SoK: Challenges and Paths Toward Memory Safety for eBPF

Kaiming Huang

Mathias Payer
The Pennsylvania State University —Ecole Polytechnique Fédérale de Lausanne

Zhiyun Qian

University of California, Riverside

kzh529@psu.edu mathias.payer @nebelwelt.net zhiyunq@cs.ucr.edu
Jack Sampson Gang Tan Trent Jaeger
The Pennsylvania State University The Pennsylvania State University University of California, Riverside
Jjms1257 @psu.edu gxt29@psu.edu trentj @ucr.edu

Abstract—The extended Berkeley Packet Filter (eBPF) subsys-
tem in Linux enables the extension of kernel functionality with-
out modifying kernel code. In addition to its use in networking,
eBPF provides the flexibility to perform tracing, add security
checks, etc. To ensure that eBPF does not enable attackers to
compromise the kernel, eBPF includes a verifier to validate
every eBPF program before its execution, which includes
checks that aim to prevent eBPF programs from modifying
kernel memory due to memory errors. However, numerous
vulnerabilities have been identified in the eBPF subsystem,
including the verifier itself, which greatly violate expectations,
leading to concerns about the threats of memory safety brought
by eBPF. This paper presents the first systematic analysis
of the memory safety risks inherent in the eBPF ecosystem,
focusing on the challenges faced by the limitations of the eBPF
verifier and current kernel defenses. We then evaluate proposed
research mitigation strategies that apply isolation techniques,
runtime checks, and static validation, highlighting their contri-
butions and gaps. Our study finds that only 1.62-3.74% (37-85)
of the memory operations in public eBPF programs cannot be
proven memory safe comprehensively, motivating actionable
insights towards enforcing comprehensive memory safety while
accounting for performance and compatibility.

1. Introduction

The extended Berkeley Packet Filter (eBPF) [1], [2]
enables the dynamic execution of user-defined programs
in kernel space. Originally developed to enhance network
packet filtering [3], [4], [5], [6], [7], eBPF now supports a
broad range of applications beyond networking, including
performance monitoring [8], [9], [10], [11], [12], security
enforcement [13], [14], [15], [16], [17], and system trac-
ing [18], [19], [20], [21], [22]. eBPF defines a bytecode for-
mat that can be either interpreted or JIT-compiled, enabling
verification of both its semantics and security properties.
eBPF has reshaped how developers monitor and control the
system by enabling direct interaction with kernel functions
and data, making it possible to build high-performance,
customizable programs without constantly modifying the

kernel. This unique capability allows eBPF programs to
operate with exceptional efficiency, bypassing traditional
overheads such as context switching, which are critical in
high-throughput, latency-sensitive environments. However,
these powerful capabilities come with significant security
challenges, such as cross-container attacks [23], transient
execution attacks [24], [25], and particularly, memory safety
within kernel space.

The privileged execution of eBPF programs in the kernel
context, though performance-oriented, opens the system to
potential memory error exploitations that can compromise
the entire kernel [26]. In fact, the Linux eBPF has been
blamed as a new privilege escalation technique in 2022 [27],
and has been used as an effective measure to enhance at-
tacker’s capabilities and expanding the exploitability of ker-
nel vulnerabilities [28], [29]. Memory safety is essential in
eBPF’s architecture, as flaws here can lead to severe security
issues, including arbitrary code execution, privilege escala-
tion, data corruption, and denial of service. To mitigate these
risks, the Linux kernel integrates the eBPF verifier [30],
a static analysis tool designed to assess eBPF programs
for safety violations before allowing their execution. The
verifier enforces various security checks, such as validating
memory access bounds and ensuring proper pointer usage.
Despite these precautions, the verifier has shown limitations
in comprehensively blocking unsafe operations [31]. These
gaps are especially concerning given the expanding attack
surface presented by eBPF’s deep integration into the kernel.

Recent years have seen a surge (see Section 3) in reports
of eBPF-related vulnerabilities [32], highlighting the grow-
ing demand for more resilient memory safety mechanisms.
Notably, many malicious eBPF programs can bypass verifier
checks intentionally by leveraging complex program struc-
tures or exploiting specific verification weaknesses, resulting
in vulnerabilities that can lead to critical kernel corruption.
Over the years, kernel maintainers keep adding checks into
the eBPF verifier to prevent such circumvention and to
support new features added to the eBPF subsystem. In Linux
kernel version v6.11, the verifier contains more than 22k
lines of code, which is 11x more than its initial version
v3.18. For example, 93 lines of code were added into the

