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Abstract
Intel SGX’s vision of secure enclaved execution has been
plagued by a continuous line of side channels. Among these,
the ability to track enclave page accesses emerged as a par-
ticularly versatile and indispensable attack primitive. Despite
nearly a decade since the original controlled-channel attack,
existing mitigations remain focused on detection rather than
prevention or depend on impractical developer annotations
and hypothetical hardware extensions. This paper introduces
TLBlur, a novel approach that leverages the recent AEX-Notify
hardware extension in modern Intel SGX processors to essen-
tially limit the bandwidth of controlled-channel attacks to the
anonymity set of recently used pages.

Our defense leverages the fact that page translations served
from the processor’s Translation Lookaside Buffer (TLB),
which is forcibly flushed during enclave interruptions, remain
oblivious to adversaries. We introduce practical compile-time
instrumentation to seamlessly log page accesses within the
protected enclave application. Additionally, we utilize AEX-
Notify to implement a custom enclave interrupt handler that
hides the N most recently accessed application pages by trans-
parently prefetching them into the hardware TLB. Our evalua-
tion on real-world libraries such as libjpeg, yescrypt, wolfSSL,
and OpenSSL yields acceptable performance overheads, im-
proving over prior work with several orders of magnitude.

1 Introduction

Intel Software Guard Extensions (SGX) [19, 46], included
in selected Intel processors from 2015 onwards, became a
popular commercial Trusted Execution Environment (TEE)
in both academia and industry. SGX safeguards application
compartments, called enclaves, from unauthorized access, in-
cluding by privileged operating system software, making it a
key solution for confidential computing in the public cloud,
now widely offered by major cloud providers [57].

∗All the contributions of this author were made prior to joining Amazon.

While enclave memory is protected against direct accesses,
SGX’s strong root adversary model has led to numerous side-
channel attacks. The literature generally distinguishes two
main classes of software-based side-channel attacks on TEE
platforms [24, 49, 51, 53]. The first type of microarchitectural
contention attacks [41, 47, 48, 73] exploits shared internal
CPU state between enclaves and attackers. These attacks
detect subtle timing differences, making them inherently non-
deterministic and susceptible to measurement noise. Impor-
tantly, microarchitectural contention attacks are not exclusive
to TEEs and can be principally mitigated by partitioning or
flushing shared microarchitectural resources [20, 22, 25].

The second attack surface, unique to the privileged TEE
adversary model, comprises controlled-channel attacks [85].
Unlike microarchitectural contention attacks, these rely solely
on architecturally defined CPU interfaces, such as page tables
and interrupts. By strategically revoking and restoring access
rights to specific enclave code and data pages, privileged ad-
versaries can deterministically trace enclave memory accesses
at noiseless, 4 KiB spatial resolution. This page-fault channel
has been shown to be particularly expressive, enabling the
reconstruction of confidential text, JPEG images, and full cryp-
tographic keys [61, 78, 85]. Single-stepping frameworks like
SGX-Step [72] can further improve the temporal resolution of
these attacks and enhance their ability to reconstruct crypto-
graphic secrets [3,4,49]. Controlled channels have also served
as a powerful and versatile building block for other SGX at-
tacks, including memory-safety exploitation [40, 70, 77], trig-
gering transient-execution CPU vulnerabilities [11,68,69,75],
or reducing microarchitectural noise [44, 63].

Controlled-channel attacks essentially expose a fundamen-
tal trade-off, where the TEE hardware safeguards the con-
fidentiality and integrity of enclave memory, but the oper-
ating system remains in charge of resource management.
Therefore, these attacks have been particularly evasive to mit-
igate in practice, despite numerous academic proposals (sur-
veyed in §11). Particularly, existing defenses are not (i) prin-
cipled, focussing exclusively on the spatial [53, 61, 86] or
temporal [16] dimensions, or resorting to probabilistic detec-



Figure 1: From left to right: example images, recovered via
page faults, insufficient leakage-reduction with AEX-Notify
single-stepping defense, and TLBlur’s leakage elimination.

tion [13,52,60] rather than leakage prevention; (ii) automated,
relying on manual and application-specific developer anno-
tations [53, 61, 64, 80, 86]; and (iii) practical, exhibiting pro-
hibitively high performance overheads [61, 64, 80] or relying
on hypothetical hardware extensions [1, 20, 53, 86] that are
not supported on off-the-shelf Intel SGX platforms. In this
respect, an important advance has recently been made with
Intel’s release of a new Instruction Set Architecture (ISA)
extension for SGX, known as AEX-Notify [16, 18]. This ex-
tension, already included in recent Intel processors, enables
the implementation of trusted handlers that are invoked when
an enclave resumes from an exception. AEX-Notify was orig-
inally designed to mitigate only single-stepping attacks [72]
by using a small software handler that minimally determines
the working set of the next instruction and prefetches just
these pages into the processor’s internal Translation Looka-
side Buffer (TLB). This accelerates the next instruction, effec-
tively preventing single-stepping and reducing the temporal
resolution for controlled-channel attacks. Crucially, however,
the existing AEX-Notify defense lacks any principled reason-
ing on tackling the spatial bandwidth of controlled-channel at-
tacks, explicitly placing this more fundamental challenge out
of scope [16]. As a case in point, Fig. 1 reproduces the sem-
inal controlled-channel attack on libjpeg [85], showing that
although the current AEX-Notify mitigation may somewhat
reduce leakage in certain cases, it is still clearly insufficient
to prevent effective reconstruction.

In this paper, we introduce TLBlur, the first comprehensive
mitigation for off-the-shelf Intel SGX platforms that fully au-
tomatically addresses both the temporal and spatial bandwidth
of controlled-channel attacks. TLBlur offers principled leak-
age prevention by leveraging the fact that enclave page transla-
tions served from the processor’s internal TLB do not require
a page-table walk. Hence, any pages that are transparently
prefetched in an enclave interrupt handler will remain oblivi-
ous to controlled-channel adversaries until they are evicted
from the TLB by its internal page-replacement policy or on
the next interrupt. TLBlur uses this observation to effectively
reduce the bandwidth of controlled-channel attacks to the
anonymity set of recently used pages. Furthermore, TLBlur
provides an automated, application-agnostic approach that
eliminates the need for manual developer annotations, which
have been criticized as impractical and error-prone [36]. In

this respect, the key challenge we address in this work is how
to automatically establish the subset of enclave pages to be
prefetched for arbitrary enclave applications. To this end, we
develop a compiler plugin and binary rewriting algorithm that
automatically instrument the protected enclave application to
seamlessly log its own page accesses. Upon resumption after
a possibly malicious interrupt, we consult the log to transpar-
ently restore the TLB state and effectively hide the N most
recently accessed enclave application pages. TLBlur, thus,
allows to automatically learn from history during enclave exe-
cution and exploit the spatial and temporal locality inherent to
real-world programs to considerably reduce—or “blur”—the
page-access trace exposed to controlled-channel adversaries.
As shown in Fig. 1 for the real-world libjpeg application, this
reduction can be sufficient to effectively eliminate all leakage
in practice (cf. §9.1). Finally, TLBlur is practical in the sense
that it can be readily deployed on existing, off-the-shelf In-
tel SGX processors and yields acceptable performance that
improves by an order of magnitude over previous controlled-
channel defenses for security-critical enclave applications.

Contributions. To summarize, our main contributions are:
• We propose the first fully automated mitigation to ad-

dress both the temporal and spatial bandwidth of con-
trolled channels on off-the-shelf Intel SGX platforms.

• We implement an LLVM compiler instrumentation plu-
gin, paired with a BOLT binary rewriting pass, to fully
automatically track enclave application page accesses.

• We implement an AEX-Notify software handler that
transparently prefetches recently accessed pages into the
hardware TLB upon resuming from an enclave interrupt.

• We describe a leakage model and analyze the reduction
of temporal and spatial bandwidth.

• We provide practical tools to assess leakage models by
profiling enclave memory access patterns.

• We evaluate the effectiveness and runtime overhead of
our defense on real Intel SGX hardware and real-world
libjpeg, yescrypt, wolfSSL, and OpenSSL libraries.

2 Background

Address Translation. Modern processors translate virtual
addresses into physical addresses before interacting with the
memory controller. This is managed by the operating system
using a hierarchical in-memory data structure called the page
table. In the x86 ISA, each Page Table Entry (PTE) typically
maps a contiguous 4 KiB physical memory area, but PTEs can
optionally also accommodate larger areas of 2 MiB, 4 MiB, or
even 1 GiB. Each PTE includes flags to indicate whether the
page is present (P), writable (RW), executable (XD), accessed
(A), or dirty (D). The A bit is set by the processor the first
time a page is accessed, whereas the D bit is set when a page
is first modified. These flags and permissions aid in effective



memory management and security enforcement.
TLBs are central to the address translation process, acting

as caches for recently used virtual-to-physical address map-
pings. They enable the processor to quickly retrieve physical
addresses without the need for a slower page table lookup. In
new Intel x86 processors, TLBs are usually organized into
two levels: smaller L1 TLBs for code and data, separately,
and a larger unified L2 TLB for both. The TLB levels are
non-inclusive and are organized as multi-way, set-associative
caches with a (pseudo) least-recently used replacement pol-
icy [26, 67]. In processors with Simultaneous Multithreading
(SMT), TLBs are shared across logical cores. Due to their per-
formance role, TLB sizes have steadily increased in modern
CPUs. For instance, the 4th-gen Intel Xeon CPU can store
over 2,048 translations for 4 KiB pages (cf. Appendix B).

