

CS590-LBS Language-based
Systems Software Security

aka “The Eternal War in Memory”

Fall semester 2014

Mathias Payer
Purdue University

Physical security

● Indoor alarm: leave the building
● Outdoor alarm: seek shelter, look for updates
● Call 911 for any emergency

● Low probability that something happens!

3

Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety
and memory safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications
written in C / C++ prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system

Course overview

● C/C++ bugs lead to security vulnerabilities
– Buffer overflow, integer overflow, unchecked format

string, improper null termination, double free, …

● Large set of security policies exist, only few
adopted in practice

● Goal: understand system security
– Trade-offs between protection and performance

– Requirements for strong policies

Logistics

● Course website:
– http://nebelwelt.net/teaching/14-memory-war.html

● Course has two parts:
– Discussion of security policies

– (Small) research project

http://nebelwelt.net/teaching/14-memory-war.html

Logistics: security policies

● Everybody presents 2-3 papers
– Select papers that you find interesting

– Goal: 20min presentation, 20min discussion

– Write a 1 page summary of the discussion

Logistics: research project

● Select a discussed security property, either
– Design and implement an extension of an existing

policy

– Develop metrics and implement a benchmark that
measures effectiveness or overhead of property

Area: Memory Safety

● Language based: CCured, Cyclone
● Compiler based: SoftBounds, BBC, ASAN,

CETS
● Runtime system: Cling, DieHard, DieHarder,

MemCheck, Valgrind

Area: Data and Pointer Integrity

● Write Integrity Testing (WIT)
● BodyArmor
● PointGuard

Area: Randomization

● Data Space Randomization (DSR)
● ASLR
● Binary stirring
● Instruction Set Randomizatoin (ISR)
● Instruction Layout Randomizatoin (ILR)

Area: Data & Control-Flow Integrity

● Data-Flow Integrity (DFI)
● Control-Flow Integrity (CFI)
● XFI: eXtended Flow Integrity
● HyperSafe
● Code-Pointer Integrity (CPI)

Area: Dynamic Policies

● Safe Loading
● Secure Execution via Program Shepherding
● SysCall policies

Area: Software-based Fault Isolation

● PittSFIeld
● Native Client (NaCL)

Summary

● Security policies exist in many different areas
– Memory safety

– Data and Pointer Integrity

– Randomization

– Data-Flow and Control-Flow Integrity

– Dynamic Policies

– Software-based Fault Isolation

● Different trade-offs and performance
characteristics

Your todos:

● Read “Eternal War in Memory” paper
● Look through reading material for policies that

are interesting to you
● Think about possible groups/solo projects
● Papers and groups will be allocated on

Wednesday!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