verifier in 2024 to prevent an integer overflow [33], and
595 lines of code were added into the verifier in 2023 for
supporting verification on open-coded iterator loops [34].
Unfortunately, even as the verifier is refined, sophisticated
attacks continue to find ways to evade, suggesting that
memory safety in eBPF is far from ensured. In 2024 alone,
over 100 bugs related to memory errors were discovered in
the eBPF subsystem, with 45 of them still unaddressed [35].
Furthermore, a substantial number of CVEs regarding mem-
ory errors have been linked to eBPF since 2023, underscor-
ing the need for improved memory safety solutions.
Beyond the verifier, other components in the eBPF
ecosystem pose additional security risks. For instance, eBPF
helper functions are APIs provided by the kernel that al-
low eBPF programs to perform specific operations, such
as accessing packet data or managing eBPF maps—data
structures that facilitate communication between user space
and kernel space. These helper functions, however, generally
lack internal safety checks, relying instead on the verifier
to enforce safe usage. This reliance creates a trust chain
that can be easily broken if an unsafe eBPF program slips
past the verifier. Consequently, flawed or malicious eBPF
programs can exploit unchecked helper functions to access
or corrupt kernel memory, bypassing isolation mechanisms
designed to protect the kernel. The risk is compounded by
the complexity of interactions within the eBPF subsystem,
where unchecked data in maps or pointers manipulated by
helpers can lead to memory errors that escape the verifier.
To address these challenges, various defense strate-
gies have been proposed. Isolation techniques, including
both software-based fault isolation [36], [37] and hardware-
assisted mechanisms [38], [39], aim to contain eBPF pro-
grams within safe memory boundaries. While isolation pro-
vides an essential layer of defense, it is often insufficient
to fully address the spectrum of memory vulnerabilities
due to indirect kernel interactions (e.g., cross-boundary
interface vulnerabilities (CIVs) [40], [41] through eBPF
helpers). Static and dynamic verification enhancements have
also been explored [42], [43], [44], [45], [46], [47], [48],
[49], such as refining the verifier’s capabilities to track
dependencies and reject unsafe memory operations. Efforts
to migrate eBPF towards memory-safe languages, such as
Rust [31], offer the potential to eliminate certain classes of
memory errors at the source level. Nevertheless, each of
these approaches presents trade-offs, such as performance
overhead, limited coverage, or compatibility challenges.
Based on the facts discussed above, we assert that while
awareness is growing around the eBPF subsystem’s threat
to kernel memory safety!, the specific weaknesses and flaws
within each component, across the workflow, and in existing
defenses remain alarmingly unaddressed. There is an urgent
need to systematically document not only the current threats
eBPF poses to kernel memory, but also the limitations of
existing defenses. By +identifying and summarizing these
weaknesses, this work aims to further point out essential

1. We will only focus on memory safety of eBPF, other security concerns
(e.g., concurrency bugs and side channels) are excluded from the scope.

future directions for effective and comprehensive memory
safety solutions within the eBPF framework, advancing
toward a more secure foundation for the Linux kernel amid
mounting and potentially catastrophic vulnerabilities.

In this paper, we start with a summary of the workflow
and trust model of the eBPF subsystem (Section 2), reveal-
ing that the trust model relies critically on the eBPF verifier.
However, we then show that the eBPF verifier has proven
unreliable, with numerous vulnerabilities allowing unsafe
programs to bypass its checks, making it a significant source
of kernel memory safety issues (Section 3). To address the
sources of these vulnerabilities, we provide a detailed study
that classifies the weaknesses of the eBPF verifier into three
categories using concrete CVEs (Section 4), reflecting that
the checks are unsound, incomplete, and have a limited
scope that prevents comprehensive validation of memory
safety. The Linux kernel includes both eBPF-specific and
general defenses to mitigate issues arising from an unreliable
verifier, but we find that eBPF-specific defenses are hindered
by optional configurations and limited enforcement of priv-
ilege restrictions, while general defenses lack the coverage
needed to fully prevent eBPF-based attacks, leaving the
kernel vulnerable (Section 5).

Researchers have recognizes these shortcomings in the
eBPF verifier and current kernel defenses and proposed a
variety of defenses aiming to prevent memory errors and/or
their exploitation. This paper systematically reviews these
research advances to enhance eBPF memory safety, includ-
ing improvements to static verification, isolation, runtime
checks, fuzzing, and migration to memory-safe languages
(Section 6). While each approach offers specific security
benefits, they also present limitations: static verification
struggles with validating complex runtime interactions, iso-
lation contains memory access but can be bypassed in-
directly, and runtime checks improve safety but are per-
formance intensive. Fuzzing helps uncover vulnerabilities
yet lacks full coverage, and language migration introduces
compatibility issues and requires significant changes to the
kernel. Effective security for eBPF requires balancing these
strategies to meet both memory safety requirements and
high-performance/flexibility demands.

We identify the key weaknesses in the current eBPF
security model, including limited privilege restrictions, in-
complete checks by the verifier, lack of safeguards in eBPF
helpers, and coarse-grained isolation techniques. Addition-
ally, runtime checks prove too costly for high-performance
eBPF use cases, exposing vulnerabilities and potential at-
tack vectors that could exploit these gaps (Section 7). We
evaluate public and malicious eBPF programs to determine
how many unsafe memory operations that need attention and
propose potential directions for enforcing memory safety
comprehenisvely (Section 8). We aim to provide actionable
research directions to prevent the exploitation of memory
errors, enabling safe deployment within the Linux kernel.
We make the following contributions in this paper:

o What can go wrong: We conduct the first systematic study
of the memory safety threats that the eBPF subsystem
poses to the Linux Kernel.

User Space Kernel Space
User Other Kernel Resources
Application and Modules
N Read
Produce¢ \ Read
Write Write
eBPF
Program eBPF Map |« ‘F;vi;: eBPF Helpers
Source
3
COmpiIe¢ Invoke 1
eBPF
Check o7 Load eBPF Program
Program 1o »| eBPF Verifier ———=———1 n
Bytecode Validate JIT Compile | Machine Code
\Z| Untrusted Component \Z| Trusted Component

Figure 1: Overview of the eBPF workflow and its trust model.

o How does it go wrong: We conduct the first systematic
study of the weaknesses in the workflow of the current
eBPF subsystem that introduces memory safety threats.

o Has the issue been resolved: We conduct the first com-
prehensive study of currently deployed and research de-
fenses by classes, highlighting their contributions while
pinpointing individual shortcomings.

e How to fix it: We provide guidance for potential future
research directions for enhancing eBPF memory safety.

2. eBPF Workflow and Trust Model

The extended Berkeley Packet Filter (eBPF [50]) frame-
work allows user-defined programs to execute within the
Linux kernel in a secure, sandboxed environment, but eBPF
programs stand apart from regular programs. These pro-
grams are subject to stricter regulations due to their direct in-
teraction with the kernel, and are highly performant through
the JIT compilation. Originally created for network packet
filtering, eBPF now supports a broad range of critical tasks,
including tracing, security, and performance monitoring.