Intel SGX. Intel SGX [19] is an x86 extension enabling
enclaves isolated even to privileged operating systems or hy-
pervisors. SGX is currently a key server-side solution for con-
fidential cloud computing, integrated into recent Intel Xeon
processors and offered by leading cloud providers [57]. SGX
is also a foundation for recent security technologies, e.g., In-
tel’s Trust Domain Extensions (TDX) [14].

SGX enclaves occupy a contiguous user-space memory
region in the virtual address space of an untrusted host pro-
cess. Enclave code and data pages are isolated in a dedicated
Processor-Reserved Memory (PRM) area, using 4 KiB pages
(larger pages are not supported for SGX enclaves). The un-
trusted operating system continues to be in charge of virtual-
to-physical address translation and memory management. To
prevent active page remapping attacks [19,50], SGX hardware
uses an Enclave Page Cache Map (EPCM) to verify physical
addresses during the untrusted page-table walk. SGX also
provides instructions for securely moving enclave pages in
and out of PRM. Crucially, while the processor’s internal TLB
serves as a trusted cache to speed up repeated page accesses,
SGX’s architectural security argument requires the TLB to be
flushed on every enclave entry or exit [19].

The untrusted application can use the EENTER instruction to
transfer control to a fixed entry point in the enclave, which can
later return control through the EEXIT instruction. The Intel
SGX SDK abstracts these instructions into secure functions,
called ecalls, with optional ocalls for callbacks to the host.
Enclaves can also exit asynchronously due to interrupts or
exceptions, triggering an Asynchronous Enclave Exit (AEX)
hardware event. AEX securely stores the CPU context in a
Save State Area (SSA) within enclave memory before hand-
ing control to the untrusted operating system. The ERESUME
instruction can then be used to restore the CPU context and
transparently continue enclave execution, without the enclave
ever being aware that it was interrupted.

AEX-Notify. AEX-Notify [16,18] is a recent ISA extension
for SGX that allows an enclave to be interrupt-aware. This

1 fun modpow(m, d, n):
2 rv = 1; nb = nbits(d)
3 for i from nb to 0:
4 rv = square(rv,n)
5 if (d & (0x1 << i)):
6 rv = mult(rv, m, n)
7 return rv;

return

return

key bit 1

loop iteration

modpow

square

Page A
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Figure 2: Cross-page conditional control flow in the square-
and-multiply algorithm for modular exponentiation.

new hardware feature is available on off-the-shelf Xeon CPUs
from Sapphire Rapids onwards and (via platform updates) on
all previous generation Xeon CPUs that support Intel SGX [8].
AEX-Notify changes the behavior of the ERESUME instruction
to adopt the semantics of EENTER when a configuration flag
is set. With the help of AEX-Notify, developers can register
trusted exception handlers to be called whenever the untrusted
runtime wants to resume from an AEX. Additionally, AEX-
Notify includes a new EDECCSSA instruction that can be used
by the trusted exception handler to seamlessly switch to the
originally interrupted context without exiting the enclave.

3 Motivation: Controlled-Channel Attacks

Running Example. Consider the program in Fig. 2, which
includes simplified pseudocode for the square-and-multiply
modular exponentiation algorithm that is a popular target
for controlled-channel attacks [49, 61, 74, 76]. The algorithm
computes r = md by iterating over the binary representation
of d, squaring r each time, and multiplying by m when the
current bit of d is set. Crucially, such secret-dependent control
flow may reveal bits of the private exponent d through page
accesses. The state machine in Fig. 2 illustrates the sequence
of code page accesses, assuming the modpow, square, and
mult functions reside on separate 4 KiB code pages.

Spatial Bandwidth. Nearly a decade ago, Xu et al. [85]
first showed that privileged adversaries can unmap or revoke
access rights to a specific enclave code or data page and re-
ceive deterministic notifications via a page-fault signal when
that page is next accessed. However, as access rights must be
restored to allow progress after the initial access, subsequent
accesses to the target page will hit in the TLB and remain
hidden from page-table adversaries. Xu et al. recognized
that strategically revoking access to another page referenced
some time after the initial target page triggers a new page-
fault AEX and full TLB flush, allowing permissions to be
revoked again. This way, the sequence of relatively coarse-
grained 4 KiB page faults can uniquely identify specific points
in the victim’s execution. For example, the state machine in
Fig. 2 shows how to deterministically recover the full private



exponent by alternatingly revoking and restoring access to
pages A,B,C and observing different page-access sequences
for iterations with a one ⟨A,B,A,C,A⟩ vs. zero ⟨A,B,A⟩ bit.
This technique has proven highly effective, often enabling the
extraction of complete cryptographic or application secrets
in a single, noise-free run [3, 4, 49, 61, 70, 72, 74, 76, 78, 85].
Furthermore, page faults are a key exploitation primitive in
numerous SGX attacks [11,40,44,63,68–70,75,77] and have
been generalized to related TEE technologies that expose
untrusted page tables, like AMD SEV [29, 50, 79, 82].

Temporal Bandwidth. An improved line of high-resolution
controlled-channel attacks [3, 4, 49, 72, 74] leverage timer in-
terrupts to “single-step” the victim enclave one instruction
at a time. By observing PTE A/D bits, single-stepping ad-
versaries precisely count the number of enclave instructions
executed between different page accesses. This improved
temporal resolution has been leveraged to overcome spa-
tial limitations of the page-fault channel, effectively refin-
ing a coarse-grained page-fault sequence ⟨A,B,A⟩ into an
instruction-granular page-access trace ⟨A,B, . . . ,B,A⟩. In this
case, even if two different functions of varying lengths reside
on the same page B, they may still be distinguished by merely
counting instructions. The AEX-Notify hardware feature was
designed to support a software mitigation that thwarts this
temporal advantage for single-stepping attacks [16]. To this
end, a trusted exception handler transparently decodes the
next enclave application instruction and atomically prefetches
all code and data pages about to be accessed into the TLB.
Particularly, the existing mitigation decodes the SSA frame
of the interrupted enclave application and prefetches: (i) un-
conditionally, the code page of the next instruction; (ii) con-
ditionally, the data page accessed by that instruction (if any,
determined via a constant-time disassembler); (iii) uncon-
ditionally, two pages surrounding the current stack pointer.
This ensures that executing the next application instruction
after ERESUME will be fast, minimizing the attacker’s window
to hit a timer interrupt for successful single-stepping. This
mitigation is now integrated by default into the Intel SGX
SDK. Importantly, while effectively countering the temporal
advantage of single-stepping attacks, the existing AEX-Notify
handler does not principally address the spatial bandwidth
of controlled-channel attacks. Indeed, the more ambitious
objective of addressing information leakage from common
page-fault sequences, like those exploited in Figs. 1 and 2,
was left explicitly out of scope [16].

4 Problem Statement

4.1 Threat Model and Out-of-Scope Attacks
We assume Intel’s standard SGX threat model [19,34], where
the adversary controls the operating system or hypervisor.
Attackers have access to high-resolution timer interrupts [72]

and page-table memory [74,85] to provoke page faults and dis-
tinguish read/write/execute accesses on 4 KiB enclave pages.

Our current mitigation prototype only supports single-
threaded enclave applications, the default for Intel SGX and
prior attack targets. If needed, multithreading support could
be implemented straightforwardly (cf. § 10). Furthermore,
in line with secure SGX enclave deployment practices, we
assume SMT (Intel HyperThreading) is disabled at the sys-
tem level, as officially recommended by Intel in response to
recent processor vulnerabilities [9, 58, 68, 75]. This assump-
tion excludes uncommon and less reliable attacks [26, 76]
that may evict cached page translations from the shared TLB
through contention with a sibling logical core, i.e., without
interrupting the enclave. Intel’s SGX remote attestation pro-
cedure [35] now includes boot-time SMT status, which can-
not be re-enabled without a reboot, enabling remote parties
to validate SMT status securely. Alternatively, existing soft-
ware techniques [12, 27, 52] could ensure both sibling SMT
cores enter and exit the enclave in lockstep. Finally, this work
aims to address architectural controlled-channel leakage at a
4 KiB page-level granularity. Hence, in line with prior SGX
controlled-channel defenses [1, 53, 61, 64, 86, 87], we deem
any finer-grained microarchitectural side channels, including
cache timing [48], explicitly out of scope. Microarchitectural
contention attacks pose an orthogonal challenge, not specific
to enclave settings, which can be mitigated by using existing
techniques [20, 22, 25] in tandem with TLBlur.

4.2 Leakage Model and Security Argument
Page-Access Traces. Similar to existing formalizations [61,
65], we model controlled channels as an observation function
that produces a finite ordered sequence of page accesses:

A(E, I) 7→ ⟨Pr|w|x,Qr|w|x, . . . ,Rr|w|x⟩ (1)

In this notation, P, Q, and R are successive page numbers,
with Pr|w|x indicating a read (r), write (w), or execute (x) ac-
cess on P. The overall length of the trace reflects the temporal
granularity of the page-access observations, i.e., page-fault se-
quences [85] or instruction-granular single-stepping [49, 72].
Intuitively, a program E leaks under this model when there
exist two different secret inputs I1 and I2 that an adversary can
distinguish solely by looking at their respective page-access
traces A(E, I1) and A(E, I2). This is clearly the case for the
running example in Fig. 2, which produces ⟨Ax,Bx,Ax,Cx,Ax⟩
and ⟨Ax,Bx,Ax⟩ for a 1 vs. 0 bit, respectively.

