/bh-usa-07-yason-WP.pdf,
2007.

[33] Ilsun You and Kangbin Yim. Malware obfusca-
tion techniques: A brief survey. 2010 Interna-
tional Conference on Broadband, Wireless Com-
puting, Communication and Applications, 2010.

[34] Syarif Yusirwan, Yudi Prayudi, and Imam Riadi.
Implementation of malware analysis using static
and dynamic analysis method. International Jour-
nal of Computer Applications, 2015.

12

https://www.metasploit.com/
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf

	Introduction
	Background and Related Work
	malWASH Design
	Implementation
	Phase 1: Chopping the binary
	Control-Flow Transfers
	Block relocations
	Heap manipulation
	Socket descriptors and HANDLEs

	Phase 2.a: Loading emulators
	Phase 2.b: Executing the binary
	Core environment
	Advanced Components

	Recovering terminated instances

	Evaluation
	malWASH resilience
	Case Study: Remote Keylogger
	Discussion
	Protecting the emulators
	Fixing any abnormal system behavior


	Conclusion
	Acknowledgements