In the current Linux kernel security model, the trust hi-
erarchy establishes which components are trusted and which
are not, as shown in Figure 1. Initially, the eBPF programs
are untrusted since they originate from untrusted user-space
applications and are installed in the context of untrusted
users. These programs are written by users, compiled into
bytecode, and vetted by the eBPF verifier before they can
execute within the kernel. The verifier is a critical, trusted
component that performs static analysis on eBPF programs,
checking for memory safety, pointer integrity, stack/register
usage, and enforcing limits on loops and instruction counts
to prevent unsafe operations. Only after passing these checks
can an eBPF program be loaded, JIT compiled into machine
code, then executed in the kernel.

Once verified and loaded, eBPF programs are trusted to
perform only benign memory accesses. eBPF programs rely
on trusted eBPF helper functions, which are kernel-provided
APIs that offer trusted access to kernel operations like packet
parsing, map management, and limited memory access. Us-
ing eBPF helpers, eBPF programs may access kernel data
structures shared with the eBPF subsystem. Examples of
such data structures include eBPF maps and other kernel

resources, such as ring buffers, Perf buffers, and tracepoints.
For example, eBPF maps serve as intermediaries for data ex-
change between user and kernel memory, providing data per-
sistence across program executions. User-space applications
can access the eBPF map through system calls (i.e., BPF ()).
Beyond the eBPF subsystem, eBPF programs can indirectly
affect other kernel resources and modules through eBPF
helpers e.g., bpf_skb_load_bytes. These resources,
again, depend on the verifier and helpers to enforce memory
safety and access control to prevent unauthorized access.
Notably, the chain of trust from verified eBPF programs
to other kernel resources, is only as strong as the eBPF
verifier. If the eBPF verifier fails to identify unsafe behaviors
or vulnerabilities in an eBPF program, no further checks on
ensuring memory safety of eBPF program occur at runtime.
Specifically, eBPF helper functions, though trusted, rely on
the eBPF verifier to ensure that eBPF programs use them
safely; they do not perform additional validation of memory
access or pointer safety. Consequently, if a malicious or
flawed eBPF program bypasses the verifier, it could misuse
helpers to manipulate kernel memory, such as forging a
pointer or modifying map data in a way that grants unautho-
rized access to broader kernel memory, potentially leading
to kernel memory corruption or privilege escalation. Thus,
any weaknesses in the verifier can compromise the entire
trust chain, exposing the kernel to significant security risks
from untrusted eBPF programs (see examples in Section 4).

TA 1. “The eBPF trust model relies critically on the
eBPF verifier to enforce memory safety; If the veri-
fier fails, untrusted or malicious eBPF programs may
corrupt kernel memory (e.g., misuse eBPF helpers).

a. We identify key observations as “Take-Aways”. TAs with key in-
sights are highlighted in bold, other TAs are summaries of knowledge.

3. Memory Safety Issues in the eBPF Verifier

The eBPF verifier serves as the only defense in the
Linux kernel to analyze and reject unsafe eBPF programs.
Unfortunately, it also has become a significant source of
bugs. A substantial amount of CVEs have been reported for
bugs identified in the eBPF verifier, including 46 from year
2024 after kernel maintainers became reluctant to assign
CVEs to kernel bugs [51], [52]. In fact, the verifier serves
as the most vulnerable components in terms of the number
of CVEs discovered in the eBPF subsystem [53]. These
bugs enable attackers to bypass security checks, and the
eBPF subsystem has been becoming a hotbed for intro-
ducing memory safety vulnerabilities into the kernel. To
date, Syzbot reported a total of 325 bugs that are caused by
memory errors [32] since eBPF was added into the Linux
kernel in version 4.4 [54] (Jan 2016), making the eBPF
subsystem the fourth-ranked subsystem in the Linux kernel
in terms of the number of bugs. More importantly, more
than half (169) were identified since 2023, and 45 of them
remain unfixed [35].

Specifically, all aforementioned bugs were triggered
by eBPF programs generated by the kernel fuzzer,
SyzKaller [55], indicating that all of them can bypass the
eBPF verifier checks and get loaded into the kernel. The
reported bugs, if exploited by an attacker, may cause serious
consequences to the kernel, such as privilege escalation,
arbitrary code execution, and DoS. The sharp increase in
identified bugs since 2023, with many remaining unresolved,
highlights the weakness of the eBPF verifier to identify
unsafe operations that may lead to memory errors, resulting
in the ongoing and growing challenge of ensuring that eBPF
programs satisfy memory safety.

TA 2. The eBPF verifier, intended as the Linux ker-
nel’s primary defense to reject unsafe eBPF programs,
has failed to reject programs that may violate memory
safety, becoming a major source of vulnerabilities.

4. Attack Flawed Verification

In this section, we will provide a detailed analysis of
the weaknesses of the eBPF verifier in identifying memory
safety threats. We examined the complete set of memory
safety vulnerabilities discovered in 2024 that have concrete
PoCs and reproducers, including 85 Syzbot generated re-
ports and 17 CVEs. Based on the investigation, we found
that existing checks in the eBPF verifier have shown weak-
nesses in three aspects (1) Unsound - checks are imple-
mented in an unsound way that can be bypassed, such
as [56], [57], [58], [59], [60]; (2) Incomplete - necessary
checks needed to achieve full memory safety are missing,
such as [61], [62], [63], [64], [65]; (3) Limited scope -
checks are only conducted towards eBPF bytecode, ignoring
other components in the eBPF subsystem, such as [66], [67],
[68], [69], [70]. We use real-world vulnerabilities as exam-
ples to concretly demonstrate how these weaknesses allow
eBPF programs to violate memory safety. All examples are
shown to bypass all the currently deployed kernel defenses
listed in Table 1 and damage the kernel.