TLB Leakage Reduction. Crucially, prior formaliza-
tions [61, 65] do not consider the trusted TLB cache in their
leakage models. We observe that enclave page translations hit-
ting the TLB bypass the page-table walk, making them obliv-
ious to controlled-channel attacks. Hence, we model the TLB
as a stateful filter with capacity n that can reduce the observed



page-access traces: ∀n ≥ 0 : AT LB=n(E, I) ⊆ A(E, I). This
filter’s exact operation depends on the accumulated state ≤ n
and the internal replacement policy. In this respect, interrupts
can be modeled as forcibly resetting the accumulated state,
i.e., flushing the TLB, at a chosen point in the instruction-
granular page-access trace. Thus, a single-stepping adversary
that flushes the TLB after every instruction essentially forces
its internal capacity to n= 0, resulting in maximal page-access
trace leakage: ∀E, I : AT LB=0(E, I) = A(E, I).

We make the key observation that, by registering a custom
exception handler with AEX-Notify, a non-empty initial state
S with 0< |S| ≤ n can be loaded into the TLB before resuming
the enclave application after an interrupt. In this respect, by
prefetching the working set of the immediately next enclave
application instruction, the AEX-Notify single-stepping miti-
gation [16] purposefully hides all subsequent accesses within
that working set. Hence, with the existing defense in place,
a page fault is observable only when accessing a new code
or data page outside the prefetched set, effectively shortening
Eq. (1) from an instruction-granular, single-stepping trace to
a more concise page-fault sequence. Notably, this page-fault
sequence also excludes the two current top-of-stack pages,
which are unconditionally prefetched to simplify the constant-
time disassembler (cf. §3). As an unintended side-effect of
unconditionally prefetching these stack pages, we found that
the existing mitigation may in some cases marginally reduce,
but certainly not eliminate, the spatial bandwidth of the page-
fault channel, e.g., somewhat coarser libjpeg recovery for the
example images in Fig. 1.

We conclude that the existing AEX-Notify single-stepping
defense, while effectively limiting the temporal resolution,
does not principally address the spatial aspect of controlled-
channel attacks. Indeed, prefetching the working set of the
next instruction prevents single-stepping but does not antici-
pate later code or data page accesses, which remain visible to
a page-fault adversary, as exploited in Figs. 1 and 2.

Goal of our Defense. From the above, we conclude that the
worst-case leakage AT LB=0 clearly happens when the initial
TLB state after an interrupt is left empty. Additionally, any
non-empty state S ̸= /0 prefetched in the AEX-Notify software
handler will effectively reduce the leakage. In this regard, the
easiest case naturally arises when the handler can simply
prefetch all (secret-dependent) enclave application pages and
they can be accommodated within the TLB. This is indeed the
implicit assumption underlying prior pinning-based solutions
relying on manual annotations [53, 64, 86].

Thus, a key challenge that remains unanswered by prior
research is how to autonomously determine the set of en-
clave application pages to be prefetched on the next interrupt.
Our key contribution is to devise a novel Page Access Map
(PAM) data structure and automated compile-time instrumen-
tation approach to efficiently and transparently record the
application’s past accesses to code and data pages during its

execution. This provides our custom AEX-Notify software
interrupt handler with the required information to seamlessly
re-fill the hardware TLB with a Prefetch Working Set (PWS)
consisting of the N most recently accessed pages on every
interrupt. Therefore, under the common assumption that the
enclave program exhibits spatial or temporal locality, TLBlur
automatically learns and seamlessly prefetches its working
set, effectively concealing any secret-dependent page-access
patterns therein. Applied to the running example in Fig. 2,
TLBlur with a PWS of size N ≥ 3 reduces the leakage from a
lengthy sequence like ⟨Ax,Bx,Ax,Cx,Ax,Bx,Ax,Bx, . . .⟩ to the
finite sequence ⟨Ax,Bx,Cx⟩ for a secret key of arbitrary length
containing 1 and 0 bits.

As the PWS size parameter N increases, TLBlur effectively
extends the application’s working set further into the past,
thereby further “blurring” the adversary’s observations. The
upper bound for this blurring effect is naturally dictated by the
associativity and size n of the hardware TLB. Intuitively, when
N = n and the PAM perfectly mimics the hardware TLB’s
design, it would appear to the adversary as if no interrupt ever
occurred. In this case, the same remaining leakage trace could
theoretically also be obtained by continuously monitoring
page-table memory [74] without ever triggering interrupts
in the first place. However, achieving such a “perfect” PAM
would require reverse-engineering undocumented and brit-
tle hardware replacement policies [67], leading to substantial
slowdowns due to the complexity of instrumentation and mak-
ing the solution inherently microarchitecture-specific. Impor-
tantly, we do not need to perfectly replicate the unpredictable
behavior of hardware TLBs; any non-empty state PWS ̸= /0

will already contribute to reducing leakage in practice. Thus,
as a key contribution, we devise a generic, hardware-agnostic
PAM data structure that enables a straightforward and deter-
ministic prefetching policy, effectively blurring page-access
patterns while maintaining performance and portability.

4.3 Mitigation Objectives

O1: Principled Leakage Reduction. The mitigation must
act as a sliding-window filter of configurable size N over the
page-access trace A(E, I) that widens the observational gran-
ularity of the attacker. In other words, only the first access
to a page that falls out of the current window is allowed to
be leaked, and any subsequent page accesses that fall within
this window must remain oblivious, even in the presence of
advanced interrupt-driven attackers.

O2: Automation. Applying the mitigation must be possible
via an automated, application-agnostic compilation pipeline
without developer annotations, which have been criticized
even by security-aware cryptographic developers [36] and
do not generally scale to general-purpose applications [85].

O3: Practicality. The mitigation must be deployable on ex-
isting Intel SGX processors without theoretical hardware



changes. Furthermore, it should preserve the effectiveness of
the existing mitigation [16] against single-stepping attacks.

Non-Goals. TLBlur represents a pragmatic trade-off, where
we dynamically learn the working set during actual execu-
tion instead of relying on static and error-prone developer
annotations. Therefore, removing all leakage from page-table
accesses is explicitly out-of-scope. Indeed, in the provided
definition, at least the initial access to every page is still leaked,
and even in cases where the enclave remains uninterrupted,
limited information could still be leaked through page table
entries due to the constrained size of the hardware TLB. We
discuss further limitations and edge cases, including the effect
of the hardware TLB’s associativity, in §10.

5 TLBlur Overview

Figure 3 overviews the key components of our defense, which
operates through the following high-level steps.

1. Recording Application Page Accesses. Our approach re-
lies on a software-based PAM data structure that records
recent application code and data page accesses. We design a
fully automated compiler pipeline, described in §6, which in-
serts instrumentation code to transparently update the PAM
at runtime. Our instrumentation passes do not interfere with
attestation, as SGX attests the final instrumented binary. Fur-
thermore, we ensure that our compiler pipeline behaves de-
terministically, allowing reproducible builds.

2. Asynchronous Enclave Exit. During enclaved execution,
interrupts or exceptions cause an AEX to the untrusted oper-
ating system. Such AEXs can be triggered by a privileged
adversary through timer or inter-processor interrupts or ma-
nipulation of PTEs. Importantly, as part of SGX’s archi-
tectural specification, the processor must flush the TLB on
every AEX [7, 34]. However, privileged adversaries can still
determine which pages have been accessed during enclaved
execution by examining the page-fault base address or PTE
A/D bits. TLBlur obscures this view to the anonymity set of
recently accessed code and data pages.

3. Restoring TLB State. The AEX-Notify hardware exten-
sion ensures that a pre-registered trusted exception handler
is executed when resuming the enclave. Our mitigation in-
troduces a carefully crafted, constant-time AEX handler,
described in §7.1, to seamlessly restore hardware TLB en-
tries before resuming the shielded enclave application. This
prefetcher software component transparently parses the PAM
to establish the N most recent application page accesses and
prefetches those pages into the hardware TLB with the ap-
propriate (maximal) read-write-execute permissions.

4. Leakage Reduction. Consecutive accesses to recently ac-
cessed pages hit in the processor’s internal hardware TLB.
Such TLB hits effectively bypass the untrusted page table,

Page Access Map (PAM)

Hardware TLB

AEX Handler
Prefetcher

1

2

34

Enclave

Untrusted OS

Hardware

AEX ERESUMEAEX

Figure 3: TLBlur maintains a software-based PAM data struc-
ture 1 during runtime of the protected enclave application.
Upon interrupt, the hardware TLB is flushed, 2 and the en-
clave will be resumed at the AEX-Notify exception handler,
which transparently parses PAM and prefetches 3 the N most
recent pages into the hardware TLB, such that any future ac-
cesses 4 to these pages remain oblivious.

making them oblivious to controlled-channel adversaries. In
the absence of attacker-induced TLB flushes through inter-
rupts, this scenario naturally holds true. Moreover, in the
event of an interrupt, TLBlur’s prefetcher component ensures
the reloaded state of the flushed hardware TLB. Specifi-
cally, accesses to the N most recently accessed pages remain
unobservable by adversaries monitoring PTEs. To assess
the leakage reduction observable in instrumented enclave
applications, we develop a practical profiler tool in §7.2.

6 Static Enclave Instrumentation

The key challenge faced by the general mitigation approach
outlined in the previous section is how to adequately instru-
ment an enclave application to efficiently record its own page
accesses. A naive approach would be to update the software-
level PAM data structure (§6.1) before every single instruction,
so as to accurately trace the working set of all code and data
pages accessed. However, this would incur prohibitive perfor-
mance overhead. Thus, to reduce the number of instrumenta-
tion points, while obtaining a comprehensive representation
of the PAM, we design the instrumentation around the obser-
vation that TLBlur needs to record memory accesses only at
a 4 KiB page-level granularity. This observation poses an ad-
ditional challenge. The final page layout is only known after
linking, whereas classic instrumentation techniques operate
at compilation time, before the precise binary layout is estab-
lished. Figure 4 illustrates how we overcome this challenge
through an inventive fusion of compile-time instrumentation
(§6.2) and binary-level rewriting (§6.3) without the need for
code annotations or application-dependent settings.

We divide the instrumentation task into different sub-cases
for distinct code and data accesses, as outlined below:



void foo(int i){

  int x = a[i];

  int v = (*b)(x);

  if (v) {

    c[i] = 0;

  }

}

 INLINE update(rcx)

 INLINE update(rax)

INLINE update(rcx)

 INLINE update(rbx)  INLINE update(rbx)

 INLINE update(rax)

LLVM BOLT

 CALL update(1f)

 CALL update(rip+8)

add  rax, rdi

mov  rdi, [rax]

call *rbx

cmp  0, rax

jne  1f

add  rcx, rdi

mov  [rcx], 0

1:

D2

C1

D2

C3

C2

add  rax, rdi

mov  rdi, [rax]

call *rbx

cmp  0, rax

jne  1f

add  rcx, rdi

mov  [rcx], 0

1:

C

Figure 4: Compilation pipeline with an LLVM backend pass
instrumenting global data (D2; blue) and indirect control flow
accesses (C1; blue). A post-link binary rewriting BOLT pass
instruments direct control flow (C2–C3; orange).

D1. Local Variables. Local variables are allocated on the
runtime call stack, which can be easily located by inspect-
ing the stack pointer in the stored SSA frame. Recalling
§3, the existing AEX-Notify single-stepping mitigation al-
ready protects stack pages by prefetching a number of pages
surrounding the interrupted stack pointer [16]. Thus, as an
important optimization, we refrain from instrumenting com-
mon instructions that only access stack pages.

D2. Global Variables. We conservatively instrument all
other data accesses, i.e., allocated in the global data section
or on the heap, to record their target address in the PAM.

C1. Indirect Control Flow. For indirect control flow in-
structions, it is undecidable to statically determine whether
they will cross a page boundary as their targets depend on
runtime information, e.g., as is the case for jmp or call with
a memory or register operand. Since such indirect control-
flow transfers are relatively rare and already come with a
performance impact, we choose to conservatively instrument
all indirect control-flow transfers at compile time to record
their target address in the PAM. This is similar to common
indirect control-flow instrumentations by existing memory-
safety [66] or speculative-execution [32] mitigations.

C2. Direct Control Flow. For direct jmp or call instruc-
tions with an absolute target, it is in principle possible to
statically determine whether they cross a page boundary and
instrument only those instructions that explicitly transfer
control flow from one page to another. As the page layout is
unknown during compilation and available only after linking,
we use a fixed-point binary rewriting algorithm to repeatedly
extract page layout information and instrument direct control
flows that cross a page boundary.

C3. Fallthrough. Finally, compilers generally do not align
basic blocks to exist entirely within a single page. Thus,
normal execution may cross code page boundaries even
without any explicit control-flow transfer instructions. Our
binary rewriting algorithm covers these subtle cases.

6.1 Page Access Map Data Structure

We represent the PAM data structure as a linear array of 64-bit
integers indexed by page numbers, where the values indicate
how recently each corresponding page was accessed. Specif-
ically, when recording a page access in the PAM, a global
64-bit counter is incremented, and its value is copied into the
corresponding array slot for that page. Consequently, the N
most recently accessed pages can be identified by locating
the N highest numbers in the PAM array. While updating
the PAM incurs minimal runtime overhead, determining the
most recent pages to prefetch is somewhat more costly, as it
requires sorting the array. Nevertheless, this trade-off proves
advantageous since interrupts typically occur relatively infre-
quently under normal circumstances, compared to the number
of runtime instrumentation calls.

To efficiently update PAM, we draw inspiration from exist-
ing sanitizer tools that have undergone extensive engineering
optimizations to minimize runtime overhead [59]. The result-
ing hand-crafted assembly routine to update PAM is given
in Appendix A. This function takes the address of a memory
location and updates PAM accordingly with the page number
of this address. We subtract the enclave base from the given
address and shift the resulting address to compute the page
number. Note that to obtain the page number, the address must
be shifted to the right by 12 bits, but since PAM consists of an
array of 64-bit integers, we must also shift the address back
left by 3 places. We assume a well-behaved, memory-safe
program where all accessed addresses fall within the memory
address range of the enclave (as required for secure enclave
execution [5, 15, 70]). The PAM array needs to be sufficiently
large to cover the enclave address range. To avoid any out-
of-bounds accesses, we mask the page number with the size
of PAM subtracted by one (e.g., 0xffffff for a PAM of size
0x1000000). To update the PAM we load the global counter,
increment it, and store it back to the array.

6.2 Compile-Time Instrumentation

At compilation time, we instrument the code’s non-stack mem-
ory accesses (D2) and indirect control-flow events (C1). We
implement our instrumentation pass in LLVM’s x86 backend.
Our pass iterates over all instructions and identifies non-stack
memory accesses, indirect calls, and indirect jumps by in-
specting the instruction’s addressing mode. The addressing
mode refers to the set of operands that describe a memory
location and describe symbols referencing code and heap
memory locations. We store the accessed address in a new
register using a lea instruction with the previously identified
addressing mode as operands.

Once we determine the accessed address, we inline the
code from Appendix A responsible for updating the PAM
data structure. This approach is crucial for allowing the com-
piler’s register allocator to optimize register usage, which is



Algorithm 1: Fixed-point binary instrumentation.
1 repeat
2 code_layout← calc_code_layout()
3 insert_direct_cf_tracing() ▷ Handle C2
4 code_layout_upd← calc_code_layout()
5 until code_layout == code_layout_upd
6 insert_code_page_crossing_tracing() ▷ Handle C3
7 fix_direct_call_tracing()

typically more efficient than executing a call instruction. No-
tably, physical registers implicitly used by our instrumentation
code, such as the rflags register, must be saved to maintain
program semantics. However, saving rflags by pushing it
onto the stack introduces a notable performance overhead
due to CPU pipeline serialization. Therefore, we employ a
liveness analysis to identify the in-use physical registers and
avoid saving registers that are not live.

6.3 Binary Instrumentation
TLBlur adopts binary rewriting techniques to infer the code
page boundaries from the linked enclave binary and in-
strument only those direct control-flow transitions (C2) or
fallthrough code locations (C3) that traverse page boundaries.
To reduce binary rewriting, we opt for function calls to the
PAM update procedure in Appendix A instead of inlining.
Injecting function calls require a lower number of opcodes
(i.e., two push instructions and a call), thus introducing a
less disruptive modification to the original code. More im-
portantly, as evident from our experimental evaluation in §9,
these code page transitions are relatively infrequent.

Injecting binary code and controlling the page layout
is non-trivial. Essentially, each injected tracing call modi-
fies the enclave page layout, potentially moving the target
of other direct control-flow transfers to a new code page.
To address this circularity, we design an inventive fixed-
point algorithm, described in Algorithm 1. The algorithm
first instruments all direct control flows that cross a page
boundary (line 3). Then, we recompute the page layout
(line 4). These operations are repeated until the code lay-
out does not change (line 5). Both calc_code_layout()
and insert_direct_cf_tracing() conservatively reserve
space for cross-page fallthrough instrumentation, i.e., they
assume a page size slightly smaller than 4 KiB. Our approach
ensures it is safe to insert page crossing instrumentation with-
out altering the fixed-point enclave page layout.

After reaching the fixed point, the enclave binary holds
three properties: (i) all cross-page direct control flow transfers
are instrumented; (ii) some direct control flow transfers may
have superfluous instrumentation; and (iii) the enclave binary
layout is stable. Next, we instrument fallthrough locations
by adding the instrumentation at the end of every code page
(line 6). As the final step, we fix all the needless instrumenta-
tion for the direct control flow events that do not need it due

to the final layout of the binary (line 7).
We provide an opt-in mechanism to enable instrumenta-

tion of direct control flow by only instrumenting code in a
section called .tlblur.text. Enclave application code is
transparently moved to this section, while other code, such as
the SDK’s trusted runtime, remains in the original sections.

6.4 Optimizations
Several parameters configure the implementation and enable
optimizations that can reduce runtime overhead.

First, instrumentation can be inserted either before each
control-flow transfer instruction, or it can be inserted after,
i.e., at the target locations. Placing the instrumentation at
the target is beneficial as the PAM only needs to be updated
when the branch is taken. Additionally, the rflags register is
unlikely to be live at this point, so it does not need to be saved.
In contrast, when the instrumentation is inserted right before
a conditional jump, rflags is typically in use and must be
saved beforehand, which is a costly operation.

Second, we create another optimization that groups pages
into logical sets that are tracked in the PAM as a single unit.
When the AEX handler is executed, we make sure that all
pages within such set are prefetched together. By grouping a
fixed number of subsequent pages, TLBlur effectively simu-
lates larger logical pages and reduces the number of logical
page boundaries that need to be instrumented, which consid-
erably lowers the amount of instrumentation code executed.
The number of pages grouped together is configured stati-
cally using a compiler option, which is applied to all code
pages. This optimization is particularly valuable in scenarios
where a performance-critical code segment is placed across
two subsequent pages, such that the instrumentation at the
boundary between these pages would be executed frequently.
By grouping contiguous pages, and treating them as a single
large page, we can overcome such performance bottlenecks.