4.1. Bypass Unsound Checks

Declared checks in the eBPF verifier can be unsound,
enabling an attacker to bypass existing checks. For ex-
ample, one of the eBPF verifier’s functionalities is path
pruning [71], which skips redundant execution paths to
improve verification performance. However, accurate path
pruning depends on precise tracking of dependencies among
registers. If the verifier fails to track a dependency between
registers accurately, unsafe paths may be mistakenly pruned
as safe. CVE-2023-2163 [72] is one such case. This issue
allows attackers to exploit the verifier’s path-pruning mecha-
nism to bypass memory safety checks, potentially leading to
privilege escalation and arbitrary memory write operations.

Specifically, when an eBPF program executes pointer
arithmetic operations, all registers involved in such oper-
ations should be tracked. For instance, if register r1 un-

1 SEC ("socket")
2 int exploit_prog(struct sk_buff =xskb) {

3 int *xdata; //address stored in rl

4 data = bpf_ringbuf_reserve (&ringbuf, 64, 0);
5 return -1;

6

if (!data)
// Ex it

ng path pruning by passing an out-of-
er in rl
7 // Here, r2 is the offset that exceeds
bpf_ringbuf_submit (data + 128, 0);
9 // rl = data + 128, r2 = 128
10 return 0;

bounds

Listing 1: Example PoC for CVE-2023-2163.

dergoes pointer arithmetic involving r2 (e.g., rl=rl+r2),
the verifier should recognize that r1’s value depends on
r2. This dependency requires the verifier to explore all
paths involving r1 under the influence of r2. However,
in CVE-2023-2163, the verifier mistakenly ignores r2 as
a dependency of r1, leading it to prune paths prematurely.
This premature pruning means that when r1 points to mem-
ory locations (base) influenced by r2 (offset), the verifier
incorrectly assumes it is always within safe bounds, leading
to out-of-bounds access. By crafting eBPF programs with
pointer operations involving r1 and r2, attackers can cause
rl to point outside its allocated boundary.

To exploit this vulnerability, the attacker must craft a
malicious eBPF program that tricks the verifier into disre-
garding the dependency between r1 and r2, thereby pre-
maturely pruning the verification of the path corresponding
torl = rl + r2. The PoC shown in Listing 1 demon-
strates how this vulnerability can be easily exploited. data
representing a pointer to the reserved memory block (size
64), is stored in rl. For simplicity, the comment at line 6
represents the steps that the attacker deceives the verifier,
the details are illustrated in the CVE writeup [73], [74].
The bpf_ringbuf_submit function is then called with
an out-of-bounds pointer (data+128). Here, 128 (stored in
r2) acts as an offset applied to r1, shifting it beyond the
bound. Because of the missing dependency tracking between
rl and r2 (triggered by attacker), the verifier assumes the
memory access is within bounds and prunes this path (i.e.,
the call at line 8) as if it were safe, allowing the out-of-
bounds access to occur unchecked. This flaw grants the
attacker the arbitrary memory accesses in kernel memory.

TA 3. Optimizations that improve verifcation perfor-
mance of the the eBPF verifier can be unsound. Flaws
in removing checks by optimizations allow attackers
to instantiate programs that violate memory safety.

4.2. Exploit Gaps in Incomplete Checks

Checks performed by the verifier are insufficient to
guarantee comprehensive memory safety, i.e., checks that
should be included are missing. CVE-2021-4204 [75] is a
vulnerability found in the eBPF subsystem that stems from
a lack of proper argument validation for helper functions,
which permits out-of-bounds memory accesses that can lead
to privilege escalation. The eBPF verifier, which should
report such an improper argument specification, let the
program pass the verification, resulting in the vulnerability.

One of the responsibilities of the eBPF verifier is validat-
ing that the use of helper functions obeys the required calling
conventions [30]. Each helper function must follow its pre-
defined structure provided by struct bpf_func_proto,
specifying argument types and return values. The verifier
checks that these arguments are valid before the program
can be loaded. For example, bpf_strtol () accepts a
pointer to memory and the size of the memory block as its
arguments. The verifier uses the size argument to validate
that the size of memory block is correct, preventing out-of-
bounds memory access, as shown below in Listing 2.

const struct bpf func_proto bpf_strtol_proto = {

1

2 .func = bpf_strtol,

3 .gpl_only = false,

4 .ret_type = RET_INTEGER,

5 .argl_type = ARG_PTR_TO_MEM, // Pc

6 .arg2_type = ARG_CONST_SIZE, // Size

7 .arg3_type = ARG_ANYTHING, // A)

8 .arg4_type = ARG_PTR_TO_LONG,// Pointer to res
9 };

Listing 2: Signature of bpf_strtol()

Argument 1 (ARG_PTR_TO_MEM) is a pointer to a
memory block. Argument 2 (ARG_CONST_SIZE) speci-
fies the size of the memory block. The verifier ensures
that the pointer passed in the first argument is valid and
that the length specified in the second argument cor-
rectly matches the allocated memory. If the size is in-
correct, the verifier will reject the program. For example,
if bpf_strtol ("hello",100,0, &res) is attempted,
the eBPF verifier rejects this eBPF program because the pro-
vided size (100) exceeds the length of the string "hello”.