7 Dynamic Runtime Components

7.1 AEX-Notify Page Prefetcher
Constant-Time PAM Processing. After an AEX, the en-
clave executes our custom exception handler, registered via
AEX-Notify, to transparently repopulate the hardware TLB
before resuming normal execution. In contrast to the shielded
enclave application, the majority of the exception handler
itself runs without the protection of AEX-Notify and may,
hence, fall victim to precise single-stepping attacks [49, 72]
that try to learn the contents of the PAM via side-channel
analysis. Leaking individual PAM counter values would re-
veal the amount of times a page has been accessed and, thus,
increase the adversary’s observational power. Therefore, we
carefully implemented a constant-time sorting procedure us-
ing side-channel-resistant cmov x86 instructions to sort the



PAM array and determine the N most recently accessed pages
to be added to the PWS. Next, to prevent attackers from infer-
ring the freshness of PAM entries based on the order in which
pages are prefetched, we additionally constant-time sort the
resulting PWS by page number.

Note that, in addition to recently accessed pages, we make
sure to also include the data page for the PAM array itself,
as well as the code page containing the tlblur_pam_update
function, into the PWS. Lastly, any PAM modifications during
sorting and prefetching are avoided by making sure that the
exception handler itself is not instrumented.

Atomic Prefetching. We atomically prefetch the selected
pages through a practical extension to the existing AEX-
Notify single-stepping mitigation included in recent SDK
versions [16]. The prefetching stage consists of a hand-crafted
assembly stub that first re-enables AEX-Notify, before access-
ing all PWS pages and jumping to the enclave application
resumption point. In case of any interrupts or page faults
during prefetching, the prefetcher is restarted as part of the
AEX-Notify flow, thus ensuring atomicity.

Similar to the existing single-stepping mitigation, we make
sure to prefetch pages with the maximum allowed permissions.
For example, if a page is writable, we prefetch the page by
reading a byte from that page and writing it back. Similarly,
we handle executable pages by locating and calling an x86
ret byte (0xc3) on that page. This approach maximizes the
protection against page-table adversaries, as only reading a
page that is also writable or executable would still allow to
observe page faults via the RW or XD PTE attributes.

7.2 Offline Profiler Tool

To evaluate the completeness of the instrumentation and the
effectiveness of the “blurring” effect in practice, we develop
an automated page profiler tool for offline evaluation of in-
strumented SGX enclave binaries. Our tool constructs page-
access traces for different TLBlur configurations by simulating
a set-associative TLB that filters the maximal, instruction-
granular page-access trace obtained by single-stepping the
enclave in debug mode without AEX-Notify enabled.

We start by initializing the simulated TLB to an empty
state. Next, before single-stepping to the next enclave instruc-
tion, we clear all PTE accessed bits. After every single-step
interrupt, we check whether any of the newly accessed en-
clave pages P is not currently in the simulated TLB, in which
case we model an AEX event. These AEXs determine the
temporal resolution (i.e., relative length) of the resulting trace
T . To faithfully determine the blurred spatial observations
corresponding to every AEX, we (i) log both P and the cur-
rent content of the simulated TLB in T [aex_nb]; (ii) flush the
simulated TLB; (iii) determine the PWS containing all pages
to be prefetched; and (iv) refill the simulated TLB with PWS.

Step (iii) above allows to conveniently implement differ-
ent mitigation configurations, whereas step (iv) enables rea-
soning about the effect of the simulated hardware TLB size,
associativity, and replacement policy. Particularly, the lim-
ited temporal reduction achieved by the current AEX-Notify
single-stepping mitigation can be modeled by setting PWS
to the top-of-stack and next code and data pages (cf. §3). To
evaluate different instantiations of TLBlur, we parse the actual
PAM data structure in enclave memory to accurately prepare
PWS with a configurable size N.

Our profiler tool supports exporting the generated page-
access traces to the widely used Value-Change Dump (VCD)
format, commonly employed in hardware development. This
enables the utilization of standard VCD visualization tools
and graphical user interfaces, facilitating the investigation of
resulting leakage traces by human analysts.

8 Implementation Aspects

Instrumentation. We implemented our compile-time in-
strumentation as an extension of the LLVM compiler [39],
version 18.1.2. Instead of using instrumentation at the source
level or in the intermediate representation, we implemented
our instrumentation pass in the compiler backend (i.e., the
target code generator). This significantly reduces the risk of
missing instrumentation on instructions that are inserted when
lowering to target instructions, or created by transformation
on intermediate code [17, 84]. Our instrumentation pass con-
tains ∼ 500 lines of code. Instructions that use thread-local
storage or instructions introduced by SIMD extensions are
currently not supported by our prototype implementation.

We use BOLT [55], a post-link binary optimization tool, for
binary rewriting. BOLT disassembles a compiled and linked
binary, reconstructs the control-flow graph and reassembles
the binary after applying numerous optimizations. Instead
of optimizing the binary layout, we make use of this tool to
apply an instrumentation pass that instruments control flow
near page boundaries. This pass contains ∼ 400 lines of code.

Prefetcher. Our prefetcher is integrated into the standard
SGX SDK version 2.23. It consists of 264 lines of C code for
the constant-time PAM sorting and 22 lines of assembly code
to extend the existing atomic prefetching phase with three
loops to set read, write, and execute permissions.

Prefetching with maximum permissions requires determin-
ing the permissions of each page. We accomplish this us-
ing a custom linker script that inserts symbols to statically
mark the boundaries of executable and read-only sections. All
pages that need to be prefetched are considered readable. Ex-
ecutable section boundaries are statically configured via the
linker script, whereas all other pages outside these sections
are considered writable.



(a) AEX-Notify single-stepping mitigation; Lempel-Ziv: 56,220. (b) TLBlur with PWS of size 3; Lempel-Ziv: 16,866.

Figure 5: Page-access traces collected by our profiler for an example enclave executing the dummy modpow function (highlighted).
Compared to the existing AEX-Notify single-stepping mitigation (left), TLBlur further reduces temporal resolution (x-axis range)
and blurs residual secret-dependent spatial patterns (visible as horizontal lines on the square and multiply pages).

Profiler. We implemented our profiler tool in ∼ 1000 lines
of Rust code. The profiler sets the x86 trap flag to execute
the enclave in single-step mode, which is available for non-
production enclaves signed in debug mode. We observe page
accesses at each step by using the SGX-Step framework [72],
which enables programs to read and write PTEs of the enclave.
We developed practical Rust bindings for SGX-Step and pre-
cisely determine the pages accessed by each instruction by
clearing the accessed and dirty bits at each step. Additionally,
we read the state of the PAM by using the EDBGRD instruction.

9 Experimental Evaluation

All experiments were conducted on an Intel Xeon Silver
4410Y processor with support for SGX2 and AEX-Notify.
This machine has a unified L2 TLB that can hold 2,048 en-
tries for 4 KiB code and data page translations (cf. Table 2
from Appendix B). To assess the runtime overhead of the
instrumentation, we use the processor’s internal time-stamp
counter register, which reports the number of CPU cycles.
Each benchmark is executed in a loop to determine stable
averages of the execution times. The number of iterations
for each benchmark is chosen to balance a reasonable experi-
mentation time and stable results with low standard deviation.
We compare the impact of data-access instrumentation and
control-flow instrumentation, as well as the different opti-
mizations, by compiling our code with different parameters
to separate enclave binaries.

9.1 Security Effectiveness Validation

To assess leakage when using TLBlur, we investigate the page-
access trace of the victim enclave by using our profiler (§7.2),
where we assume a TLB with 128 sets and 8 ways per set.

Case Study: Square-and-Multiply. For the running ex-
ample (§ 4.2), we validated that with a small PWS of size
N ≥ 3, secret-dependent control-flow patterns to the modpow,
square, and multiply pages are indeed reduced to only the

first access. This is visualized in Fig. 5, where we also include
Lempel-Ziv complexity numbers [42] to quantify the total
amount of extractable information (not necessarily secret-
dependent) from a single enclave execution.

Case Study: libjpeg. We assess the security effectiveness
of TLBlur using a real-world libjpeg benchmark application,
which has been a prominent target in controlled-channel at-
tacks [28, 85] and defenses [53, 60, 86, 87]. In this scenario,
the victim enclave includes the unmodified libjpeg v9e code
and offers an ecall to securely decode secret input images
in enclave memory. The adversary observes the page access
of the victim enclave and uses this information to reconstruct
the processed input image. For our experiments, we reim-
plemented the attack described by Xu et al. [85], which is
also included in our open-source artifact (§13) to encourage
further research on controlled channels.

The existing AEX-Notify single-stepping mitigation [16]
may partially hinder image reconstruction by unconditionally
prefetching stack pages. However, it does not fully eliminate
leakage, as page-fault adversaries can still observe fault se-
quences on code pages and heap memory accesses. To demon-
strate the attack’s remaining potential, Fig. 1 and Appendix C
provide example images alongside their reconstructions.

Using the profiler, we find that a PWS of size 30 is suffi-
cient to obscure secret-dependent patterns in practice. With
TLBlur, no data leakage remains except for the total number of
8×8 JPEG blocks in the input image. Notably, this informa-
tion is not even sufficient to reconstruct the image dimensions,
meaning the black rectangles in Fig. 1 overestimate the ac-
tual remaining leakage. For example, a 1600×1000 image,
consisting of 25,000 8× 8 blocks, would have 24 possible
dimensions. We provide the full page-access traces for libjpeg,
along with further details, in Appendix D.

Takeaway. Our experiments clearly demonstrate how TL-
Blur automatically “blurs” the information leakage observable
to controlled-channel adversaries. The libjpeg example un-
derscores the need for automated compiler solutions, given
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Figure 6: Average execution slowdown across benchmark applications. The dashed line corresponds to the geometric mean.

the infeasibility of manually crafting constant-time code for
general-purpose applications. Even in the security-sensitive
domain, e.g., cryptography, writing constant-time code re-
mains notoriously challenging and error-prone [36].

9.2 Performance Evaluation
We first assess the runtime overhead imposed by TLBlur’s
instrumentation via meaningful cryptographic algorithms,
the libjpeg enclave from Xu et al. [85], and specialized mi-
crobenchmarks (§ 9.2.1). Next, we quantify the additional
overhead of sorting the PAM and prefetching pages when
resuming from interrupts (§9.2.2).

9.2.1 Instrumentation Overhead

Figure 6 overviews the average execution time slowdown
of TLBlur, including the optimizations discussed in §6.4, on
various benchmarks. We compare the performance overhead
obtained from instrumenting the enclave with only compile-
time instrumentation, binary instrumentation, and both. For
completeness, Table 3 in Appendix E additionally includes
detailed breakdowns of the different optimizations in the bi-
nary instrumentation. Overall, the slowdown factor of the
optimized instrumentation ranges between ×1 and ×5, de-
pending on the application. In the following, we discuss the
performance observed in different benchmark programs.

Data-Access Benchmark. The micro-stressmem bench-
mark measures the overhead on bulky data page accesses by
writing to a large memory buffer in a loop. The data-access
dominates the performance overhead, while code page in-
strumentation has a negligible impact.

Control-Flow Benchmark. The micro-long-loop bench-
mark measures the overhead of control-flow instructions.
Specifically, the program contains a tight loop that jumps
across a page boundary on each iteration to represent a worst-
case scenario. Without optimizations, the slowdown factor
of the control-flow instrumentation is around ×54. We in-
spect the reason for this behavior and conclude it is caused
by the high-performance impact of the pushf and popf in-
structions when invoking the PAM update routine (§6.1).
A practical way to reduce the impact of page-cross transi-
tions is to set TLBlur to consider larger logical code pages

of 16 KiB (§6.4). Indeed, this parameter removes most of
the performance overhead, as loops are contained within a
16 KiB logical page, thus eliminating the need for instru-
menting their jumps.

Libjpeg. Xu et al. [85] demonstrated the impact of page-table
attacks on various real-world applications, including libjpeg.
We evaluate the performance overhead of our defense on this
application. With compile-time instrumentation alone, we
observe a slowdown factor of ×2.83. Likewise, when only
applying binary instrumentation of code accesses, we find a
slowdown of×3.54 without optimizations. When combining
both approaches, the slowdown increases to ×7.56.

By analyzing the execution traces and the instrumented bi-
nary, we observe that a performance-critical loop is repeat-
edly executed when decompressing an image. After instru-
mentation, such a loop is placed across a page boundary, thus
inflating overhead due to code page-cross instrumentation.
Similar to the micro-long-loop benchmark, using larger
logical pages of 16 KiB eases the binary-instrumentation
slowdown factor to a more reasonable ×1.22. Another way
to boost performance is moving the instrumentation to the
targets of jumps. Specifically, the performance-critical loop
in libjpeg contains a sequence of conditional jumps. By
moving the binary instrumentation to the targets for these
jumps, we reduce the number of invocations of the PAM up-
date procedure (§6.1). This also eliminates the need to store
the rflags register, thus further contributing to lowering
the runtime overhead. After applying all of the above opti-
mizations, the binary instrumentation overhead is reduced to
×1.03, and the total slowdown for full mitigation, including
compile-time and binary rewriting, decreases to ×3.07.

yescrypt. yescrypt is a library based on Scrypt that imple-
ments a key-derivation function for password hashing. We
observe a slowdown factor of ×1.10 for the yescrypt func-
tion and ×1.97 for the PBKDF2 function within yescrypt.

wolfSSL. We use wolfSSL to evaluate the PBKDF2 function
and observe similar results when compared to the yescrypt
implementation of PBKDF2. However, for wolfSSL, this
overhead can primarily be attributed to the control-flow in-
strumentation, whereas the overhead in the yescrypt imple-
mentation mainly originated from memory-access instru-
mentation. We notice that wolfSSL executes fewer instruc-
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tions that access memory compared to yescrypt when using
similar parameters. This shows that the exact overhead of
our instrumentation can depend on implementation details.
Furthermore, we evaluate the AES-CBC implementation of
wolfSSL. Here, we find a high overhead caused by memory
access instrumentation, resulting in a slowdown factor of
×4.83. This is because wolfSSL does not support AES-NI
for hardware-accelerated AES on Intel SGX, which causes it
to fall back to an (insecure) software-based implementation.
Such implementation uses a significant amount of memory
accesses that are all instrumented individually.

OpenSSL. The OpenSSL library implements AES-GCM us-
ing AES-NI instructions to accelerate encryption and decryp-
tion, demonstrating how different implementation choices
of the same algorithm affect performance. In the case of
OpenSSL, the amount of instrumented memory accesses
is significantly lower when compared to a software-based
implementation, resulting in a slowdown factor of ×1.92.
Note that parts of the OpenSSL code that execute AES-NI
instructions are handwritten in assembly. Since our data
access instrumentation is only applied to code lowered by
the LLVM backend, any data accesses within this assem-
bly code will not be instrumented. Lastly, we benchmarked
OpenSSL’s RSA implementation, incurring a slowdown fac-
tor of ×3.89.

9.2.2 Interrupt-Resumption Overhead

We conducted a microbenchmark to measure the overhead
of sorting the PAM and prefetching N pages in the enclave
exception handler, which is executed after every interrupt. Us-
ing only the existing AEX-Notify single-stepping mitigation
(without enabling TLBlur), we measured an execution time
of 13,000 cycles for the AEX handler, which aligns with per-
formance numbers reported in previous work [16]. However,
enabling TLBlur significantly increases this overhead, mainly
due to the constant-time sorting of the PAM (which need not
be executed atomically). For a large application like libjpeg,
with 8,192 PAM entries and a PWS size of 30, the overhead

rose to approximately 250,000 cycles. Different applications
may require different PAM and PWS sizes.

Figure 7 shows that TLBlur’s interrupt-resumption overhead
scales linearly with both the PWS and PAM sizes. Since the
number of PAM entries corresponds to the number of enclave
pages, the overhead ultimately depends on the enclave’s size
and the configured PWS size. Assuming a benign OS inter-
rupts the enclave once every 1 million cycles, an overhead of
250,000 cycles per interrupt would translate to a 25% perfor-
mance overhead. However, actual interrupt rates vary based on
the deployment environment, and the current implementation
is not yet optimized. Particularly, we expect that developing
faster constant-time sorting algorithms with vector extensions
may further reduce the performance overhead.

9.2.3 Takeaway

Based on our review of the literature (§ 11), the work by
Shinde et al. [61] aligns most closely to our objectives and
approach. Both defenses are compiler-based and explicitly
designed to address page-table attacks. From a design perspec-
tive, the main difference is that the work of Shinde et al. needs
extensive manual code annotations, while TLBlur is applica-
tion agnostic. To the best of our knowledge, there is no public
implementation of Shinde et al.’s defense. Therefore, we inter-
polate the overhead from their publication’s results. In terms
of performance, Shinde et al. find an average slowdown of
×700 [61, Table 2]. From our evaluation, when optimizations
are in place, we measured an average slowdown of ×2.24
from instrumentation. Assuming an additional prefetching
overhead around 25%, the overall average slowdown would
be 2.24 ·1.25 =×2.80. Furthermore, in contrast to the work
of Shinde et al., we did not have to terminate any benchmarks
early due to timeouts. This result positions TLBlur as a more
practical approach for off-the-shelf Intel SGX platforms.

10 Discussion and Future Work

Limitations and Edge Cases. Our PAM implementation
does not consider TLB set-associativity. As such, re-filling
could lead to high pressure on certain sets of a set-associative
TLB. Therefore, when the size of the PWS matches the maxi-
mum size of the TLB, which is computed as the number of
sets multiplied by the number of ways, re-filling the TLB is
likely to lead to evictions of previously prefetched entries. To
mitigate this, we conservatively choose the size of PWS, and
provide tools to evaluate the effectiveness of the defense. In
the worst case, all accessed pages map to the same TLB set,
reducing the effective value for the PWS size to the number
ways in a set, e.g., 8 (cf. Table 2 from Appendix B). Even if
this unlikely case happens, there would still be a significant
reduction in spatial granularity from 4 KiB to 32 KiB. For
memory-intensive applications with a working set exceeding
the PWS size, some data may still leak. However, we note



that this would still only be a subset of their leakage under the
current AEX-Notify single-stepping mitigation, as illustrated
in Figs. 9c and 9d of Appendix D.

Our current mitigation prototype only supports single-
threaded enclave applications, the default for Intel SGX and
prior attack targets. If needed, multithreading support could
be implemented by using thread-local instead of global stor-
age, such that each thread maintains its own PAM and fills its
TLB individually. Shared variables would be logged in the
PAM of each thread that accesses them.

Microarchitectural State Restore. We envision that TL-
Blur’s protective design philosophy for the TLB could be
extended to other microarchitectural components. Specifi-
cally, we propose the generic concept of replicating hidden
microarchitectural state in software and seamlessly restor-
ing microarchitectural buffers on (asynchronous) context
switches between security domains. With a finer-grained soft-
ware data structure, such transparent state restore defenses
could also be applied to other microarchitectural components,
e.g., CPU caches. Furthermore, novel hardware-software co-
design mechanisms could ease or entirely alleviate microar-
chitectural state tracking in software, e.g., through custom
update instructions or by transparently writing microarchitec-
tural buffers to protected memory regions on context switch.