The cause of CVE-2021-4204 is that the defini-
tion of helper functions bpf_ringbuf_submit () and
bpf_ringbuf_discard () do not have the size argu-
ment of memory block as part of their expected calling
convention. These functions take a pointer to allocated
memory (PTR_TO_ALLOC_MEM) as the first argument, but
they lack a size argument for the verifier to validate the
memory block’s size, as shown in Listing 3.

const struct bpf_func_proto bpf_ringbuf_submit_proto={

. func = bpf_ringbuf_submit,
.ret_type = RET_VOID,

.argl_type = ARG_PTR_TO_ALLOC_MEM,
.arg2_type = ARG_ANYTHING, };

1
2
3
4
5
6
7 const struct bpf_func_proto bpf_ringbuf_discard_proto={
8
9
0
1

. func = bpf_ringbuf_discard,
.ret_type = RET_VOID,
1 .argl_type = ARG_PTR_TO_ALLOC_MEM,
1 .arg2_type = ARG_ANYTHING, };

Listing 3: Flawed Helper Function Signature Definition.

In Listing 3, both of the function signatures de-
fine the first argument as a pointer to allocated memory
(PTR_TO_ALLOC_MEM). However, the verifier will not
perform size validation for the memory block, since there
is no parameter in the function signature that specify the
legitimate size for the eBPF verifier to check. In this case,
the verifier simply skips such checks, rather than rejecting
the program or at least issuing a warning. The lack of proper
size validation allows a user to pass out-of-bounds pointers
easily by using input of arbitrary length that is referenced by
the first argument of the function signature, leads to memory
corruption in the kernel memory.

1 SEC ("xdp_prog")

2 int my_prog(struct xdp_md xctx) {

3 void xsample;

4 // Reserve a memory block in the ring buffer
5 sample = bpf_ringbuf_reserve (&ringbuf, 64, 0);
6 if (!sample)

7 return XDP_ABORTED;

8 // Perform some operation on the buffer

9 bpf_probe_read(sample, 64, "data");

10 // Exploit: Call with an out-of-bounds pointer
11 bpf_ringbuf_submit (sample + 128, 0);

12 // OOB pointer, bypasses size check

13 return XDP_PASS;

Listing 4: Example PoC of the Vulnerability.

To exploit this vulnerability, the attacker just needs
to reserve memory in the ring buffer?, then write data
into the allocated memory block, and finally invoke
bpf_ringbuf_submit () with an out-of-bounds pointer
as parameter. As shown in the example PoC in Listing 4, the
malicious eBPF program reserves 64 bytes of memory in the
ring buffer, then the flawed bpf_ringbuf_submit ()
helper function is called with an out-of-bounds pointer
sample+128 at line 11, bypassing the intended memory
bounds. Since there is no size check for the pointer passed
tobpf_ringbuf_submit () the attacker can manipulate
the internal logic of the ring buffer to execute arbitrary code
in kernel space, leading to privilege escalation.

TA 4. The eBPF verifier trusts eBPF helpers uncon-
ditionally, checks that are required for comprehen-
sive memory safety are missing in the verifier.

4.3. Exploiting Limited Protection Scope

The eBPF trust model has fundamental weaknesses.
Specifically, the eBPF verifier places implicit trust in eBPF
helper functions, assuming they are always used safely
by programmers. Thus, verifier checks are only limited to
the eBPF bytecode without going into other parts of the
subsystem (e.g., eBPF helpers).

For example, the eBPF verifier’s temporal memory
safety checks are limited to eBPF bytecode [76], with
little detail on how or which cases are covered. The
only documented checks apply strictly to Kfunc param-
eters [77], and other sources provide no clear detec-
tion mechanisms [78]. Thus, this not only reiterates that
the implemented checks are incomplete (Section 4.2), but
also emphasizes that memory errors that are not pre-
sented in the bytecode (e.g., in the helpers) still exist
in the wild. For instance, a program may result in use-
before-initialization using dev_map_lookup_elem(),
as mentioned in a Syzbot bug report [79]. eBPF helpers
generally ignore memory safety checks and trust that
the eBPF program uses them properly, as the source
code of dev_map_lookup_elem () shows in Listing 5.
dev_map_lookup_elem() retrieves an entry from a
dev_map using the provided key without verifying whether

2. Ring buffer is another kind of intermediate data structure between
kernel, eBPF program, and user space, similar to eBPF map

the entry has been initialized. The function relies solely on
rcu_dereference_check () to ensure safe concurrent
access but does not validate that obj is initialized. This
leaves opportunities for attacks, for example, the C repro-
ducer in the bug report [80], as shown in Listing 6.

1 static void *__dev_map_lookup_elem(

2 struct bpf_map *map, u32 key) {

3 struct bpf_dtab xdtab =

4 container_of (map, struct bpf_dtab, map);
5 struct bpf_dtab_netdev xobj;

6 if (key >= map->max_entries)

7 return NULL;

8 obj = rcu_dereference_check (dtab->netdev_map[key],

9 rcu_read_lock_bh_held());

10 return obj;

Listing 5: Source Code of dev_map_lookup_elem()

1 SEC("classifier")

2 int example_prog(struct __sk_buff xskb) {

3 int index = 0; // Key for accessing dev_map

4 int xdev_ifindex;

5 // Use dev_map_lookup_elem to retrieve the interface
6 dev_ifindex = dev_map_lookup_elem(&dev_map, &index);
7 if (!dev_ifindex) {

8 return TC_ACT_SHOT; // Drop packet if fails

9 }

10 // Uninitialize
11 +*dev_ifindex
12 // Final decision

13 return TC_ACT_ OK;

Listing 6: Reproducer eBPF Program of UBI in Syzbot Report [80]

The issue arises when dev_map_lookup_elem is
used to retrieve an entry from the dev_map. If this entry
is uninitialized, the dev pointer returned may point to
uninitialized memory. Subsequently, modifying ifindex
without prior initialization leads to undefined behavior, as
this memory location may contain arbitrary data. This causes
a temporal memory safety violation, which KMSAN de-
tect by flagging accesses to uninitialized memory. Since
dev_map_lookup_elem does not ensure initialization
before any use, the responsibility falls on the eBPF program
to verify or initialize entries, creating an exploitable gap
since the existing verifier does not verify it as well.