Alternative TEE Architectures. While TLBlur was instanti-
ated on off-the-shelf Intel SGX, we believe its design is gener-
alizable to other TEE technologies. The primary architectural
requirement for TLBlur is interrupt-awareness, enabling TLB
pre-filling through a custom exception handler.

Some academic TEEs [6,20] are inherently interrupt-aware,
as they restore the interrupted enclave state from software.
Confidential VM architectures, on the other hand, are typ-
ically not interrupt-aware. We consider protecting legacy
VMs orthogonal to hardening security-sensitive enclave pro-
grams. However, recompiling at least user-space applications
could be feasible in dedicated, security-sensitive deployments
or custom VM runtimes like Enarx or Mushroom. Notably,
AMD SEV exposes untrusted page tables, which have been
exploited in controlled-channel attacks [29, 50, 79, 82] and
related frameworks like SEV-Step [83]. Implementing TL-
Blur on AMD SEV would require a firmware update to make
SEV VMs interrupt aware, akin to Intel SGX’s AEX-Notify,
along with recompiling the user-space application. Interest-
ingly, Intel’s TDX confidential VM architecture does not di-
rectly expose extended page tables, but includes an untrusted
TDH.MEM.RANGE.BLOCK VMM call that has been exploited to
successfully mount controlled-channel attacks [2]. This has
led to explicit calls for a similar “TDExit-Notify” feature [62],
which would similarly enable exploring TLBlur on TDX.

SGX prevents reading encrypted memory, making cipher-
text side channels [43] ineffective for observing PAM up-
dates. In contrast, other TEEs like AMD SEV may be vulner-

able to such attacks and would require orthogonal architec-
tural [19, 21] or compiler [81] mitigations.

Enclave Security Considerations. SGX enclaves are secu-
rity containers that host dedicated portions of code. Only the
cost of calling an enclave and returning is 8,000 cycles, which
is an order of magnitude above regular system calls [54]. This
indicates developers using SGX already accept to sacrifice
performance for security. As a case in point, due to continuous
mitigation addressing microarchitectural attack vectors, SGX
enclaves have already experienced significant performance
slowdowns, e.g., Intel’s official compiler-based mitigation for
LVI attacks introduces slowdown factors of×2 to×9 [38,69].
In comparison, the overhead introduced by TLBlur is much
less impactful than similar defenses for controlled-channel at-
tacks [61]. Even more important, TLBlur is more practical than
fully homomorphic encryption approaches, which are the only
alternative to TEEs for untrusted cloud environments [45].

Further Performance Optimizations. Certain code pat-
terns, such as performance-critical loops crossing page bound-
aries, can cause significant slowdowns. We discussed opti-
mizations that group code pages to reduce the number of
instrumentations in §6.4. A more principled approach may
use a performance profile to optimally place basic blocks on
code pages. Other potential optimizations involve copying
memory in loops, where we could move the instrumentation
outside the loop and trace all pages in one step. However,
identifying bulky data transfers is challenging and requires
dedicated software-analysis efforts.

11 Related Work

Table 1 comprehensively compares TLBlur to prior defenses,
where we computed the minimum and maximum overheads
for TLBlur based on the instrumentation slowdown factors
from the real-world applications in Fig. 6, with an additional
25% interrupt-resumption overhead applied.

Interrupt Detection. Initial approaches [13, 52, 60] detect
suspicious AEX rates that may be caused by controlled-
channel attacks. As these solutions were devised before
the AEX-Notify hardware extension was available, they use
other mechanisms to detect AEXs, such as Intel Transac-
tional Synchronization Extensions (TSX) [13, 60], which
yields considerable performance impacts and is deprecated on
newer processors, or by imperfectly monitoring SSA memory
writes [52]. More fundamentally, such heuristic approaches
are inherently fragile, suffering from both false positives and
false negatives [30, 37], and may ultimately be circumvented
by more stealthy page-table-based attacks [74, 76].



Table 1: Overview of prior controlled-channel defenses.

Scope

Proacti
ve

Compat
Auto

Reso
l Overhead %

Defense min max

Dete
cti

on T-SGX [60] G# # G#  – 10 90
Deja-Vu [13]  # G#  – 1 4
Varys [52]  #   64 B 5 40

Ran
dom

InvisiPage [1] G# G# #  4 KiB 16 1,800
Klotski [87] G#    4 KiB 25 1,022
Dr.SGX [10]  G#   64 B 500 1,100
Obelix [80]     64 B 16,200 10,290,900

Pinning
Heisenberg [64] G#  G# # 4 KiB 300 3,000
Autarky [53] G# G# # # 4 KiB 18 25
SGXL [86] G# G# # # 2 MiB – –
AEX-Notify [16] # G#   – – –

Compile Pigeonhole [61] G# G#  # 4 KiB 29 400,000
TLBlur (this paper) G#    4 KiB 28 504

Scope: covers a subset (#), only (G#), or a superset ( ) of controlled chan-
nels; Proactive: fully ( ) or partially (G#) prevents leakage of code and data
accesses; Compat: off-the-shelf Intel SGX ( ), non-standard TSX (G#), hy-
pothetical hardware (#); Auto: manual developer intervention (#); Resol:
spatial resolution at which accesses are hidden, if applicable (page = 4 KiB;
cacheline = 64 B); Overhead: as reported in the respective papers.

Randomization. An orthogonal line of work developed
randomization-based defenses, such as customized oblivious
RAM solutions, to probabilistically hide any secret-dependent
enclave memory accesses at the granularity of pages [1,87] or
cache lines [10, 80]. While such obfuscations can be generic
and largely invisible to the enclave application, they com-
monly incur prohibitive performance overheads, reaching up
to ×105. Additionally, certain solutions [10] solely target
data accesses without obscuring prevalent conditional code
accesses. More complete solutions [1], require invasive hard-
ware changes, e.g., enclave-private page tables [20, 23], that
are unavailable on off-the-shelf Intel SGX platforms. Further-
more, recent research [56] has demonstrated that subtle leak-
ages may persist even when implementing demand-paging
with an oblivious page access module.

Page Pinning. Defenses conceptually closest to our work
aim to “pin” certain enclave pages to make them oblivious
to the adversary. Similar to TLBlur and AEX-Notify [16],
Heisenberg [64] prefetches sensitive pages into the TLB when
resuming from an interrupt. However, Heisenberg requires
hypothetical hardware extensions or using Intel TSX, which
is scarcely available and induces exuberant performance over-
heads up to ×30. Alternatively, Autarky [53] proposed theo-
retical SGX hardware extensions to hide enclave page-fault
addresses, forcing the untrusted operating system to cooperate
with the enclave to evict or restore pages. However, Autarky
implies extensive alterations in both hardware, operating sys-
tem components, and enclave software. Furthermore, since
page tables still reside in untrusted memory, Autarky does
not safeguard against stealthy attacks taregtting the cache
status of PTEs [74]. Lastly, SGXL [86] proposed to change

Intel SGX’s EPCM hardware to securely support large 2 MiB
pages. While this would in itself not eliminate the page-fault
channel, it would considerably limit the spatial resolution
with negligible overheads. However, SGXL requires intrusive
hardware changes unsupported on current off-the-shelf SGX
platforms, and its temporal protection remains unclear.

More fundamentally, from a usability perspective, none of
these pinning solutions have addressed the key question of
how to determine the subset of enclave pages that need to
be pinned. Prior solutions simply assume that the enclave
is small enough to be entirely pinned [64], or by relying on
impractical and error-prone developer annotations [53, 86].

Compile-Time Rewriting. Intel’s official SGX developer’s
guide advices to “aligning specific code and data blocks to
exist entirely within a single page” [31]. However, they do
not specify a concrete procedure and do not consider larger
programs with secret-dependent patterns spanning beyond a
single page. Shinde et al. [61] devised a software-based com-
piler scheme that achieves page-fault-oblivious execution by
iteratively copying secret-dependent code and data to a single
staging area. However, their approach introduces prohibitive
slowdowns, exeeding ×4000 for real-world cryptographic li-
braries. Additionally, it imposes severe restrictions on input
programs, requiring developers to (i) use a restrictive subset
of C; (ii) ensure a manually balanced execution tree devoid of
secret-dependent loops; (iii) manually annotate secrets; and
(iv) engage in extensive manual optimizations. Finally, fo-
cussing solely on page-fault obliviousness, the impact of more
powerful interrupt-driven page-table-based attacks [49,72,74]
on this prior defense remains unclear.

Temporal Resolution. While the previous solutions mainly
targeted the spatial dimension of controlled-channel attacks,
the original AEX-Notify hardware-software co-design [16]
was explicitly designed to limit the temporal resolution of
single-stepping attacks [72]. This paper is the first to show
that the hardware extension provided by AEX-Notify can
tackle the spatial bandwidth of controlled-channel attacks.

12 Conclusion

TLBlur is a practical and effective software defense that coun-
teracts controlled-channel attacks on Intel SGX platforms us-
ing the AEX-Notify feature. TLBlur mitigates such attacks by
dynamically tracking application page accesses through trans-
parent compiler instrumentation and seamlessly prefetching
them into the hardware TLB upon interrupt resumption. Our
results show an acceptable performance overhead (×2.80 on
average), making TLBlur a viable option for securing enclaves
against controlled-channel attacks on existing hardware.



13 Ethics Considerations and Open Science

Ethics Considerations. This is core defensive research, aiming
to harden applications for a widely deployed real-world security tech-
nology (i.e., Intel SGX). As part of this research, we also developed
improved attack techniques and tooling (cf. page-access profiler
in §7.2). We firmly believe that the benefits of better understand-
ing and being able to explore and quantify remaining side-channel
leakage in SGX applications outweighs any harms of making these
tools openly available. This is also recognized by the community at
large, e.g., the open-source SGX-Step [72] framework on which we
based our tooling was recognized with a long-term ACSAC 2023
Cybersecurity Artifacts Competition and Impact Award [71]. All of
the case-study applications we used to evaluate our defense were
already attacked in prior works [61,74,76,85], thus we found no new,
unknown vulnerabilities that would need responsible disclosure.

Open Science. All of our code, including the compiler, runtime,
profiler, and case studies, is available on Zenodo 1 and GitHub 2.
We hope that a high-quality open-source release of our mitigation
prototype can help foster further research or even influence real-
world applications in the industry.
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A Page Access Map Update Assembly Code

1 # TLBlur page-access map update,
2 # called by instrumentation
3 # args: %rdi = accessed address
4 # %rax = scratch
5 __tlblur_pam_size = 0x1000000
6 __tlblur_pam_mask = 0x0fffff8
7 .global tlblur_pam_update

8 tlblur_pam_update:
9 # Compute index in PAM

10 # %rdi = (((%rdi - <enclave_base>) >> 12) *8)
11 # %rdi &= (<pam_size> - 1)
12 lea __ImageBase(%rip), %rax
13 sub %rax, %rdi
14 shr $12, %rdi
15 shl $3, %rdi
16 and $__tlblur_pam_mask , %rdi
17

18 # Add PAM base address
19 leaq __tlblur_pam(%rip), %rax
20 add %rax, %rdi
21

22 # Increment global counter in %rax
23 movq __tlblur_counter(%rip), %rax
24 incq __tlblur_counter(%rip)
25

26 # Update the PAM
27 movq %rax, (%rdi)
28 ret
29

30 .data
31 .align 0x1000 # 4KiB
32 .global __tlblur_pam
33 __tlblur_pam:
34 .zero __tlblur_pam_size
35

36 .global __tlblur_counter
37 __tlblur_counter:
38 .quad 1

B Hardware TLB Details

Table 2 provides the full TLB details of the Intel Xeon Silver
4410Y evaluation platform, as reported by cpuid and doc-
umented in the Intel optimization manual [33]. It contains
separate L1 TLBs for code and data (separated into loads and
stores), plus a unified shared L2 TLB for code and data.

Table 2: TLB details of the Intel Xeon Silver 4410Y.

Page Size Support

Type 4KB 2MB 4MB 1GB Ways Sets Tot

L1 iTLB ✓ ✗ ✗ ✗ 8 32 256
L1 iTLB ✗ ✓ ✓ ✗ 8 4 32

L1 dTLB (store) ✓ ✓ ✓ ✓ 16 1 16
L1 dTLB (load) ✓ ✗ ✗ ✗ 4 16 64
L1 dTLB (load) ✗ ✓ ✓ ✗ 4 8 32
L1 dTLB (load) ✗ ✗ ✗ ✓ 8 1 8

L2 sTLB ✓ ✓ ✓ ✗ 8 128 1024
L2 sTLB ✓ ✗ ✗ ✗ 8 128 1024

C Libjpeg Examples

See Fig. 8 for additional examples of images reconstructed
by our reimplementation of the original controlled-channel



Table 3: Slowdown factor for benchmarks with different instrumentation parameters. The left side of the table shows results for
binary instrumentation of direct control flow under various optimizations. The “data + Indirect Control-Flow (ICF)” column lists
the results when applying only compile-time instrumentation. The right side displays the full mitigation, combining compile-time
instrumentation and binary rewriting. The last row reports the geometric mean slowdown across all benchmarks.

Benchmark direct control-flow
data+ICF

control-flow and data

unoptimized 16KiB pages jump targets both unoptimized 16KiB pages jump targets both

micro-stressmem 1.00 1.00 1.01 1.00 5.49 5.55 5.46 5.42 5.44
micro-fibonacci 9.69 9.82 1.24 1.24 1.02 9.71 9.81 1.39 2.65
micro-long-loop 54.35 0.90 12.09 0.80 1.09 54.31 2.33 12.09 0.79
libjpeg-birds 3.54 1.22 1.09 1.03 2.83 7.56 3.93 3.31 3.07
yescrypt-yescrypt 1.15 1.17 1.00 1.00 1.10 1.28 1.25 1.14 1.10
yescrypt-pbkdf2 1.43 1.41 1.20 1.21 1.80 2.53 2.12 2.04 1.97
wolfssl-pbkdf2 1.69 1.21 1.22 1.00 1.10 2.18 1.44 1.52 1.16
wolfssl-aes-cbc 1.35 1.04 1.11 1.07 4.56 5.30 5.21 4.87 4.83
openssl-aes-gcm 6.58 4.99 1.43 1.36 1.44 8.48 5.22 2.07 1.92
openssl-rsa 10.47 6.94 1.54 1.62 3.04 16.17 9.83 4.05 3.89

geometric mean 3.70 1.94 1.50 1.11 1.94 6.39 3.72 2.91 2.24

Figure 8: Example images (left) recovered via libjpeg page
faults (middle). TLBlur fully eliminates leakage vs. insuffi-
cient protection from existing AEX-Notify mitigation (right).

attack on libjpeg by Xu et al. [85]. Although the existing
AEX-Notify single-stepping mitigation [16] may somewhat
hinder image reconstruction, by unconditionally prefetching
stack pages, it is clearly insufficient to fully prevent leakage.

D Detailed Security Effectiveness Evaluation

Figures 9 and 10 show the traces of libjpeg obtained with
different TLBlur prefetch sizes. The original page-access trace
in Figure 9a clearly shows a repeating page-access pattern
that can be used to identify the start of the decompression of
each 8×8 block of the input image, as well as the start of each
row of blocks. This information, combined with the number
of accesses to stack and heap, provides significant information
to deduce the input image. We zoom into a single 8×8 block
decompression step for each figure to better illustrate this.

When using the AEX-Notify single-stepping defense [16],
the temporal resolution decreases significantly, as shown in

Fig. 9b. However, the same page-access patterns that can be
used to reconstruct images remain observable.

Already after applying TLBlur with a PAM of limited size
20 (Figure 9d), we observe that individual calls to the 8×8
block decompression function become indistinguishable, al-
though an adversary is still able to determine the start of each
row. When increasing the size of the PAM further, any re-
maining control-flow patterns during decompression become
obscured. A similar effect occurs on the data pages, making it
infeasible for adversaries to reconstruct images through page
table leakage using state-of-the-art techniques.

The bottom heap pages of the traces in Fig. 9 are data
pages accessed by memcpy between decompression opera-
tions. These accesses still leak with higher PAM sizes, as we
have chosen to not instrument standard library functions to
reduce the performance overhead. For this application, such
standard library functions are not used in a secret-dependent
way, as copying segments of an image leaks no information
about the image besides its size. However, we note that it is
possible to instrument these functions for applications that
would otherwise leak secret information.

E Detailed Performance Benchmarks

Table 3 provides detailed performance results of the bench-
marks in §9.2.1.



(a) Maximal page-access trace for single-stepping attacker; Lempel-Ziv: 10,313,182.

(b) AEX-Notify single-stepping mitigation; Lempel-Ziv: 6,150,926. (c) TLBlur with PWS of size 10; Lempel-Ziv: 3,536,653.

(d) TLBlur with PWS of size 20; Lempel-Ziv: 472,775. (e) TLBlur with PWS of size 30; Lempel-Ziv: 414,905.

Figure 9: Full page-access trace from our profiler during image decompression with libjpeg (x-axis: attacker observation points;
y-axis: page numbers). The existing AEX-Notify single-stepping mitigation merely reduces temporal resolution (x-axis range)
and minimally obscures spatial accesses to stack pages. As the PWS parameter increases, TLBlur principally reduces both
temporal and spatial dimensions: less page faults on the x-axis and “blurred” access patterns. The highlighted rectangles show a
single, secret-dependent libjpeg iteration, with a zoomed trace in Fig. 10. We include Lempel-Ziv complexity numbers [42] to
quantify the amount of information that can be extracted from these traces.



(a) Maximal page-access trace for single-stepping attacker; Lempel-Ziv: 2,416,952.

(b) AEX-Notify single-stepping mitigation; Lempel-Ziv: 1,369,130. (c) TLBlur with PWS of size 10; Lempel-Ziv: 308,035.

(d) TLBlur with PWS of size 20; Lempel-Ziv: 48,054. (e) TLBlur with PWS of size 30; Lempel-Ziv: 19,212.

Figure 10: Detailed page-access trace for a single, secret-dependent libjpeg iteration, zoomed-in from Fig. 9 (x-axis: attacker
observation points; y-axis: page numbers). The existing AEX-Notify single-stepping mitigation merely reduces temporal
resolution (x-axis range) and minimally obscures spatial accesses to stack pages. As the PWS parameter increases, TLBlur
principally reduces both temporal and spatial dimensions: less page faults on the x-axis and “blurred” access patterns, effectively
hiding the secret-dependent page-access patterns successfully exploited in previous works. We include Lempel-Ziv complexity
numbers [42] to quantify the amount of information that can be extracted from these traces.
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