TA 5. Checks of the verifier are limited to the eBPF
bytecode, but they should be extended to all components
in the subsystem.

5. Kernel Mitigation Circumvention

It has long been known that the eBPF verifier may have
bugs that can cause it to execute malicious eBPF programs
that should have been rejected [38], [81]. In addition to
the eBPF verifier, the Linux kernel has deployed three
other eBPF-specific defenses designed to prevent attacks by
malicious eBPF programs, as listed in Table 1, namely the
CAP_BPF capability [82], BPF LSM [83], and BTF/CO-
RE [84]. These defenses are not required, and sometimes
disabled intentionally (e.g., BPF LSM is often disabled for
performance reasons), so malicious eBPF programs may
bypass these optional protections when they are not en-

abled. The Linux kernel recently introduced CAP_BPF’
privilege [82], [86] in Linux 5.8 (Aug 2020) to block unpriv-
ileged users from attaching eBPF programs [87]. However,
this CAP_BPF restriction is not a hard constraint, meaning
that unprivileged users can still opt out of this restriction
and attach their eBPF programs into the kernel [88]. In
fact, requiring privileges to run eBPF programs significantly
limits their flexibility and portability [36]. Many vendors
rely on eBPF’s unprivileged execution model for ease of
use and deployment. For instance, Cilium [89], a popular
eBPF-based networking and security platform, takes ad-
vantage of unprivileged eBPF programs to ensure seamless
integration across multiple environments, including cloud-
based systems. As a result, vendors continue to operate with
unprivileged eBPF [90]. This tradeoff reflects the challenges
in balancing security and usability in real-world applications
of eBPF, highlighting that privilege separation is not a
panacea. Finally, even enforcing CAP_BPF does not prevent
attackers from exploiting memory errors in (mistakenly) ver-
ified eBPF programs to gain unauthorized kernel access [72]
(e.g., root privilege), such attacks [91], [92] are shown to
not be prevented by the defenses in Table 1.

In addition to specific eBPF defenses, some general-
purpose kernel defenses (listed at the bottom of Table 1)
that aim to prevent kernel memory error exploitation provide
additional protection of the memory safety of eBPF. How-
ever, these defenses face two primary limitations. First, they
are incomplete in scope: While they address certain attack
vectors, they do not cover all the unique vulnerabilities
introduced by eBPF, leaving some attack surfaces exposed.
Second, these defenses can be circumvented by advanced
exploits, making it possible for attackers to exploit kernel
memory despite the presence of these mechanisms. Even
in combination, these general defenses are insufficient to
fully secure the kernel against the range of threats posed by
malicious eBPF programs.

In summary, while all defenses listed in Table 1 col-
lectively enhance security, they cannot fully address the
memory safety threats created by erroneously “verified”
eBPF programs. New defenses are needed to address these
threats directly and comprehensively.

TA 6. The Linux kernel’s eBPF-specific defenses are
limited by optional settings and left room for attacks
with limited privilege, while general defenses fail to
fully block eBPF-based attacks.

6. Summary of State-of-the-art Solutions

eBPF has become a crucial vehicle for extending kernel
functionality. Despite its versatility, this extensibility intro-
duces a significant threat to memory safety. This section
reviews recent advancements aimed at addressing such chal-

3. Directly assigning root privilege is undesirable, equivalent to granting
an arbitrary user-level program root permission, so defenses to split BPF
permissions from root privileges has become a trend [85].

Category Kernel Defensive Features

Description

Required Defense eBPF Verifier

Validates security of eBPF programs.

Capability CAP_BPF
BPF LSM (Linux Security Modules)
BPF Type Format (BTF) and CO-RE

Optional Defense

Permits only privileged users to attach eBPF programs.
Enforces access control over eBPF programs
Validates data type and version compatibility.

CFI and Execute-Only Memory (XOM)
Memory Tagging

Shadow Stacks

kASAN

kASLR

SMAP and SMEP

General Defense

Prevents control flow hijacking and code reuse attacks.

Prevents pointers from being tampered and forged.

Protects return addresses.

Detects memory errors at runtime.

Randomizes memory layout.

Prevents unauthorized user-space memory access in kernel mode.

TABLE 1: Summary of kernel defenses on eBPF: classified as Required/Optional for eBPF, or General for kernel.

Fuzzer Description eBPF-Specific

General-purpose fuzzers for

Syzkaller [55] identifying memory errors,

]Alt;?lz[gzr] (93] need specific configuration X
for eBPF fuzzing.
eBPF-specific fuzzers that are
gll]{ZFZirg 55] effective in generating eBPF
BpfChecker [97] p}rloglr(ams _thatdl?;ifss verifier v
LKL Fuzzer [53] checks using di erent
techniques.

TABLE 2: Summary of Fuzzing Tools for eBPF

lenges in categories. Note that we will only focus on mem-
ory safety enforcement. Orthogonal attacks, such as side
channels and transient execution attacks, are not discussed.

6.1. Fuzzing

One approach to improving the accuracy of the eBPF
verifier is to test it more thoroughly. Fuzzing helps detect
eBPF memory safety issues by generating random program
inputs that test for vulnerabilities such as buffer overflows
and invalid memory accesses. As shown in Table 2, general
fuzzing tools such as Syzkaller [55] and libFuzzer [93]
explore diverse paths in eBPF programs and associated ker-
nel code. In general, fuzzer generated eBPF programs that
cause issues in the kernel indicate a missing or an incorrect
check in verifier. However, general fuzzers like AFL and
Syzkaller need specific configurations for effective eBPF
fuzzing [94]. Dedicated input generation and harnessing
eBPF-kernel interactions are necessary to uncover eBPF-
specific vulnerabilities.

6.1.1. Dedicated eBPF fuzzing. Many eBPF-specific
fuzzers have been proposed recently, as shown in Table 2.
Buzzer [95] is designed to test the eBPF verifier’s logic by
generating large volumes of eBPF programs, which it then
passes through the verifier and executes in a running kernel
to detect unsafe behavior. Buzzer’s dedicated eBPF program
generation strategies and instrumentation make it effec-
tive at identifying complex bugs in eBPF’s safety checks.
Similarly, BRF (BPF Runtime Fuzzer) [96] enhances the
verification and testing of the eBPF runtime environment.
Unlike conventional fuzzers, BRF is specifically customized
to generate semantically correct eBPF programs that can

pass the verifier’s safety checks. To accomplish this, BRF
incorporates an iterative, error-driven approach to enforce
eBPF-specific semantics and to satisfy syscall dependencies
for correct program loading, attaching, and execution. This
methodology enables BRF to explore deeper execution paths
within the eBPF runtime and has demonstrated its effec-
tiveness, achieving significantly higher code coverage and
detecting previously unknown vulnerabilities.

Unlike traditional fuzzers that rely primarily on crash
detection, BpfChecker [97] is designed to identify issues
across eBPF runtimes. BpfChecker adopts a different ap-
proach by performing differential testing, where it compares
the execution states of multiple eBPF runtimes (e.g., Solana
rBPF, vanilla rfBPF, and Windows eBPF) to detect incon-
sistencies that may signal potential flaws. BpfChecker uses
a specialized eBPF-specific intermediate representation (IR)
and constrained mutations to produce semantically correct
programs, enabling deep exploration of runtime behaviors.
Additionally, LKL-based Fuzzer [53] outperforms existing
solutions by leveraging the Linux Kernel Library (LKL)
to run multiple lightweight kernel instances simultaneously,
effectively enhancing fuzzing speed and efficiency.

6.1.2. Limitations of Fuzzing. Specialized eBPF fuzzing
faces two challenges: (1) achieving a high success rate in
generating verifier-approved eBPF programs and (2) effec-
tively producing programs that trigger exploitable memory
vulnerabilities. While state-of-the-art approaches such as
BPFChecker struggle with verifier acceptance (i.e., 18%),
BRF significantly improves on this with a 97% success
rate. However, BRF’s high acceptance rate exposes another
crucial limitation. It reported only 1 memory error among
six identified vulnerabilities, fewer than other methods. This
reveals that even sophisticated semantic aware schemes such
as BRF grapple with generating unsafe operations that both
pass verifier checks and uncover critical memory issues.

TA 7. Fuzzing is useful in identifying vulnerabilities
in the eBPF verifier. However, fuzzing is inherently
incomplete due to the near-infinite state space, and
eBPF presents challenges in improving the coverage and
generating programs that pass verification.

6.2. Isolation

Isolation techniques have matured to efficiently separate
the kernel from its submodules [98], [99], [100], leverag-
ing program isolation analysis for automation [101], [102].
In the context of eBPF, these methods aim to restrict all
memory operations of the eBPF subsystem within a limited
protection domain, preventing unintended interactions with
the host kernel. Software-based solutions, such as Software
Fault Isolation (SFI) [103], enforce strict memory access
policies to ensure that eBPF programs cannot compromise
kernel memory. Meanwhile, hardware-assisted isolation, uti-
lizing features like Intel MPK or ARM MTE, provides
a hardware-enforced safeguard, restricting eBPF programs
from accessing unauthorized memory regions.

6.2.1. Software-based Fault Isolation. SandBPF [36] and
SafeBPF [37] enhance runtime memory safety in eBPF
through SFI, confining eBPF programs to defined memory
regions to prevent unauthorized access to kernel memory.
SandBPF sandboxes eBPF programs using binary rewriting
to manage both memory access and control-flow operations.
This includes address masking for spatial memory safety and
monitored control-flow transfers to ensure eBPF programs
only access approved memory regions. Similarly, SafeBPF
uses SFI to enforce spatial memory safety by masking all
eBPF memory addresses, redirecting out-of-bounds accesses
back into a sandbox. Together, these approaches strengthen
eBPF’s runtime memory protection, with modest overhead,
shielding the kernel from spatial memory error exploits that
static verification may overlook.

6.2.2. Hardware-assisted Isolation. HIVE [39] introduces
a hardware-assisted isolated execution environment for
eBPF on AArch64 to enhance memory safety. While eBPF
programs traditionally operate with direct access to kernel
memory, HIVE isolates eBPF programs as if they were
independent kernel-mode applications. It achieves this by
creating a dedicated “BPF space” for eBPF data, while
keeping eBPF code in kernel memory, thereby ensuring
that eBPF programs are fully compartmentalized and cannot
access kernel memory directly. HIVE leverages hardware
features (e.g., Pointer Authentication) to enforce strict access
boundaries dynamically, providing robust memory safety
without complex static analysis. This approach effectively
prevents eBPF programs from accessing or modifying kernel
memory. Additionally, MOAT [38] is designed to isolate
eBPF programs using Intel Memory Protection Keys (MPK).
This approach aims to prevent malicious eBPF programs
from tampering with kernel memory by isolating them in
a secure domain. MOAT introduces a two-layer isolation
scheme, with the first layer using MPK to create distinct
memory domains for eBPF programs, the kernel, and shared
resources. The second layer involves isolating eBPF pro-
grams in their own address spaces.

6.2.3. Limitation of Isolation. Proposed isolation tech-
niques effectively contain the memory accesses of eBPF

programs, mitigating unauthorized access to kernel memory
that are caused by memory errors in eBPF programs mem-
ory. However, these defenses primarily focus on preventing
attacks originating solely from the eBPF program’s memory
accesses directly, some of them only focus on spatial safety.
Advanced attacks usually exploit interactions between an
eBPF program and the kernel, such as: (1) forging pointers
in the corrupted eBPF program memory and then passing
those into the kernel, potentially allowing unverified pointers
to trigger harmful operations to kernel memory (e.g., arbi-
trary memory accesses) to enhance attacker’s capability of
exploitations [28], [29], and (2) by directly misusing eBPF
helpers and other kernel APIs to corrupt kernel memory in
unsafe ways (e.g., creating a use-after-free vulnerability, as
shown in Section 4.3), also known as Cross-boundary In-
terface Vulnerabilities (CIVs) [40], [41], [104]. Addressing
those issues will require more robust validation of memory
access using cross-boundary interfaces between the kernel
and eBPF program (e.g., eBPF helper functions) and deeper
scrutiny of kernel-eBPF interactions, similar to the thorough
security vetting needed for kernel-driver interfaces [99],
[105], [106].

TA 8. Isolation confines eBPF program to reduce
unauthorized Kkernel accesses; however, approaches
rely on hardware support, incur notable overhead,
and do not address risks from indirect kernel access.

6.3. Runtime Memory Safety Enforcement

Ensuring memory safety during eBPF program execution
is crucial, as eBPF programs operate directly within kernel
memory, where unchecked memory accesses could lead to
kernel exploitation. To mitigate these risks, advanced tech-
niques enhance eBPF verification with runtime enforcement,
preventing accesses that may violate memory safety or aim
to exploit memory errors.

6.3.1. Summary of Proposed Runtime Defenses. Jin et
al. [107] propose a hybrid model for enforcing memory
safety in eBPF by combining static analysis with selective
runtime symbolic execution. Their approach begins with fast
static analysis to identify potentially unsafe paths, reserving
symbolic execution only for flagged paths during runtime,
dynamically verifying memory access risks in real-time and
reducing overhead. Alternatively, Jia et al. [108] enhance
system call security within the kernel through Seccomp-
eBPF, enabling eBPF to enforce policies based on current
execution context. By introducing custom helper functions,
their method manages complex memory interactions safely,
limits exploitable code paths, and reduces the kernel’s at-
tack surface while retaining eBPF’s flexibility. Interestingly,
WebAssembly offers an alternative runtime memory safety
model that could inform eBPF development [109]. By us-
ing a sandboxed execution approach with dynamic runtime
checks, Wasm isolates untrusted code from the host environ-

ment, eliminating the need for a static verifier and enforcing
strict bounds on memory and control flow.

6.3.2. Limitations of Runtime Memory Safety Enforce-
ment. Runtime enforcement techniques offer important
eBPF memory safety controls but have notable limitations.
Seccomp-eBPF, while improving system call security, only
partially protects memory by targeting specific system calls
rather than general access, leaving gaps exploitable through
other eBPF interactions. Similarly, Jin et al.’s hybrid model
narrows runtime checks to risky paths but faces scalability
issues with symbolic execution, potentially allowing mem-
ory errors to bypass detection. Together, these methods
enhance security but do not ensure full memory safety.
Approaches similar to the memory safety model in Wasm,
while guaranteeing comprehensive memory safety, have sig-
nificant runtime overheads that render it impractical for
latency-sensitive and high-performance eBPF applications.

TA 9. Runtime checks can mitigate memory errors
in eBPF programs to protect kernel, but their effec-
tiveness is limited by incomplete coverage and the re-
source constraints of eBPF (discussed in Section 7.5).

6.4. Enhancing Static Validation

Ensuring the memory safety of eBPF programs requires
enhanced static validation than the current eBPF verifier.
Researchers have proposed a variety of enhancements to
eBPF verification to improve accuracy, as shown in Table 3.
However, these techniques do not ensure that all memory
safety vulnerabilities can be detected (i.e., are not sound),
leaving potential vulnerabilities unindentified.

6.4.1. Validating a Single eBPF Program. In the scope
of validating single eBPF programs, Vishwanathan et al.
[42] improve validation by enhancing tnum arithmetic pre-
cision*, optimizing operations like addition and subtraction,
and introducing an efficient multiplication algorithm, which
boosts verifier performance. Follow-up works [43], [44]
target formally verifying range analysis in the eBPF verifier,
automating constraint generation from kernel C code and
using SMT solvers for direct validation. This work also
introduces differential synthesis to auto-generate eBPF test
programs that detect semantic mismatches, revealing previ-
ously unknown bugs and establishing validation soundness.
Nelson et al. [45], [111] propose a proof-carrying approach
that shifts verification to user-space, allowing the kernel to
focus on proof-checking, thus simplifying verification.
Recently, Sun et al. [46] introduce state embedding as
a method to enhance static verification in the eBPF verifier
by uncovering logic bugs that may allow unsafe programs
to bypass checks. Their technique embeds specific concrete

4. In the eBPF verifier, “tnum” refers to a way of tracking uncertain
or partially known values by representing each value as a combination
of known and unknown bits. This representation is particularly useful for
analyzing indirect memory accesses or data derived from untrusted inputs.

states into eBPF programs, enabling the verifier to validate
these states against its approximations; any mismatch signals
a logic flaw. This approach enables precise bug detection
without additional specifica